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Abstract We present the results of our recent study on the interactions between a
giant planet and a self-gravitating gas disk. We investigate how the disk’s self-gravity
affects the gap formation process and the migration of the giant planet. Two series
of 1-D and 2-D hydrodynamic simulations are performed. We select several surface
densities and focus on the gravitationally stable region. To obtain more reliable gravity
torques exerted on the planet, a refined treatment of the disk’s gravity is adopted in
the vicinity of the planet. Our results indicate that the net effect of the disk’s self-
gravity on the gap formation process depends on the surface density of the disk. We
notice that there are two critical values, X1 and 1. When the surface density of the
disk is lower than the first one, ¥y < X, the effect of self-gravity suppresses the
formation of a gap. When X > 31, the self-gravity of the gas tends to benefit the gap
formation process and enlarges the width/depth of the gap. According to our 1-D and
2-D simulations, we estimate the first critical surface density to be 31 ~ 0.8 MMSN.
This effect increases until the surface density reaches the second critical value Y.
When ¥y > Xij, the gravitational turbulence in the disk becomes dominant and the
gap formation process is suppressed again. Our 2-D simulations show that this critical
surface density is around 3.5 MMSN. We also study the associated orbital evolution of
a giant planet. Under the effect of the disk’s self-gravity, the migration rate of the giant
planet increases when the disk is dominated by gravitational turbulence. We show that
the migration timescale correlates with the effective viscosity and can be up to 10% yr.

Key words: planets and satellites: formation — planetary systems: formation —
planetary systems: protoplanetary disks

1 INTRODUCTION

To date, more than 900 exoplanets have been confirmed. The great diversity in the orbital charac-
teristics of exoplanets reveals complicated physical and dynamical processes in their formation and
evolution. One of the most important dynamical processes is the interaction between exoplanets and
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the protostellar disk in which they are embedded. The physical properties of the protostellar disk
usually dominate the initial conditions of the subsequent orbital evolution of the exoplanet system.
Thanks to the improvement of direct imaging methods, a number of protostellar or debris disks inter-
acting with exoplanets have been resolved, e.g. Fomalhaut (Kalas et al. 2008) and HR 8799 (Marois
et al. 2008). Their detailed structures, such as the gaps created by the embedded planets, may be
revealed in the near future.

According to the general theory of disk-planet interaction, a planet embedded in a protostellar
disk will generate density waves within it. For a planet with a few Earth masses (Mg ), the response
of the disk is linear and the structure of the disk is almost unchanged (Goldreich & Tremaine 1979;
Ward 1997). On the other hand, for a planet with a mass comparable to that of Jupiter, the response of
the disk becomes nonlinear and it usually results in a density gap at the position of the planet’s orbit.
In this regime, the planet is locked and moves as part of the disk. This is called type II migration
(Lin & Papaloizou 1986).

The gap formation process is a key issue in understanding type II migration. In an inviscid disk,
the gravitational tidal force exerted on the gas by a giant planet tends to split the disk, while the local
fluid pressure resists the creation of any low density region. So, the criterion for gap formation is that
the planet’s Roche radius exceeds the pressure scale height of the disk. In the case of a viscous disk,
the dissipation driven by the viscosity of the gas also tends to replenish the gap. As a result, the gap
formation condition usually depends on the planet-star mass ratio M, /M., the semi-major axis of
the planet’s orbit a,,, the scale height of the disk H and the viscosity of the gas « (Lin & Papaloizou

1993) ; .
= 4004(%) . (1)

However, determining the width of a gap is not straightforward. Basically, the width of a gap is
determined by the length scale of wave propagation, and should be a decreasing function of the
effective viscosity of the gas (Lin & Papaloizou 1993; Takeuchi et al. 1996). One may rigorously
define the positions of gap boundaries as the places where the tidal torque of the planet balances the
torque raised by the viscous stress, given that all the other effects have already achieved equilibrium,
e.g. the gravity of the central star, the thermal pressure and the centrifugal force of the gas. Most
of these factors turn out to be strongly coupled with the surface density profile. If the perturbing
planet is small, the response of the disk is linearly analyzable. However, a Jupiter sized planet, as
we consider here, cannot be treated as a small perturbation. The density waves it excites are shocks
and the associated gap formation process is a highly nonlinear process. Thus, numerical simulation
is still the most powerful tool to study this process.

Many simulations have been performed to investigate the gap formation process in laminar
viscous disks (Takeuchi et al. 1996; Kley 1999; Lubow et al. 1999; D’ Angelo et al. 2003) and in
MHD turbulent disks (Winters et al. 2003; Papaloizou et al. 2004). There is an important issue that
has been poorly investigated so far, which is the self-gravitating effect of the gas (disk). In a non-
ionized disk, gravitational turbulence is the most important source of the effective viscosity. In a high
density self-gravitating disk, the gravitational turbulence can be very strong and even a Jupiter sized
planet may not be able to open a gap (Baruteau et al. 2011). Conversely, in a low density disk, the
effect of self-gravity is usually neglected or just treated as an effective viscosity (Gammie 2001). So,
it seems that as the surface density of the disk increases, the effect of self-gravity will only result in
a higher effective viscosity and monotonically reduce the gap size. When the density is high enough,
even a giant planet could not open a gap.

However, the self-gravity potential is in fact coupled with the equilibrium angular velocity of
the gas. As the self-gravity potential varies with the surface density profile, the angular velocity
required by the equilibrium varies as well. Thus, the gas needs to drift inward or outward to achieve
a new equilibrium, especially at the boundaries of the gap where the self-gravity potential changes
the most. As a result, the self-gravity of the gas changes the size of the gap and its net effect on
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the gap formation process may not be straightforward. Thus, systematic numerical experiments are
needed. In this paper, we focus on the gravitationally stable region of the disk’s surface density and
investigate how the effect of self-gravity really affects the gap formation process. We also focus on
the subsequent migration of the embedded giant planet.

We perform both 1-D and 2-D simulations to investigate the disk-planet interactions with effect
of the the disk’s self-gravity included. Our results show that the self-gravity does not suppress the gap
formation process monotonically. Instead, there are two critical surface densities X1 and ¥17. When
Yo < i, where X is the initial surface density of disk, the gap formation process is suppressed
when the effect of self-gravity is included. When ¥y > 331, the effect of self-gravity benefits the gap
formation process and results in a wider gap. This enlargement enhances until the second critical
surface density X is reached. When ¥y > 3yj, the gravitational turbulence viscosity becomes
dominant in the disk and the gap formation process is suppressed again. The exact value of these
two critical densities may depend on the many physical settings. In our simulations, we use MMSN
(the surface density in the minimum mass solar nebula model from Hayashi 1981) as a unit of
disk surface density. Then, the first critical density is around 0.8 and the second one is around 3.5.
The associated migration of the giant planet is also studied and we find that the self-gravity of
gas accelerates the type II migration when >y > Y1;. We confirmed that the migration timescale
correlates with the effective viscosity in the disk, and can be as short as ~ 10* yr in a very dense
disk with %9 > 7 MMSN.

