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Abstract The cross section for a neutron-deuteron (nd) radiative capture is calcu-
lated using the pionless effective field theory including isospin symmetry breaking
(ISB) corrections up to higher order. The triton is studied as a three-body bound state
and one has to take into account various ISB effects, relativistic corrections and ex-
ternal electromagnetic currents. The isospin violation in nd radiative capture is im-
proved compared to the one at NLO and N2LO. The cross section is determined to be
σtot = [0.505± 0.003] mb up to N2LO. A satisfactory agreement between theory and
experiment for the calculated cross section has been found by insertion of three-body
forces and ISB effects.
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1 INTRODUCTION

Isospin symmetry breaking (ISB) in nuclear force has been studied for a long time. The hadrons
appear in isospin multiplets, characterized by very tiny splittings on the order of a few MeV. These
are generated by the small mass difference in quarks (mu −md) and electromagnetic effects of the
same size (Marciano & Pagels 1978). The reason for the recent interest in ISB is the hope that a
detailed understanding of it could tell something about the underlying structure of hadrons in terms
of quarks (Iqbal & Niskanen 1988).

The study of a three-body nuclear system involving neutron radiative capture by a deuteron has
been investigated in theoretical and experimental works over the past decades. The experimental
result of this process has been measured by Jurney et al. (1982).

In theoretical investigation, this reaction was studied by employing Faddeev calculations with
inclusion of three-body forces and pion exchange currents by Friar et al. (1990). More recently, a
rather detailed investigation of such processes has been performed by Viviani et al. (Viviani et al.
1996; Marcucci et al. 1998). Their calculation is based on a modern nucleon-nucleon potential,
Argonne V18 (AV18). This potential has 18 operators. Fourteen operators are charge independent,
corresponding to an updated version of Argonne V14 (AV14). Three charge-dependent operators
have been added due to the aspect of isospin breaking in the strong interaction and a one charge-
asymmetric operator to explain the difference in the proton-proton and neutron-neutron scattering
lengths. They obtained the cross section to be 0.600(0.578) (mb) for two nucleon interactions with
AV18 (and three nucleon interactions with Urbana IX). Song et al. (2009) have reported values
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for the neutron-deuteron (nd) radiative capture cross section, by utilizing a meson exchange cur-
rent derived up to N3LO incorporating heavy baryon chiral perturbation theory (HBχPT). Recently,
Girlanda et al. (2010) also studied the nd radiative captures at thermal neutron energies, using wave-
functions obtained from either chiral or conventional two- and three-nucleon realistic potentials by
implementing a method based on hyperspherical harmonics, and electromagnetic currents derived in
chiral effective field theory (χEFT) up to one loop.

EFT is well suited for exploring the consequences of the ISB effect for low-energy dynamics
of many-nucleon systems. Consider first the effect of strong isospin violation. The effects of isospin
violation within an EFT framework have been developed over the past decade (van Kolck et al. 1998;
Walzl et al. 2001; Friar et al. 2004; Epelbaum et al. 2005; Epelbaum & Meißner 2005). There is even
further symmetry related to the quark mass term. One improvement is the inclusion of effects of
isospin breaking due to differences in quark mass. One can see that isospin breaking would only
have a small impact on these findings.

We have suggested a method for computation of nd radiative capture for extremely low energy
with pionless EFT (Sadeghi & Bayegan 2005; Sadeghi et al. 2006; Sadeghi 2007, 2008; Sadeghi &
Bayegan 2010), where with this formalism, we can estimate errors of a few percent in perturbative
expansion up to N2LO compared with the file of compiled nuclear data from the ENDF/B online
database1 and available experimental data. A variety of observables of the triton, cross sections as
well as electric form factor have been calculated and compared with the corresponding experimental
results at low energies.

The present study focuses on effects of isospin breaking in which different physical masses is
incorporated. This approach allows for isospin corrections since the masses of the particles are taken
to be different. The changes induced by the extra isospin violation are rather small compared with
the errors that we have obtained.

This article is organized as follows. In the next section, a brief description of the relevant
Lagrangian and nd scattering is reported. Then the formalism for total cross section of the nd radia-
tive capture will be presented in Section 2. We discuss the theoretical errors, tabulation of variations
in cut-off for the calculated cross section compared with other theoretical approaches and available
experimental data in Section 3. Finally, a summary and conclusions follow in Section 4.

2 THE LAGRANGIAN FOR NUCLEON-DEUTERON INTERACTION AND CURRENTS

We will briefly review isospin breaking in the strong interaction and nuclear EFT without pions.
We have decided to give an overview of the dominant ISB contributions up to higher orders. The
QCD quark mass term is given by

LQCD
mass = −1

2
q̄ (mu + md)(1− βτ3) q , (1)

where β ≡ md−mu
md+mu

∼ 1
3 . The isoscalar term in Equation (1) leads to the nonvanishing pion mass

and breaks chiral symmetry, M2
π = (mu + md)B 6= 0. (The constant B describes the strength of

the bilinear light quark condensates.) We note that effects from isospin violation are much smaller
than the numerical value of β (Epelbaum & Meißner 2005). Here, we will make use of the following
simple counting rules which dominate ISB for short-range interactions where β ∼ e ∼ Q

Λ . In
addition to the counting rules, there is the extra 1/(4π)2 factor, which arises from calculation of loop
integrals. The above mentioned counting rules suggest a different counting of the strong interactions
when the effects of isospin breaking are included (in comparison with Walzl et al. 2001).

