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Abstract Currently two-way and three-way spacecraft Doppler tracking techniques
are widely used and play important roles in control and navigation of deep space mis-
sions. Starting from a one-way Doppler model, we extend the theory to two-way and
three-way Doppler models by making them include possible violations of the local
Lorentz invariance (LLI) and the local position invariance (LPI) in order to test the
Einstein equivalence principle, which is the cornerstone of general relativity and all
other metric theories of gravity. After taking the finite speed of light into account,
which is the so-called light time solution (LTS), we make these models depend on the
time of reception of the signal only for practical convenience. We find that possible
violations of LLI and LPI cannot affect two-way Doppler tracking under a linear ap-
proximation of LTS, although this approximation is sufficiently good for most cases in
the solar system. We also show that, in three-way Doppler tracking, possible violations
of LLI and LPI are only associated with two stations, which suggests that it is better
to set the stations at places with significant differences in velocities and gravitational
potentials to obtain a high level of sensitivity for the tests.
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1 INTRODUCTION

As one of the most important current methods for determining the motion of a spacecraft, the
Doppler tracking technique has been successfully implemented in many deep space missions for
control and navigation (Kruger 1965; Moyer & Yuen 2000). It can also be used for a variety of sci-
entific applications, such as fundamental physics. The measurement of the frequency shift in signals
relayed between the Cassini spacecraft and Earth yields a stringent test that demonstrates the valid-
ity of general relativity (GR) in the solar system (Bertotti et al. 2003). On the other hand, Kopeikin
et al. (2007) point out that this test of GR is under a restrictive condition that the Sun’s gravitational
field is static, and if this restriction is removed, the test becomes less stringent. It is also known that
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Doppler tracking might be the only possible way to detect specific low-frequency (107> — 1 Hz)
gravitational waves (see Armstrong 2006, for a recent review). In this work, we focus on another
application in fundamental physics for testing the Einstein equivalence principle (EEP), which is the
“heart and soul” of gravitational theory (see Will 1993, 2006, for reviews). It is worth mentioning
that a number of notable scientists, including V. Fock, J. Synge, F. Rohlrich and others, do not sup-
port this “heart and soul” opinion (see Norton 1993, for a historical review of pros and cons related
to EEP). Although this disagreement may even persist today, we support EEP in this work.

EEP is the cornerstone for building GR and all other metric theories of gravity. It states that (1)
the trajectory of a freely falling test body is independent of its internal structure and composition,
the so-called weak equivalence principle (WEP); (2) the outcome of any local non-gravitational
experiment is independent of the velocity of the freely-falling reference frame where it is performed,
the so-called local Lorentz invariance (LLI); and (3) the outcome of any local non-gravitational
experiment is independent of where and when in the Universe it is performed, the so-called local
position invariance (LPI) (see Will 1993, 2006, for more details). The second and third pieces of
EEP, i.e. LLI and LPI, can be tested by measuring the frequency of a signal transmitted from a clock
as it moves in the gravitational field of a massive body (e.g. Krisher 1990).

Gravity Probe A (GP-A) was launched by NASA in 1976. It carried a hydrogen maser oscillator
nearly vertically upward to 107 m in the Earth’s gravitational field and confirmed that the observed
relativistic frequency shift agreed with prediction at the level of 7 x 107> (Vessot et al. 1980). The
Voyager flybys of Saturn in 1980 made the first test of an extraterrestrial gravitational redshift and
it verified the prediction of EEP to an accuracy of 1% as the spacecraft moved in and out of the
gravitational field of Saturn (Krisher et al. 1990). During flybys of Venus and Earth in 1990, the
Galileo mission performed an experiment on solar redshift and confirmed the total frequency shift
predicted by EEP to an accuracy of 0.5% and the solar gravitational redshift to an accuracy of 1%
(Krisher et al. 1993).