This paper is arranged as follows: we introduce the models of the 1-D and 2-D simulations in
Section 2. The results are described in Section 3. In Section 4, we summarize our conclusions and
discussions. The details of a refined treatment of the gravity torques and the calculation of the disk’s
self-gravity are described in Appendix A and B.

2 NUMERICAL MODEL
2.1 Computational Units

To normalize our calculations, we set the mass of the central star to be the mass unit M,. = 1 and the
gravitational constant G = 1. The length unit is set to be the initial orbital radius of the planet ag = 1.
Thus the orbital frequency of the planet is unity and its initial orbital period is Py = 27. According
to this configuration, our scale is in fact arbitrary. To connect with real physical dimensions, we
further set the central star to be one solar mass M, = M, and the initial orbital radius of the planet
is ap = 5.2 AU. Thus, the time unit becomes 11.2 yr/27. According to the minimum-mass solar
nebula model (MMSN, Hayashi 1981),

where ¥y = 1700 g cm~2. According to our length unit, where ag = 5.2 AU, the density constant
in our model is ¥ ~ 140 g cm~2. To be convenient, we set MMSN= 140 g cm~? as a surface
density unit in this paper. Therefore, 2 MMSN equals ¢ ~ 280 g cm ™2 at ag = 5.2 AU.

2.2 1-D Model

In the first series of simulations, we solve the viscous evolution of a 1-D self-gravitating disk which
is perturbed by a Jupiter mass planet. Assuming 3 is the surface density of the disk, and € and v,
are the angular and radial velocity of gas respectively, the 1-D continuity equation is

ox 0

"of + E(r&}r) =0, 3)
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and the equation of angular momentum reads

a(Tr2Q) 9 ,
TT + E(TE’UY - Q)

1 0G
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where G is the rate of angular momentum transport. By eliminating v,, we obtain the governing
equation

ox 10 1 0G 2w OV Orvg
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where vy = rQ.

The rate of angular momentum transport G is mainly determined by two factors: the effective
viscosity of the gas G, and the torques exerted by the planet G,. For the first factor,

~ Q
G, = 27r - qud— -, (6)
dr

where v = Vupp + Vsg = (Qart + asg) (H/7)*Q. H/r is the scale height ratio of the disk. To
identify the contribution from the disk’s self-gravity, the total viscosity is divided into two parts: g,
the effective viscosity caused by the effect of self-gravity and ., an artificial viscosity denoting
viscosity which comes from all other effects, e.g. the magnetorotational instability. The typical value
of aiary ranges from 1073 to 1072, We are considering a self-gravitating disk, where most of the
viscosity is assumed to be caused by the effect of self-gravity, so we adopt a low artificial viscosity:
Qart = 1073.

When a planet is embedded in the disk, its tidal torques cause transport of additional angular
momentum (Lin & Papaloizou 1979). The total rate of angular momentum transport becomes

. a0 -
G:27T7"-VET%+GP, @)

where ép is the torque exerted on the gas by the embedded planet, which contains both lin-
ear Lindblad and corotation torques associated with isothermal gas (Paardekooper et al. 2010).
Following equations (14) and (15) of Ward (1997), we can obtain the smoothed Lindblad torque
density. In the corotational region, the linear corotational torque density is represented in equa-
tion (16) of Paardekooper et al. (2010). Hence, we can finally obtain the torques I';. as well as the
torque density %Frf on the gas at radius r due to the planet.

The effects of self-gravity are simulated by two terms: the self-gravitating viscosity oy, and
the self-gravity potential on the disk ®,. Since the 1-D model could not simulate the gravitational
turbulence well, we adopt an analytic description of ay,. We will discuss it in detail in Section
3.2.1. Besides the effective viscosity, the self-gravity of the disk ®4, can also change the meridional
velocity field vy on the disk. Considering this to be a quasi-static process, we have

vZ _ GM,  1dP  d¥g

o2 + 3 dr dr
In this 1-D model, @, is calculated by integrating the radial component of the gravity of all the grids
on the disk. To avoid a singularity, a softening length ¢ = 0.1H is adopted. We emphasize that the
self-gravity potential @, is not constant. Instead, it changes at every time step as the surface density
changes, like the equilibrium angular velocity. This effect may imply there is a change in size of the
gap.

The governing equation is diagonalized to a tridiagonal matrix. Methods to solve this kind of
linear algebraic equation can be found in Press et al. (1992). The initial surface density Xy is set
equal to a series of values from 0.7 MMSN to 2.8 MMSN. The boundary condition is set to be solid
where >1,0una = 2o.

®
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2.3 2-D Model

In the second series of simulations, we solve the vertical integrated continuity and momentum equa-
tions in 2-D cylindrical coordinates by our ANTARES code. The details and convergence tests of
our code can be found in Zhang et al. (2008) and Zhang & Zhou (2010a), respectively.

2.3.1 Numerical method

We assume the disk is thin and cold, where H/r = 0.02. The vertically averaged equations are
solved in 2-D cylindrical coordinates (r, #), whose origin is located at the central star. To make sure
each cell is almost square, we adopt a logarithmic grid along the radial direction with a constant ratio
8 =Ar/(rAf) =~ 0.8.

The major difficulty in numerical experiments that incorporate the effect of self-gravity is poor
computational efficiency. It is too time-consuming to solve the Poisson equation describing grav-
itational potential on a highly perturbed disk, where the density varies quickly in both time and
position. Thanks to the application of the Fast Fourier Transform (FFT) method, we could greatly
reduce the complexity of this problem from N2 to N In N, where N is the total number of grids used
to resolve the disk. Despite this improvement, it is still too “expensive” to perform high resolution
2-D or 3-D simulations, when the total N = N, x Ny > 105. On the other hand, low resolution
simulations usually introduce un-physical effects and the results are thus less reliable.

One of the most significant numerical effects on an Eulerian grid is that, since the mass is placed
at the center of each cell instead of smoothly spreading over it, the net gravity force exerted on the
planet is usually dominated by the mass within only the single cell whose center is immediately
adjacent to it. As the planet travels through a series of cells, the net torque exerted on it experiences
un-physically large variations. When the resolution of the grid is high enough, this effect could
be partly reduced by a well-chosen softening length. However, choosing the value of the softening
length is difficult. On one hand, it should be small. It is usually smaller than the scale height of the
disk or the Hill radius of the planet. On the other hand, it needs to be large enough that the softening
region can be resolved by the grid size. It usually requires a large number of grids to resolve the
immediate vicinity of the planet, e.g. the corotation zone of the planet (Masset & Ogilvie 2004).
This also necessitates a high resolution for the grid. To balance the computational efficiency and
accuracy, we adopt a relatively low mesh resolution N, x Ny = 256 x 512 and a refined treatment
of the gravity torque in the vicinity of the planet (see Appendix A).