1 The ENDF/B online database is part of the NNDC Online Data Service, http://www.nndc.bnl.gov.
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The Lagrangian of an EFT for nucleons can be described via

L = L1 + L2 + L3 + · · · . (2)

By neglecting couplings from weak interactions, the one-body Lagrangian is given by

L1 = N†
(

iD0 +
D2

2MN
− D2

0

2MN

)
N , (3)

where N and MN are the nucleon field and its mass respectively, D0 is a covariant derivative, and
D and D2

0 are also the leading relativistic corrections.
The L2 term of the Lagrangian for two-nucleon interactions, in the 3S1 and the 1S0 channels as

well as ISB corrections, is given by Grießhammer (2005)

L2 = −C
( 3S1)
0 (NT PiN)†(NT PiN)

+
C

( 3S1)
2

8

[
(NT PiN)†(NT (

←−
D2Pi − 2

←−
D · Pi

−→
D + Pi

−→
D2)N) + h.c.

]

−C
( 3S1)
4

16

(
NT

[
Pi
−→
D2 +

←−
D2Pi − 2

←−
DPi

−→
D

]
N

)†(
NT

[
Pi
−→
D2 +

←−
D2Pi − 2

←−
DPi

−→
D

]
N

)

−C
( 1S0,i)
0 (NT P iN)†(NT P iN)

+
C

( 1S0,i)
2

8

[
(NT PiN)†(NT (

←−
D2P i − 2

←−
D · P i

−→
D + P i

−→
D2)N) + h.c.

]

−C
( 1S0,i)
4

16

(
NT

[
P i
−→
D2 +

←−
D2P i − 2

←−
DP i

−→
D

]
N

)†

(
NT

[
P i
−→
D2 +

←−
D2P i − 2

←−
DP i

−→
D

]
N

)
, (4)

where symmetry breaking is incorporated in the description of C
( 1S0,i)
2n (n = 0, 1, ...) coefficients.

Pi and P i are

Pi ≡ 1√
8
σ2σiτ2 , Tr P †i Pj =

1
2
δij ,

P i ≡ 1√
8
σ2τ2τi , Tr P

†
iP j =

1
2
δij . (5)

For both the 3S1 and 1S0 channels, the C2n coupling constants have been calculated by fitting to the
effective range expansion (Chen & Savage 1999).

The L3 term in the Lagrangian for three-nucleon forces is (Bedaque et al. 1999)

L3 = −2MH(Λ)
Λ2

(
g4

T

4∆2
T

(NT τ2σkσ2N)†(N†σkσlN)(NT τ2σlσ2N)

+
1
3

g2
T

2∆T

g2
S

2∆S

[
(NT τ2σkσ2N)†(N†σkτlN)(NT σ2τlτ2N) + h.c.

]

+
g4

S

4∆2
S

(NT σ2τkτ2N)†(N†τkτlN)(NT σ2τlτ2N)
)

, (6)

where the indices T and S denote a field T with spin (isospin) 1 (0) and a field S with spin (isospin)
0 (1), representing two nucleons interacting in the 3S1 channel (the deuteron) and the 1S0 channel,



360 H. Sadeghi, H. Khalili & M. Godarzi

respectively. The ∆T (or ∆S) is the dibaryon field (Bedaque et al. 1999). The Lorentz-invariant
Lagrange density that describes the LO interactions has the form (Chen & Savage 1999)

L = d†j

[
iD0 +

D2

2Md
− D2

0

2Md

]
dj + ... . (7)

Gauging the above Lagrangian and including the leading relativistic corrections in a direct calcula-
tion give

L = d†j

[
i(∂0 + ieA0) + (∇− ieA)2

(
1

4MN
+

γ2

8M3
N

)
− (∂0 + ieA0)2

(
1

4MN

)]
dj + ... .(8)

One recovers the correct matrix elements of Jµ
em, in each order, to reproduce the couplings induced

by Equation (7).
The capture amplitude has to be projected on electric and magnetic multipoles that are shown by

El(2S+1LJ) and Ml(2S+1LJ) respectively, where l is the total angular momentum of the photon,
l ≥ 1, and J , L and S are the total angular momentum, the orbital angular momentum and the spin
of the two-nucleons, respectively. The amplitude elements are also constructed with the dibaryon
polarization vector η and electric or magnetic multipole transition (de Téramond & Gabioud 1987):

E1 εi = Ei ,

M1 (k̂ × ε̂)i = Mi ,

E2 εik̂j + εj k̂i = Eij , . . . (9)

where ε is the photon polarization. To this approximation, the electric and magnetic dipole and
electric transition amplitudes are given by (Sadeghi et al. 2006)

χE1 = χ†{E1(1S0)ε · η + E1(1D2)εiηjRij}χc ,

χM1 = χ†{M1(3P0)i(σ · p̂)η · (k̂ × ε̂)

+M1(3P1)i(σ × p̂) · [η × (k̂ × ε̂)] + M1(3P2)iεijkUkmηmk̂iεj}χc , (10)

with xc = iσ2x
∗ and Uij = 3/2(σip̂j + σj p̂i)− (σ · p̂)δij .