All these experiments relied on a one-way radio signal transmitted from the spacecraft to ground
stations. The transmitted frequency was referred to as the onboard clock or frequency standard, while
the received signal was referred to as these standards at the stations. However, one-way Doppler
tracking has practical problems for precision tracking of spacecraft. Onboard frequency standards
are significantly less stable than ground-based standards and they are limited by their own noise.
One solution for this is to use two-way Doppler tracking. In the two-way mode, the ground station
emits a radio signal referenced to a high-quality frequency standard. Then, the spacecraft receives
this signal and phase-coherently retransmits it to Earth. The transponding process adds noise, but at
negligible levels in current observations, and does not require a good oscillator on the spacecraft (see
Armstrong 2006 for a review). The two-way Doppler tracking forms a closed-loop for the signal. The
three-way mode has an open-loop because Station 1 emits the signal, but the transponded signal is
received by Station 2.

Therefore, considering these advantages, we will theoretically extend relativistic models of two-
way and three-way Doppler tracking by including possible violations of LLI and LPI as the first step.
Case studies will be left for subsequent works.

In Section 2, starting from the one-way Doppler case, we will construct these models. Since
the radio signals travel with finite speed, the light time solution will be corrected in Section 3.
Conclusions and discussion will be presented in Section 4.

2 DOPPLER TRACKING WITH VIOLATIONS OF LLI AND LPI

In the following investigation, we will build our models of two-way and three-way Doppler tracking
within the solar system barycentric reference system by starting from the one-way Doppler model
(Krisher et al. 1993).
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2.1 One-Way Doppler Tracking

It is well known that EEP predicts a shift in the frequency (Weinberg 1972; Misner et al. 1973). The
observed redshift z is defined as

VR(T

Vg (tE)

where vg(tg) is the frequency of an emitted signal at time ¢g and vg(tgr) is the frequency of a
received signal at time ¢g. In the following parts of this work, we will omit these dependences on tg,
and tg in notations so that vg = vg(tg) and vgr = vg(tr) unless we specify exceptional cases. Up
to the order of €2 where € = ¢! and c is the speed of light, this relation can be written as (Brumberg
1991; Krisher et al. 1993; Kopeikin et al. 2011)

1+2z=

% = 1+eK - [vr(tr) — vr(te)] — €[K - vr(tr)|[K - ve(tp)] + ¢’ [K - vg(tp)]?

—i—%EQ[’U%{(tR) —v(te)] + E{Ulyr(tr)] — Ulyg(te)]}
+O(%), )

where yp and yg are the respective positional vectors of the emitter and receiver, vg and vy are
their respective velocities, tg and ty are the respective times of emission and reception, and the unit
vector K is
_ yr(tr) —yr(tr)
K=—- . 3)
lyr(tr) — Yg(te)|

Here, Ulyg(tg)] and Ulyg (tr)] are the Newtonian gravitational potentials at the emitter and re-
ceiver respectively, which can be written as

Ulyr(tr)] = Y _Ualyr(tr)] and Ulyg(te)] = ) _ Ualyg(ts)]- “)
A A

In Equation (2), all velocity-dependent terms originate in special relativity, but the terms depending
on the gravitational potentials are predicted by GR.

In order to test EEP, following Krisher et al. (1993), we adopt the parametrization of the one-way
Doppler model [see Equation (2)] as

1%

lliR =1+eK- [’UR(tR) - ’UE(tE)] - 62[K . ’UR(tR)HK . 'UE(tEH + 62[K . UE(tE)]2

E
+5€*FrvR(tr) — 5 Bpvi(te) + € EA: ajUalyr(tr)] — € EA: apUalyg(te)]

+O(). 5)

Equation (5) describes the shift in frequency with possible violations of LLI and LPI. Here, violations
of LLI can be tested by fitting the dimensionless parameters Sr and Og. If LLLis valid, then g /g =