The velocity is denoted by v = (v, vg), where v, is the radial velocity and vy is the velocity in
the azimuthal direction. The vertically averaged continuity equation is given by

0o 190(rov,) 10(ovy)
o v o i a0

The momentum equations in the radial and azimuthal directions are

O(ovy) n 18(7’01}3) n 19(ovrvg) Uvj 02 9P

=0. C))
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The external potential ® is
O =dg+ P, +Pp + Py, + PN D, (12)

where ®s = —G Mg /|r| is the potential of the central star, ®, = —GM,/(|r — rp| + €) is the po-
tential of the planet and ®p, is the potential of self-gravity from the gaseous disk. This is determined
by the Poisson equation

V20p = 47GY. (13)
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In our simulation, we directly calculate the self-gravity force Fy, by the FFT method (see Appendix
B). ® v, is the indirect potential caused by the Jupiter-mass planet

M, M,
L QQT-sziG Eror,. (14)

(0] = —
N,p M®+Mp p rpg

@y, p is the indirect potential due to the gravity of the gas disk

r-r
P = - . 1
N,D G/D |’I’"3 dm(’l“) ( 5)

Since we have assumed the disk is very cold and we focus on the gravitationally stable region, we
do not adopt the energy equation in the 2-D model. Instead, we adopt a locally isothermal equation
of state

p=1%c, (16)

where ¢ is the sound speed which is only a function of r; ¢s = (H/7)vkep and vkep = /GM, /7
is the local Keplerian velocity. We do not employ any artificial viscosity. However, the numerical
viscosity due to the coarse grid is vy, ~ 105,

To estimate the numerical viscosity we have performed several short-term simulations to test
the diffusion time of a density ring in the disk under different resolutions: 256 x 512, 512 x 1024,
1024 x 2048, 1600 x 3200 and 2048 x 4096. The self-gravities of the planet and disk are not included.
We find that the diffusion time does not change any further when we change the resolution from
1600 x 3200 to 2048 x 4096. We believe that the grid effect is negligible when the resolution reaches
2048 x4096. Then we add an artificial viscosity in the 2048 x 4096 case. When this artificial viscosity
increases to 1075, we found the diffusion time is comparable to the value of the 256 x 512 case. So,
we conclude that the viscosity from the coarse grid is about 10~° in a resolution of 256 x 512.

2.3.2 Initial and boundary conditions

We fix the star at the origin of the frame and let the gas and the planet travel around it. The initial
orbit of the planet is circular and its semi-major axis is set to be unity, aqg = 1. To ensure the
gas disk starts with an equilibrium state, the initial azimuthal velocity field is set to be v(r)gy =
[1/7 4 rFy(r) — cs(r)?]'/2, where Fy.(r) is the self-gravity of the gaseous disk and c,(r) is the
local sound speed. The initial radial velocity of gas v, is set to be 0.

To reduce the initial impact on the disk, we hold the planet in a circular orbit for 50 orbits and
gradually increase its mass from 0.01 to 1 Jupiter mass. Since the initial mass of the planet is very
small and the initial velocity of gas has taken the forces of gravity and pressure into account, the disk
achieves a steady state well before the planet emerges. Two strong spiral arms emerge after about
30 orbits. When we release the planet, a clear gap has already formed. At the initial state, Toomre ()
parameter is greater than 1 over the disk (Fig. 1).

The calculations are actually performed in a wide annulus, with the inner boundary located at
Ry, = 0.4ap = 2.08 AU and the outer one located at R,y = 2.5a9 = 13 AU. We adopt outgoing
boundary conditions at both the inner and outer boundaries. It is a wave absorbing boundary condi-
tion that the waves are only allowed to propagate out of the computational domain, while the waves
traveling inward are set to zero. There are two ghost rings outside the boundaries, whose density
and velocity field stay at the initial state. In the self-gravitating model, we include the gravitational
potential of these two ghost rings to avoid the un-physical cutting-off of the self-gravity potential at
the edges of the disk.
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Fig.1 @ profile on the disk. Panel (a): The initial Q profiles. Panel (b): The final @ profiles on the
disk with different surface densities.

2.3.3 Measurement of the gap width

The gap width is a key quantity in this work, although the exact positions of gap boundaries are hard
to be determined analytically. Fortunately, we are focusing on the relative changes of gap width in a
disk with or without effects of self-gravity. So, we could define the gap width by the disk’s surface
density profiles. To ensure the comparability, we set the surface density at the initial position of the
planet as the reference density. Then, the measurement of the gap width in the 1-D simulation is quite
simple. At each side of the planet’s orbit, we can find a position where the surface density is equal to
the reference density. If we get more than one, the nearest one (to the planet) is chosen. Then we get
two positions on both sides of the planet. We define these two radii as the inner and outer boundary
of the gap and the width of the gap is the difference in their radial positions. The measurement in the
2-D simulation is similar. The only difference is that we use an azimuthally averaged density profile
in the 2-D simulations (panel (b) in Fig. 2).

3 RESULTS

Our numerical simulations consist of two steps. First, we adopt a 1-D model that describes the radial
viscous evolution of a self-gravitating disk. The effect of self-gravity in the gas is added both as an
additional radial force field and an effective viscosity. Since the 1-D model is not suited to simulate
the 2-D gravitational turbulence and the behavior of a gravitationally unstable disk, we concentrate
on a range that has low surface density to study variations in the gap in a gravitationally stable disk.
Secondly, to reveal variations in the gap within the transition stage (from gravitationally stable to



440 H. Zhang et al.

;=07 MMSN

3| = 1.4 MMSN|

0.8f 16 R
-------------------- SV SR, X (N g
G 06f 12
s
g |\ - ;
w 041 0.8
Initial
06
0.2} ---3
0.4
(a) 0.2
0 ‘ ‘ ‘ ‘
05 07 0.9 1.1 1.3 15 0.
4 12

11

=/ MMSN

ow A OO O N © ©

.5 0.7 0.9 11 1.3 1.5

1
0.5 0.7 0.9 11 1.3

-
o

Fig.2 Cross sections of surface density for the disks with different surface densities. The surface
density is averaged over the azimuthal direction. These figures show the gap structures when the
disk’s self-gravity is included or excluded. When the disk’s self-gravity is included, the gap is slightly
deeper and wider. Panel (b) shows how we measure the width of the gap. Panel (d): the disk’s
structure becomes very turbulent in a dense self-gravitating disk. There is no clear gap in that case.

unstable), we further perform a series of fully self-consistent 2-D simulations with the self-gravity
of gas included. We then investigate the orbital evolution of the embedded planet associated with the
process of gap formation.

3.1 1-D Simulation

Panel (a) of Figure 3 shows the variation in the width of the gap versus evolution time in the self-
gravitating and non-self-gravitating models. Our 1-D simulations show that, in a disk without the
effect of self-gravity, the width of the gap is almost unchanged when the surface density (or disk
mass) increases. This is consistent with the former analysis that when the self-gravity is absent,
the width of the gap is determined by the dissipation of the gas and the tidal force of the planet
(Goldreich & Tremaine 1980; Lin & Papaloizou 1986). When the self-gravity is included, we find
that the width of the gap increases as the surface density increases. When the width of the gap
becomes stable, we measure the difference in widths between the two gaps in different models for
a series of surface densities (panel (b) of Fig. 3). It clearly shows that there exists a critical surface
density around X1 ~ 0.85 MMSN. The self-gravity suppresses the process of gap formation when
Yo < X1 and enlarges the gap when ¥y > 1.

During the process of gap formation, the effect of self-gravity plays two opposing roles. On one
hand, it drives an effective viscosity (Gammie 2001) which tends to make the disk more dissipative.
Therefore, it is more difficult for the gap to be cleared and the process of gap formation is suppressed.
On the other hand, the equilibrium at the position of the boundaries of the gap changes as the local
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Fig.3 Widths of the gap in 1-D simulations. Panel (a): Width of gap versus evolution time. From
top to bottom the surface density of the disk decreases from 7 MMSN to 0.7 MMSN. The dashed
lines denote the non-self-gravitating cases. Since the gap size almost does not change with the disk’s
density in the non-self-gravitating cases, the dashed lines that denote 1.4 MMSN and 2.8 MMSN
are overlapped. Panel (b): The differences in width of the gap between the self-gravitating disk and
the non-self-gravitating disk. The surface density increases from 0.7 MMSN to 2.8 MMSN, and the
critical surface density is around 31 ~ 0.85 MMSN.

self-gravitational potential varies with the surface density there. When the slope of the density be-
comes sharp at the boundaries of the gap, the local self-gravity potential may change direction and it
tends to contract the disk. This effect may lead to enlargement of the gap. The behavior of the width
of the gap under these two effects is described below.

When the disk surface density is low, the dynamics of the gas are mostly determined by the
central gravity G M, /r?. Although the global self-gravity potential of the disk is weak, the gas ex-
changes angular momentum more effectively with immediate neighbors by the local mutual gravity.
This can be expressed as an effective viscosity which suppresses the process of gap formation. As
the density of the disk increases, the global self-gravitational potential begins to make measurable
influences on the central gravity. For example, we could just look at the outer boundary of the gap,
where r = r,,. When the gap is stable, there is an equilibrium

v _GM. 1 CLP|

Tob T2, > dr °?
given that the tidal force of the planet is balanced by the viscosity dissipation. When the self-gravity
Ogp (7, t)|on is included, the equilibrium becomes

vg  GM, | 1 dP| N ddg,

T(Z)b Y dr P dr

As the gas is being cleared in the gap, the gradient of self-gravitational potential becomes very
sharp at the boundaries. Thus, Fyg(ron,t) = —d®se/dr|op increases from negative (directed inward)

a7

lob - (18)

Tob
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to positive (directed outward). By assuming that the tidal force of the planet and the viscous dissipa-
tion remain balanced, we may find that when Fig (71, t) increases, the angular velocity required by
the equilibrium decreases. During this transition stage, the angular velocity of the gas at rqy, is greater
than that required by the equilibrium, so the gas tends to drift outward. Meanwhile, the pressure gra-
dient and viscous dissipation try to push the gas back. However, the disk has not been dominated by
the gravitational turbulence yet—the effective viscosity is still too low: asz ~ 1073, The viscous
timescale is as long as 10° yr and is much longer than the variation timescale of Fyg(7op, ) which
is only dozens of orbits for a Jupiter-mass planet. To retain the equilibrium, the surface density pro-
file needs to become sharper to generate a stronger pressure gradient, (1/X)dP/dr|op, at the gap
boundaries. However, the sharper gradient of the surface density also enhances the gradient of the
self-gravity potential at the boundaries. Finally, the outer boundary moves outward until the angular
velocity of the gas matches the required value and a new equilibrium is achieved. A similar process
occurs at the inner boundary of the gap but results in an inward drift of the gas. This combined effect
behaves like a ‘self-gravitational contraction’ of the two parts of the disk and makes the gap become
wider and deeper. Furthermore, since the pressure effect decreases as X increases, this effect is more
pronounced as the disk becomes denser (Fig. 3).

3.2 2-D Simulation

Our 1-D simulations suggest that when the surface density exceeds X1, the width of the gap increases
monotonically (for X up to 2.8 MMSN). To ensure that this is a trend in a fully described self-
gravitating disk, a series of 2-D hydrodynamic simulations is performed. The orbital evolution of
the giant planet embedded in a self-gravitating disk is also studied. Since the 2-D simulation is very
time consuming when the disk self-gravity is included, we only choose four typical surface densities:
0.7,1.4, 2.8 and 7 MMSN.

3.2.1 Gap formation

Panels (a) and (b) in Figure 4 show the evolution of width of the gap versus time in the self-
gravitating and non-self-gravitating disks. Different surface densities are denoted by corresponding
marks. Note that the decrease in the width of the gap after about 200F is due to the decrease in the
Hill radii when the planet is migrating inward (a, decreases). It is clear that the surface density does
not change the width of the gap when the self-gravity is excluded, but the width of the gap in a self-
gravitating disk strongly depends on the surface density (see panel (c) of Fig. 4). Panel (a) of Figure 5
shows the evolution of the normalized gap differences: (gapy, — gapP,om)/8aPyom- All the widths
of the gap have been normalized by the corresponding semi-major axis of the planet to eliminate
the effect of migration. In a self-gravitating disk, the width of the gap increases as the disk’s surface
density increases. However, it is not a linear relation. Furthermore, the 2-D simulations show that
the enlargement of the gap decreases when the surface density exceeds ~ 2 MMSN and becomes
negative when >y > 3.5 MMSN (panel (b) of Fig. 5). The width of the gap is recorded every 10
orbits. When the simulation is complete, we sum all the widths together and find the averaged value.
Note that widths of the gap from the first 100 orbits are dropped, since the gap is not well formed
before that.