1. Violations of LPI can be tested by fitting the dimensionless parameters aé and afi. If LPI holds
true, aé/E =1. )

For separating these possible violations, we will also use notations Sgr/r = fr/g — 1 and
an B = oR s — 1. Equation (5) can be rewritten as

ZiE‘ = Fo_r(te, tr) = Fe_r(te, tr) + Fe—r(ts, tr) + O(e%) 6)
E—R
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where .7:"E_,R(tE, tr) represents the shift in frequency predicted by GR to be
Fir(te tr) = 1+ €K - [vg(tr) — vp(tp)] — €[K - vr(tr)][K - vg(tp)] + €[K - v (tn)]®
1 1
+§62’U2R(fR) - 5620123(@) +E> Ualyr(tr)] — > Ualyg(te)],  (7)
A A

and Fi_.g(tg, tr) indicates the effects caused by possible violations in LLI and LPI to be

Fe—r(te.tr) = %gBRU%(fR) - %GZBEU%@E) +€ > apUalyp(tr)]—€ Y agUalyp(te)] -

A A
®)
Equation (6) will be used to develop two-way and three-way Doppler tracking.

2.2 Two-Way Doppler Tracking

In two-way Doppler tracking, a ground station (S) emits a radio signal vg at time ¢ and a spacecraft
(P) receives the signal with frequency v/ at time ¢'; then, the spacecraft (P) immediately transmits
the radio signal g’ back, where ¢ is a known ratio between two integers; and station (S) receives
the signal with frequency vy at time ¢g. The whole procedure can be decomposed into two one-
way Doppler trackings and the shift in the frequency in this closed-loop can be easily and concisely
expressed as

v R

o Fsp(tr,t') - Fpos(t',tr) + O(), (&)
S—P—S

VR
qUVE

whose explicit form can be written as

. = 14 eKh, - [vp(t') — vs(te)] + cKf, - [vs(tr) — vp(t)]
4qVE |s_p_s
+e{KY,, - [vp(t) — vs(te) | H{KDY,, - [vs(tr) — ve ()]}
—[KY,, - vp(t')][KY, - vs(te)] + €[KY,, - vs(te)]?
—€’[KY, - vs(tR)][ng op(t')] + EQ[K'z'w -vp(t')]?
1 /
£ 0) — )+ S Ualuplt)] = 3 Vals )}
1
+26 [’Us(tR)—’Up {ZUA Yg tR ZUA yp }
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1., - _
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+0O(e%), (10)
here (#) — ws(te) (1) — wp (1)
/ Yp — YsUE 1 Ys(lr) — Yp
= — d Ko, 6 =— . 11
2 ) sl T yg(tn) — yp ()] (an
In a special case that tg = t’ = tr, we can omit them, so we have
tp=t'=tr
VR

—_— =1-—2enpg - vpg + 262(77,135 . ’Ups)2 + 0(63) , (12)
4VE |sp_s
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where vps = vp — vs, nps = Rpg/Rps, Rps = yp — yg and Rps = |Rpg|. When velocities
of the spacecraft and the station are very small, this instantaneous approximation of a three-way
equality in the above equation can be regarded as valid. The condition tg = ¢’ = tg also means the
light time (see the next section for details) is not taken into account.

2.3 Three-Way Doppler Tracking

In three-way Doppler tracking, there are two stations. Station 1 (S;) emits a signal and Station 2 (S5)
receives the signal transmitted by the spacecraft (P). In this open loop, the shift in frequency is