Figure 2 shows the gap structures under different situations and how we measure the width of
the gap. The size of the gap is almost identical when the surface density is low. When the disk
becomes denser, the gap is slightly deeper and wider in the self-gravitating disks. We measure the
differences of the averaged width of the gap between the self-gravitating and non-self-gravitating
models and interpolate these data (panel (b) of Fig. 5). The results suggest that there is another critical
surface density which is around 11 >~ 3.5 MMSN. When ¥y > ¥, the self-gravity suppresses the
formation of the gap again. Notice that, for a very dense disk ¥y > 7 MMSN, the gap is not cleared.
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Fig. 4 Evolution of width of the gap in 2-D simulations. Panel (a): width of the gap versus evolution
time in non-self-gravitating disks. The gap is cleared around 100 orbits and reaches the maximum
value. Then the width of the gap decreases as the planet migrates inward. All the widths are az-
imuthally averaged. Panel (b): width of the gap versus evolution time in self-gravitating disks. Panel
(c): differences in width of the of gap in self-gravitating and non-self-gravitating cases. The width
of the gap does not change with the surface density of the non-self-gravitating disks.

So, it is significantly smaller than the others (Panel (d) of Fig. 2 and Fig. 6). The widths shown in
Figure 4 are the azimuthally averaged value.

When the surface density exceeds 2.8 MMSN, the gravitational turbulence becomes significant.
Figure 6 shows the density contours of the disk under different surface densities. The three figures
in the left column are the normal disks. Their disk structures do not change much when their surface
density increases from 0.7 MMSN to 7 MMSN. The three figures in the right column are the self-
gravitating disks. When the surface density increases to 2.8 MMSN, turbulence emerges at the outer
part of the disk, where the Toomre () parameter is relatively low. As the surface density increases
further, the gravitational turbulence becomes stronger. When the disk’s surface density exceeds Xy,
the disk becomes gravitationally unstable (the bottom figure in the left column). At such a high
surface density, the effective viscosity caused by the self-gravitational turbulence will overcome the
effect of ‘self-gravitational contraction’ and dominate the gap formation process.

Compared with our 1-D simulations, there are two major differences. One is that our 2-D sim-
ulations indicate a smaller value of the first critical surface density ¥; ~ 0.8. This suggests that
the ‘self-gravitational contraction’ is stronger in a 2-D disk. This is probably because, in the 1-D
simulations, we adopt an artificial viscosity v,,¢, Which turns out to be slightly larger than the nu-
merical viscosity vy, in our 2-D simulations, which makes the total effective viscosity in the 1-D
simulation slightly larger than the one in the 2-D simulation. However, the difference is quite small
(our 1-D results indicate 1 ~ 0.85) and does not change our main results.
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Fig.5 The relative differences in width of the gap in 2-D simulations. Panel (a): The relative dif-
ferences in width between self-gravitating and non-self-gravitating disks. Width of the gap has first
been normalized by the corresponding semi-major axis of the planet to eliminate the effect of mi-
gration. Panel (b): The time averaged relative differences versus the surface density of the disk. The
dashed lines show the cubic spline interpolations and we found the second critical surface density
> ~ 3.5 MMSN. The first one 31 ~ 0.8 MMSN is in agreement with our 1-D results. When
Y11 > Yo > X the “self-gravitating contraction” dominates the process of gap formation. When
Yo > X1, the viscosity from gravitational turbulence becomes dominant. In a self-gravitating disk,
width of the gap reaches a maximum when 3o ~ 2 MMSN. All the widths we adopt are the az-
imuthally averaged value. Notice that, for a very dense disk ¥¢ > 7 MMSN, the gap is not cleared,
so it is relatively small.

The other difference is that our 1-D results suggest that the gap size increases monotonically as
the surface density increases from 0.7 MMSN to 2.8 MMSN. However our 2-D results show that
the increasing trend decreases around 2 MMSN. For the 1-D simulations, the angular momentum
exchange caused by the effect of self-gravity was only described by an effective viscosity vgg. In this
description, vgg = asgcg /2 (Gammie 2001), where

4

- 19
97(’7 - 1)tcoolQ (19)

Qg =

The cooling timescale is determined by the internal energy per unit area U and the cooling func-
tion A,

U I
teool = — = : 5 (20)
'T A y(y-DA

and (Hubeny 1990)
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T, = 280 K(a/1AU)~/2 is the mid-plane temperature of the disk and Ty = 10K is a minimum
temperature of background sources (Stamatellos et al. 2007). Using the analytic approximation of

the Rosseland mean opacity for molecules (Bell & Lin 1994),
¥ \2/3
= i T3
o (QH) e
we can get the optical depth 7 (Rice et al. 2010),
by by 3 \3/3
~H (—T)— - H(—) T3,
TEENem ) o om/) e
Then we get

H
R

(22)

(23)

(24)
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Fig.7 Upper panel: orbital migrations of the planet with or without the disk’s self-gravity. Blue solid
lines show the migration in non-self-gravitating disks, while the red solid lines show the migration in
self-gravitating disks. Lower panel: the differences of migrations between the self-gravitating cases
and non-self-gravitating cases (normal cases). The value has been normalized by the value from
corresponding normal cases. The difference in the migration is significant only when the disk is very
dense.

At the location of the giant planet, where a = 5.2 AU, H/r = 0.02 and ¥ = 1 MMSN, we found

that
YN5/3 .12
[H(—) T3] ~10°>1.

o) T (25)

Thus, we have A oc £7%/3. This gives us tco01 o ©%/% and vy oc $78/3. So, as the surface density
Y increases, the dissipation in the disk becomes weaker and the gap forms more effectively. This
result could be valid when () is much larger than unity (Rice et al. 2010 estimated that Q > 2). In
some high-density simulations, however, ( is close to unity after several hundred orbits (Fig. 1), so
we believe that the real effect of self-gravity in a dense disk should be consistently calculated by the
realtime density distribution, and the 2-D simulations should be more self-consistent.

3.2.2 Migration of the giant planet

Besides formation of the gap, the orbital migration of the planet is another important outcome of the
disk-planet interactions. The upper panel of Figure 7 shows the migration of the planet embedded in
a series of disks. The dashed lines are the results with the self-gravity of the gas included, while the
solid lines are those results without the self-gravity of gas. From top to bottom, the surface density
of the disk increases from 0.7 MMSN to 7 MMSN. One may find that all the migrations experience
two stages. At the first stage, the giant planet is still surrounded by the gas and undergoes the type
I (or type-I-like) migration whose timescale should be inversely proportional to the disk’s surface
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density (Tanaka et al. 2002),

e o)

QO et 26
My, YoaZ \apd, = (26)

T=027+11v)" b b
Our results show that at this stage, the migration rates of the planet are greater as the disk becomes
denser (with differing slopes of the migration curve in the upper panel of Fig. 7 and panel (a) in
Fig. 8). It is qualitatively consistent with the analytic predictions we mentioned above and this could
demonstrate the consistency of our simulations. The lower panel of Figure 7 shows the relative
differences in migration (semi-major axis vs. time) between the self-gravitating cases and the normal
(non-self-gravitating) cases. The differences are normalized by the values from the corresponding
normal cases.

As the gas located in the gap region is cleared, the migration of the giant planet steps into the
second stage when the migration rate of the planet is significantly reduced. This is usually called
type II migration. According to linear analysis, the timescale of type II migration is supposed to be
inversely proportional to the effective viscosity in the disk. From Figure 7 we can find that the type
IT migrations in different surface densities have almost the same slope when the self-gravity of the
disk is excluded. This is reasonable since the effective viscosity should not depend on the surface
density. However, we find that the migration rate in the denser disk is indeed larger than the rate in
the thinner disk (also in panel (b) of Fig. 8). The reason is that there is an inner boundary in our
disk model. When the planet is getting close to the inner boundary, most of the inner disk has flow
outside our inner boundary. As a result, the torque from the inner disk (positive torque) is weakened
and the net negative torque is greater. That means the planet will drop to the central star faster when it
gets closer to the inner boundary in our simulations. Meanwhile, a planet migrates faster in a denser
disk than in a thinner disk before the gap is cleared. So, when the migration steps into the type-II
regime, a planet embedded in a denser disk will be closer to the inner boundary of the disk and has a
larger inward migration rate. However, in the self-gravitating disk, the type Il migration rate changes
compared to the disk’s surface density, because the effective viscosity is now related to the disk’s
surface density. When the surface density is low, the difference in the semi-major evolution is very
small: < 2% (lower panel of Fig. 7). When the surface density is higher (Xg > 7.0 MMSN), the
difference becomes very significant.

In this paper, we concentrate on the variations of the migration rate under the effect of a disk’s
self-gravity which is the source of the turbulent viscosity. Panel (a) of Figure 8 shows the evolution
of the migration rate (a,) with the effect of self-gravity included. After about 300 orbits, the mi-
gration rate reaches different stable values according to the surface density of the disk. We measure
this stable migration rate in each run and the results are shown in panel (b) of Figure 8. The cir-
cles are the results with the self-gravity of gas included and the squares are the results without the
self-gravity. The migration rate weakly increases with the surface density in a non-self-gravitating
disk. This indicates that the effective viscosity barely changes with the surface density when the
self-gravitating effect is excluded. However, in a self-gravitating disk, the migration rate increases
quickly as the surface density increases. Our results suggest that, in a self-gravitating disk, the mi-
gration of a giant planet is slightly slowed (almost identical with the non-self-gravitating case) when
the surface density is moderate. However, the migration of the giant planet becomes faster than that
in the non-self-gravitating disk when the surface density exceeds 2.8 MMSN. In a very dense disk
with 29 = 7 MMSN, the migration of the giant planet could be very fast and the timescale could be
as short as ~ 10* yr (Fig. 8).

The quick increase of the migration rate indicates that the effective viscosity is mostly de-
termined by the gravitational turbulent viscosity and increases with the surface density of a self-
gravitating disk. We sum the angular momentum of the whole disk and measure its rate of variation.
Since the size of the disk does not change with time, variation in its angular momentum is only
determined by variations in the radial mass flow and angular velocity, which are both the results



448 H. Zhang et al.

x 10
7 T
: @
6 . —ZO=0.7MMSN B
W
H ', - - =X=14MMSN
5-.¢ 4
. [ ! };\ ..... 20=2A8 MMSN
At L c== Z=7 MMSN |
> A
Z MM
§ 3H \ i
a N A Y
© ! A R
ol e . v - -
- el
1 g U P, ]
J.. - = .. NTErmrmtm m i E it m T -, -
QR s ‘ ‘ Trven .
0 50 100 150 200 250 300
x10° TIP,
g T T T T T
sl —&— Non-self-gravitating disk (b) o -
- =O- Self-gravitating disk ‘/,‘
7 Pt ]
-
6F P J
— -
- .
5.5 7 ]
— e
= e
B4 e B
3 Lot
3+ Pt 4
-
-
2r O —a
1 Lo i
1 1 1 1 1 1
1 4 5 6 7

Z, /MMSN

Fig.8 The migration rate @ versus surface density of a disk. Panel (a): The migration rate versus
evolution time in the self-gravitating disk with various surface densities. a reaches a steady value
after the gap is cleared ({ = 200 orbits). Panel (b): The migration rate versus surface density of
the disk. In the self-gravitating disk, & is proportional to ¥¢ (circles). However, in the non-self-
gravitating disk, this relation is very weak (squares).

of the viscous dissipation when the gap is stable. Therefore, this variation in the rate of angular
momentum will roughly indicate the effective viscosity vg in the disk. The associated results are
shown in Figure 9. Panel (a) shows variations in the angular momentum versus time in a disk where
Yo = 2.8 MMSN. The result with the disk’s self-gravity included is denoted by the dashed line,
and the one with self-gravity excluded is denoted by the solid line. The large rate of variation be-
fore ¢ = 300 P, is the result of the process of gap formation, where gas is driven away by the tidal
torque of the planet and results in a sharp decrease in the total mass of the disk. When the planet
migrates significantly (¢ > 500 F;), the gap moves close to the inner boundary of the disk. The total
angular momentum of the disk increases as the gap moves out of the disk’s inner boundary (total
mass increases). We only estimate the averaged rate of dissipation for the steady state of each run
(300 Py < t < 500 Fy) and the results are shown in panel (b) of Figure 9. Since we do not adopt
any artificial viscosity, for a non-self-gravitating disk veg = vyum, and for a self-gravitating disk
Veff = Vnum + Vsg. Our results show that the effective viscosity v.g increases with Xg in the self-
gravitating disk. For the non-self-gravitating disk, the veg only slightly increases with 3. Then we
find that v, is roughly proportional to Xy (stars in panel (b) of Fig. 9).