vV R

= — . — =Fs,~p(te,t') - Fps, (t', tr) + O(€°), (13)
814>P*>SQ VE qV

VR
qUVE

whose explicit form can be written as

il = 1+ €Ky, - [vp(t) — vs, (tB)] + K3y - [vs, (tr) — vp(t)]
4VE |5, .p_s,
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—?[Khy - vp()][Kby - vs, (tB)] + € [Kb, - vs, (te)]?
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1 /
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1
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where
t) — t tr) — t
K, —— yP(/) ys, (te) and K —— Ys, (tr) CUP(/) . (15)
lyp(t') — ys, (te)] lys, (tr) — yp(t')]
In the special case that tg = ¢’ = tRr, we can have
VR tp=t'=tr
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1
#3008, —8) + ¢ T Ualws) - 2 UA<ysl>]
A A
1,5, ~ _
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+0(e%), (16)
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where vps, , = vp — Vs, ,, Wps,,, = Rps, ,,/Rps, ., Rps,,, = yp — YS, and Rps,,, =
|Rps, /2 |. This equation can be expressed in the same form as equation (28) in Cao et al. (2011)
when LLI and LPI are valid.

Although these theoretical models have been established (see Equations (6), (9) and (13)), they
are still difficult to put into practice because of their dependences on tg, and/or ¢ which are usually
unavailable in real measurements. In order to solve this problem and make these models only depend
on the time of reception for the signal tg, we need the light time solution (Moyer & Yuen 2000).

3 LIGHT TIME SOLUTION

The primary advantage of the light time solution (LTS) is to bridge the gaps between t¢g, t' and tg
(see Chapter 8 in Moyer & Yuen 2000, for details). In the general case, {r and ¢t are related as

At = (tR - tE) = e‘yR(tR) - yE(tE)‘ + EBA,TSheLpiro + 0(65) ) (17)

where the second term on the right-hand side is the Shapiro time delay caused by the curvature of
spacetime (Shapiro 1964). The Shapiro delay is intensively studied in Moyer & Yuen (2000). For
light traveling from Jupiter, grazing the surface of the Sun, and arriving at Earth, its delay due to the
Sun is about 10~% s. For light traveling from Saturn, grazing the surface of Jupiter, and arriving at
Earth, its effect due to Jupiter’s mass is ~ 10~" s. For a one-way case that light travels from Saturn,
grazes the surface of Earth and then stops, this delay caused by the mass of the Earth is ~ 10710 s,
The magnitudes of such Shapiro time delays are very much less than the timescales of translational
and rotational motions of the emitters and receivers of the Doppler tracking links in the solar system,
so that we can ignore the Shapiro time delays in the LTS and only keep

At = (tg — tg) = e|lygr(tr) — yp(te)| + O(%). (18)

To numerically solve the above equation, one can use an iterative method. In this work, we prefer
to obtain an explicit solution. Since, in Doppler tracking of a spacecraft, the timescales of orbital
motions of an emitter and receiver are usually much larger than the timescales of light propagation
At, we can express the Taylor expansion as

1
yr(tr) = yr(te + At) = yg(tg) + vr(tg) At + 5aR(tE)At2 +O(A), (19)

and
1
yp(te) = yp(tr — At) = yp(tr) — ve(tr)At + QaE(tR)AtQ +O(A3). (20)

Moyer & Yuen (2000) argue that the maximum acceleration in the solar system occurs in a region
near the Sun (a ~ 25 — 274 m s~2) and a region near Jupiter (a ~ 25 m s~2). As long as the space-
craft and station are outside of these regions, Moyer & Yuen (2000) suggest the acceleration terms
in the two above equations can safely be dropped. If we assume all of the Doppler measurements are
recorded in terms of ¢R, a sufficiently good linear approximation to the LTS is

Yp(te) = yp(tr) — v(tr) At + O(A) 21

and
At = e|lyg(tr) — yp(tr)| + O(°). (22)