These results are in very good quantitative agreement with the migration rates we obtained
above, except for the very high surface density ¥y = 7 MMSN, where the migration timescale
(~1.2x10* yr) is much shorter than the viscous timescale (~ 2.1 x 10% yr). In fact, in such a dense
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Fig.9 Panel (a): The variations in absolute angular momentum versus evolution time. In a self-
gravitating disk, the variation in angular momentum (dashed line) is always larger than that in a
non-self-gravitating disk (solid line), where > = 2.8 MMSN. Panel (b): The effective viscosity
versus surface density of the disk. In a non-self-gravitating disk, the effective viscosity is mainly
due to the numerical dissipation veg = Vnum (Squares). However, in a self-gravitating disk, the
gravitational turbulence is the main source of dissipation veg = Vnum + Vsg (circles). The net
gravitational viscosity effect v, is then shown by stars, which is proportional to Xq.

non-self-gravitating disk
= = = self-gravitating disk

Averaged torque

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
distance to planet

Fig. 10 Azimuthally averaged torque in the vicinity of the giant planet embedded in a very dense
disk. The surface density of the disk is 7 MMSN. The torque is almost symmetric with the planet’s
position in the non-self-gravitating disk (solid line). However, in a self-gravitating disk, the planet
suffers a net negative corotation torque (dashed line).
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disk, the planet cannot clear a gap before it reaches the inner boundary (Fig. 6). As the Toomre
parameter decreases along the radius of the disk, the gravitational turbulence becomes stronger as
the radius increases. This generates a specific vorticity gradient across the corotation region of the
giant planet and exerts a large negative corotation torque on the planet (Masset & Papaloizou 2003).
We further calculate the torques exerted on the planet.

Figure 10 shows the azimuthally averaged torque as a function of the distance to the planet. It
clearly shows that, in a non-self-gravitating disk, the torque density is almost symmetric with the
position of the planet. There is a great negative torque within the corotation region of the planet,
which drags the planet inward even faster. This result is consistent with that obtained by Baruteau
etal. (2011).

4 CONCLUSIONS AND DISCUSSION

In this paper, we concentrate on the gap formation process under the effect of a disk’s self-gravity. We
first perform a series of 1-D simulations, where the disk’s self-gravity is modeled by a gravitational
effective viscosity v, and a time dependent azimuthally averaged self-gravity potential. We find
that when the surface density of the disk is low, the self-gravity potential is too weak to affect the
process of gap formation and the gravitational effective viscosity suppresses the growth of the gap.
As we increase the surface density of the disk, the self-gravitational potential becomes stronger. It
leads to a ‘self-gravitational contraction’ effect at each boundary of the gap and tends to enlarge
the size of the gap. When the surface density exceeds a critical value, 39 > X, the net effect of
self-gravity begins to benefit the gap formation process and the width of the gap increases with the
surface density of the disk. We estimate that this critical surface density is around >; ~ 0.8 MMSN
(Sect. 3.1). Since we recognize that the gravitational turbulence viscosity could not be described
consistently in a 1-D simulation, we further perform a series of 2-D simulations where the disk’s
self-gravity is fully calculated by the real-time density distribution on the disk. We find that the width
of the gap does not monotonically increase with the surface density in a self-gravitating disk. The
gravitational turbulence becomes stronger as the disk’s surface density increases and the associated
effective viscosity overwhelms the effect of ‘self-gravitational contraction’ when the surface density
of the disk exceeds another critical value >1;. We estimate Y11 =~ 3.5 MMSN (Sect. 3.2.1). The
values of 1 and 11 depend on the disk settings. Here we only give typical cases. In particular for
311, to find its exact value more surface densities beyond 2.8 MMSN need to be tested.

The associated rate of migration of the giant planet is also studied in this paper. Our 2-D sim-
ulations show that the rate of migration of the giant planet is slightly reduced in a self-gravitating
disk with a moderate surface density (3o < 2 MMSN, see Fig. 7). However, it increases with the
surface density of the disk where the gravitational turbulence becomes dominant. When the planet
is still able to open a clear gap on the disk, its rate of migration is just proportional to the effective
viscosity due to the gravitational turbulence. Furthermore, in a very dense disk with 35 > 7 MMSN,
the strong effective viscosity prevents the gap from forming, even for a Jupiter mass planet. The mi-
gration timescale then becomes much shorter than the viscous timescale of ~ 10% yr. This is caused
by a large negative corotation drag which is the result of the specific vorticity gradient around the
planet (Sect. 3.2.2).

According to our results we find that: (1) the effect of self-gravity may not be treated as simply
an effective viscosity, especially for a moderate surface density. Our simulations reveal that the self-
gravity plays two opposite roles in the process of gap formation at the same time and the net effect
depends on the surface density of the disk. (2) The gravitational viscosity and the associated rate
of migration for the giant planet increase with the surface density in a dense self-gravitating disk
(X > 2.8 MMSN). For a very dense disk with ¥y > 7 MMSN, where giant planets usually form,
the gravitational effective viscosity is too strong to allow a clear gap to form and the migration
timescale of a giant planet could be much shorter than the type II migration.
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So, a giant planet is unlikely to stay at a large distance from the central star if the disk is still
dense after the planet has formed. This is not a problem for the core accretion model. A planetary
core usually needs 106 — 107 yr to reach 10 Mgy (Mizuno 1980), but the gas disk would be dispersed
within 106 yr (Wolk & Walter 1996). If the giant planet could successfully form, its migration would
be very slow or would even be stopped since the disk is already too thin to generate a large grav-
itational viscosity and could not effectively deliver enough angular momentum. The problem is,
because of the long timescale required by the growth stage of the core, a giant planet is unlikely to
form in a wide orbit by the core accretion model (Dodson-Robinson et al. 2009). For a multiple-
planet system, if the outer planet is smaller than the inner one, the two inward migrating planets may
become trapped into mutual mean motion resonance and migrate outward together (Zhang & Zhou
2010a; Zhang & Zhou 2010b). This could be an effective way to form giant planets at a large dis-
tance from their host star. For a single giant planet, however, it is still a problem. Some studies have
shown that the radiative effect may affect the direction of the migration and could result in outward
migration (Kalas et al. 2008; Bitsch & Kley 2010).

If a giant planet forms through the gravitational fragmentation of a very dense disk, it would
probably migrate inward quickly. However, we emphasize that we do not adopt any cooling process
in our 2-D simulations. This is because we do not want to introduce any poorly understood factors
into our simulations, which would add too many uncertainties to the results. In our 2-D simulations,
we assume a very cold disk with H/r fixed at 0.02 and adopt a locally isothermal equation of
state. The cooling in our model is, therefore, perfect. Hence, the effective viscosity due to the self-
gravitational turbulence increases with the surface density of the disk and results in fast inward
migration in a dense disk. If a proper cooling process were included, the gravitational viscosity
would become less effective, slowing the migration rate of the giant planet. This should be fully
considered in future work.