For practical convenience, we will make Doppler models only depend on the time of reception
for the signal by using such a linear LTS, which is sufficient for most cases (Moyer & Yuen 2000).
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3.1 One-Way Doppler Tracking with LTS
With Equation (22), the equation describing one-way Doppler tracking can formally be written as

v
i = Fer(te, tr) = Fer[tr — €lyr(tr) — yp(tr)], tr] + O(c%). 23)
E—R
To obtain its explicit expression, we need the expansion of the unit vector K [see Equation (3)]
which is
K = —ngi(tr) — e{vs(tr) — [nre(tr) - vE(tR)nRE(tR)} + O(), (24)

where nre(fr) = Rre(tr)/Bre(tr), Rre(tr) = yr(tr) —yp(tr) and Rre(tr) = [Ree(tr)|-
Thus, the second term on the right-hand side of Equation (5) can be rewritten as
K - [vgr(tr) —vE(te)] = —nre(tr) - [vr(tr) — vE(tr)] — 6{"RE(’5R) -ag(tr)R(tr)
+vE(tr) - vr(tR) — [PRE(IR) - VE(tR)][NRE(IR) - VR(IR)]
~obtm) + lnns(tn) - vs(tn)] | + O(E). o5)
Finally, to the order €3, the shift in frequency with possible violations of LLI and LPI for one-way
Doppler tracking in terms of tg is

v
s = Fe—rltr — €lyr(tr) — yn(tr)|, tr] + O(®)
VE [E-R

=1- ETLRE(tR) . 'URE(tR) - 62’UE(tR) . ’UR(tR) - EanE(tR) . aE(tR)R(tR)

50 (tn) + 5 ud(tn) + 3 Ualyn(t)] — @ S Ualyg (in)]
A A
5 Brwk(tn) — 5EBevk () + € S afUalyn(tr)] — @ 3 afUaly(tn)]
A A
+0(e%), (26)

where vrg = vr — vg. When vg = 0, ag = 0, Uy = 0 and g/ = arye = 0, the above
equation can be reduced to the case for special relativistic transverse Doppler tracking (Landau &
Lifshitz 1975). A possible deviation in the redshift z from the prediction by EEP is

y U EEP
8z =2 -2 + O(e%)
E—R VElg-rR VElE-R
1, 1,
= 5625Rv12a(fR) - 562/3Ev%(t1%) +> apUalyr(tr)] — €Y 6 Ualyg(tr)]
A A
+0(%). 27)

3.2 Two-Way Doppler Tracking with LTS
In the case of two-way Doppler tracking, after considering LTS, we have

1% p
R = .7:5_,13(15]3, t/) . fp_,s(t,, tR) + O(Ed)
qVE |s—p—s

= Fs—plt' — elyp(t) — ys(t)].¢]- Foos(t',tr) + O(%). (28)
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After substituting t' = tg — €|yg(tr) — yp(tr)| into the above expression and expanding it with
respect to €, we can obtain

VR
—_— =1- 62nps(tR) . 'Ups(tR) + 262’01235(&{)
4VE |sp—s

+2¢%[nps(tr) - aps(tr)| Res(tr) + O(€%) (29)

where apg = ap —ag. Since possible violations of LLI and LPI have opposite signs in the uplink and
downlink portions of two-way Doppler tracking, they cancel out in this closed loop, which suggests
that these violations cannot affect two-way Doppler tracking under such a linear approximation of
LTS [Equations (21) and (22)], i.e. 6z|EPE, ¢ = O(€?). The effect of a more general approximation
for LTS on two-way Doppler tracking will be investigated in our future work.

3.3 Three-Way Doppler Tracking with LTS

Applying a similar procedure as was applied to one-way and two-way Doppler tracking, we can
obtain an expression for three-way Doppler tracking with LTS as

VR

= -7:81—>P(tE, t/) ' fP—>Sz (t/atR) + 0(63)
qVE

S1—P—S,
= Fs,—plt' —elyp(t') —ys, (). V'] - Fo_s,(t', tr) + O(®),  (30)

where t' = tg — €|yg, (tr) — yp(tr)|. After Taylor expansion with respect to €, we have

VR

qUVE

=1l-ce¢ {nPsl (tr) - vps, (tr) + Mps, (IR) - VPs, (tR)]
SIHP*}SQ

+é? [733132511@1%)11%31 (tr) — vp(tr) - vs, (tR) — VR (tR) - s, (tR)