We also notice that the existence of the giant planet may trigger the onset of gravitational insta-
bility in the disk. Strong spiral structures caused by the giant planet may generate a local minimum
in @ and cause global instability when the averaged () is still far above unity (Fig. 1 and Fig. 6).
This effect depends on the mass of the giant planet and the disk where it is embedded. The details
are also the subject of future work under preparation.
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Appendix A: REFINED TREATMENT OF GRAVITY IN THE VICINITY OF A PLANET

When we calculate the torque exerted on the planet by a single cell of gas, the mass of this cell
is usually treated as a point mass located at its center. When the planet travels very close to the
center of the cell, we get a gravitational singularity and the planet would suffer extremely large
gravitational force. However, since the density is uniform within a cell, the net force exerted on the
planet should vanish because of the symmetry of the cell. A softening length is always needed to
avoid the singularity, ®, = —GM,/(|r — rp| +¢).

The softening length € could only reduce the amplitude of the gravitational impulses. However,
it could not result in the real gravity exerted on the planet. The choice of softening length is very
tricky: a small € could not effectively reduce the singularity, but a large one would eliminate too
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Fig.A.1 A 5 x 5-grid in the vicinity of the planet. When we calculate the torque exerted on the
planet by this area, each cell is treated as a uniform area instead of a mass point. The dotted line
shows the track of the planet in the comparison tests.

many physical effects. It is usually set to be a large fraction (e.g. 0.6 — 0.8) of the scale height of the
disk or the Hill radius of the planet. However, in a low resolution grid, the Hill radius only covers
a few cells. Many local physical interactions between the planet and disk would be concealed if we
chose ¢ to be comparable to the Hill radius. To more reliably model the gravity felt by the planet, we
treat a single cell as a uniform area and the gravity exerted on the planet is an integration over this
area, e.g. the force of gravity in the # direction reads

Tl Y 1 2 o _
Fpi; = GMyo / = / " rsin(d — 6,) drdd. (A1)
T, 1 93.7

[r2 412 — 2rr cos(0 — 0),) + ¢]3/2

N=

€ is now a softening parameter for the integration which is very small. In our simulations, we set
e = 10~* in dimensionless units (the radius of the Roche lobe is now ~ 0.07 and the grid size is
~ 0.01). This treatment is performed in 5 x 5 cells around the cell where the planet is located. The
cells outside this 5 x 5 region are treated as point masses as usual.

A comparison between different treatments of gravity is performed. We set a region with a 5 x 5-
grid whose surface density is uniform and ¥y = 1 MMSN. Outside this region the surface density
is set to be 0 (Fig. A.1). As the planet travels through this region, the gravity exerted on it should
change smoothly and symmetrically from the positive to the negative extrema, and vanishes at the
center of this area. The results are shown in Figure A.2. It is clear that the gravity is over-smoothed
by the large gridsize of € ~ 1 while the smaller one of ¢ = 0.1 — 0.2 RRoche introduces nonphysical
gravity impulses (panel (b) of Fig. A.2). Only the integration results with small € ~ 10~4~~5 could
void the nonphysical gravity impulses (panel (a) of Fig. A.2).

We also test the net torque of the whole disk under different treatments. The result is shown
in Figure A.3. When we treat a cell in the disk as a point mass, the mutual gravity between the
planet and the cell is very sensitive to the distance between them. When the planet travels through a
high density cell and is very close to the center of the cell, its net torque will be dominated by this
single cell. As the planet keeps passing by these point masses, the net torque exerted on it oscillates
violently (the blue line in Fig. A.3). By contrast, when we treat a cell as a continuous uniform area,
the net gravity from the cell vanishes when the planet is located at the center. As a result, the net
torque becomes more smooth and reliable (the red line in Fig. A.3).
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Fig. A.2 A test of the gravity torques exerted on the planet under different treatments. The planet
travels in a circular orbit and the disk is divided into 256 x 512 cells. The center of the test area —
a b x 5-grid (A.1) — is located at = 110. The z-axis denotes the cell numbers (grid). Panel (a):
cells around the planet are treated as uniform areas. We perform integration over each of these cells
to find the torques they exert on the planet. The smoothing length used in the integration is shown
in the legend. smo = integ 10~ means the softening length used in the integration is 10~ in our
unit. Panel (b): cells are treated as point masses. We assume the mass of a cell is concentrated at
its center. The gravity between the planet and a cell center is calculated with a softening length to
avoid a singularity. smo = 0.1 Roche means the softening length is one-tenth of the initial Roche
radius of the planet which is ~ 0.069 in our units. smo = 1 gridsize means the softening length is
equal to the grid size. Treating cells as point masses usually results in large gravity impulses or over-
smoothed gravity, while treating cells as areas gives more smooth results and avoids any un-physical
oscillations.
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Fig. A.3 Another test of the gravity torques exerted on the planet under different treatments. We test
the net torques exerted on the planet by the whole disk. The blue line shows the torque when we treat
the cells as point masses, while the red line shows the torque when the cells around the planet are
treated as uniform areas. The large oscillations in the former torque show the results when the planet
travels through some dense cells (close to a large point mass). It is clear that the latter treatment

gives more reliable results.
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Appendix B: SELF-GRAVITY FORCE OF THE DISK

The effect of self-gravity from gas is included in the evolution of the disk. As the density distribution
is changing with time, the gravitational potential of the disk evolves and needs to be determined by
solving the Poisson equation at each time step: V2®p = 47rGY. Integrating it over the disk in polar
coordinates we get

S0, 0')
(0] 0) =2G d "dr'df’ . B.1
p(r,0) // [TQ + 172 — 211! cos(6 — 9)]1/21" r (B.1)

However, solving this equation directly is very “expensive” even in coarse resolution and the FFT
method is one of the best choices.
The self-gravity force exerted on each cell in the radial direction reads

S, 00 Ir —r'cos(0 = 0)] ., .,
(r,0) = =2 . B.2
Si(r.6) G// [r2 + 12 — 2rr/ cos(0 — 0)]3/2 dridf (B-2)

Note that the right hand of the above equation is the convolution of X(7') and K (r — r’), where

[r — 1" cos(0' — 0)]
[12 4+ 772 — 2rr’ cos(0' — 0)]3/2°

K =-2G (B.3)

According to the ‘convolution theorem’ we can get S, by two Fourier transforms (F') and one re-
versed Fourier transform (F—1) (Press et al. 1992)

S, = F'F(X)F(K)]. (B.4)

The kernel K in fact does not change with time and only needs to be calculated once at the beginning
of the simulation. The self-gravity force in the azimuthal direction can be obtained similarly. Detailed
introductions about this method can be found in many handbooks on computational methods, e.g.
“Numerical recipes” (Press et al. 1992).

To avoid the self-gravity potential being abruptly cut off at each boundary of the disk, we add
two buffer rings immediately outside the boundaries. The width of each buffer ring is 0.3 in our
units and their surface densities do not evolve with time. We integrate the radial gravities of these
two buffer rings and add them to the total gravity of the disk.
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