+vp(tr) + %vél (tr) + %”32 (tR)}
6] I, 1) o, ()l (1) - s ()
—RE ¢ (tr)[nps, (tr) - vps, (tR)]2}
+e? ["Ps1 (tr) - aps, (fr) Rps, (tr) — nps, (tr) - as, (tr) Bips, (tr)

s, (tx) - ap (tr) Res, M
{ZUA Ys, (tr)] ZUA Ys, (tr) }
+%€2 [6321}%2 (tr) — 58111%1@1%)}

{ Z 0[52 UA yS2 tR Z a51UA ySl (tR)]}

+(9(63), 31)
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where aps, ,, = ap — as, , and

Rps, (t
RE o, (tr) = }m. (32)

The possible deviation in redshift z resulting from the prediction by EEP is

e [BEP
R

- — + O(e)
S1—P—S, 4VE[g,~p—s,

= {ﬁSZvSQ tr) ﬁslvél(ta)}

VR
8z = —
S1—P—S, qvE

Oéé42UA [ys, (tr)] ZaslUA ysl(tR)}}
o). (33)

This indicates that possible violations of LLI and LPI are only associated with two stations in three-
way Doppler tracking, so that it is better to set the stations at places with significant differences in
velocities and gravitational potentials to obtain a high level of sensitivity for the tests. In order to
discuss the possibility of detection, we consider a special optimistic case here as the first step: the
stations S and S are two ships respectively located at the north pole and on the equator of the Earth;
only the gravitational potential of the Sun is taken into account; and it is assumed to be a sub-case in
Krisher et al. (1993) such that Bgl = /332 =3 ~10"2and Oé(sal = af% = & ~ 1072, Then we can
have

1 .-
0z = 5525 v§2(tﬁ) vsl(tR)} +e€ a{ZUA lys, (tr)] ZUA lys, (tr)] }

S1—P—Ss
~ 10712, (34)

which also yields 6v = ¢dz|s, .p_s, ~ 3 x 1074 m s~1. Although this magnitude of 6z|g, p_s,
may be able to be detected with current technology used in Doppler tracking, the configuration of
the stations is too particular. In our future works, we will focus on case studies of some experiments
conducted at real facilities.

4 CONCLUSIONS AND DISCUSSION

Currently, techniques for two-way and three-way Doppler tracking of spacecraft are widely used
and play important roles in control and navigation for deep space missions. Starting from a one-
way Doppler model (Krisher et al. 1993), we extend the models of two-way and three-way Doppler
tracking by including [see Equations (10) and (14)] possible violations of LLI and LPI in order
to test EEP, which is the cornerstone of GR and all other metric theories of gravity (Will 1993,
2006). After taking the finite speed of light into account, which is the so-called LTS (Moyer & Yuen
2000), we only extend these models to depend on the time of reception for the signal for practical
convenience [see Equations (29) and (31)]. We find that possible violations of LLI and LPI cannot
affect two-way Doppler tracking under a linear approximation of the LTS [Equations (21) and (22)],
although this approximation is sufficiently good for most cases in the solar system (Moyer & Yuen
2000). We also show that, in three-way Doppler tracking, possible violations of LLI and LPI are
only associated with two stations, which suggests that it is better to set the stations at places with
significant differences in velocities and gravitational potentials to obtain a high level of sensitivity
for the tests.
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In practice, Doppler measurements certainly suffer various types of noise that can arise from fre-
quency standards, plasma scintillation, tropospheric scintillation, antenna mechanics, ground elec-
tronics, the spacecraft transponder, thermal effects in the ground and spacecraft receivers, and un-
modeled motion of the spacecraft (see Armstrong 2006, for a review). Although studies on these
types of noise are out of the scope of this paper, they are extremely important for a positive detec-
tion. In our future work, we will focus on case studies from some specific missions.
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