The contribution of the electric transition for very low-energies is very small and can be ignored.
At thermal energies the nd radiative capture only proceeds through the S-wave and magnetic dipole
transition. The Lagrange density, involving fields for calculating the M1 amplitude, is described by
(Beane & Savage 2001; Sadeghi & Bayegan 2005)

LB =
e

2MN
N†(k0 + k1τ

3)σ·BN + e
L1

MN

√
r(1S0)r(3S1)

dt
j†ds3Bj + h.c. , (11)

where dt is the 3S1 dibaryon and ds is the 1S0 dibaryon. k0 = 1/2(kp + kn) = 0.4399 and k1 =
1/2(kp + kn) = 2.35294 are also the isoscalar and isovector nucleon magnetic moment in nuclear
magnetons, respectively. The L1 coefficient can be determined phenomenologically (Chen & Savage
1999).

The cross section for the nd → 3Hγ process at very low-energy is described by (Sadeghi &
Bayegan 2005)

σ =
2
9

α

vrel

p3

4M2
N

∑

iLSJ

[|χ̃LSJ
i |2] , χ̃LSJ

i =
√

6π

pµN

√
4πχLSJ

i , (12)

where χ is electric or magnetic transitions. µN and p are the nuclear magneton and momentum of
the incident neutron in the center of mass, respectively.



Isospin Violation in the d(n,γ)3H Process at Very Low Energies 361

The solution of the integral equation that describes nd scattering has been discussed be-
fore (Bedaque et al. 2000; Grießhammer 2004; Sadeghi & Bayegan 2005). Here we only present
the results. The integral is solved numerically for the 2S1/2-channel. As long-distance phenomena,
the results must be stabilized by introducing a three-body force which absorbs all dependence on the
cut-off as Λ →∞ (Bedaque et al. 1999, 2000, 2003; Grießhammer 2004)

H(E; Λ) =
2H0(Λ)

Λ2
+

2H2(Λ)
Λ4

(ME + γ2
t ) + . . . . (13)

For calculation in an isospin symmetric case, this process can be described by an amplitude for
scattering into states with 3S1 and 1S0 dibaryons. nd scattering amplitude including the three-body
forces is diagramatically shown in Figure 1. In the calculation, two ts(dt + N → ds + N ) and
tt(dt + N → dt + N ) amplitudes get mixed (Bedaque et al. 2003):

ts(p, k) = 1
4 [3K(p, k) + 2H(E, Λ)] +

1
2π

Λ∫

0

dq q2 [Ds(q) [K(p, q) + 2H(E, Λ)] ts(q)

+Dt(q) [3K(p, q) + 2H(E, Λ)] tt(q)] ,

tt(p, k) = 1
4 [K(p, k) + 2H(E, Λ)]+

1
2π

Λ∫

0

dq q2 [Dt(q) [K(p, q) + 2H(E, Λ)] tt(q)

+Ds(q) [3K(p, q) + 2H(E, Λ)] ts(q)] , (14)

whereDs,t(q) = Ds,t(E− q2

2M , q) is the propagator of dibaryons, for more details see Sadeghi et al.
(2006). The amplitudes satisfy the coupled integral equations in Equation (14). The kernels of these
equations consist of two terms describing one-nucleon exchange, which provides a long-range force
between the dibaryon and the third nucleon, and the three-body contact interaction. When isospin
symmetry is broken, we must introduce separate amplitudes for nd scattering into states with 1S0

neutron-neutron and neutron-proton dibaryons, respectively. These satisfy the corresponding set of
equations that arise when we allow for ISB effects in the nd system. We notice that the hierarchy of
ISB effects observed in the two nucleon system, i.e. charge independent breaking forces are stronger
than charge symmetry breaking forces, is not valid for three nucleon forces in the many nucleon
system.

The diagrams in Figure 2 denote the photon interaction with nucleon, dibarions and three-body
force vertices. We have presented a detailed schematic of these diagrams in nd radiative capture for
(20 ≤ E ≤ 200 KeV) up to N2LO (Sadeghi & Bayegan 2005). For very low energy relevant to
big bang nucleosynthesis (BBN), a contribution to the diagram that directly describes the photo-
interaction with an exchanged nucleon (third diagram in the sequence) has been neglected. The last
diagram of the sequence drawn in Figure 2 shows the insertion of a photon to H2 vertices and should
be calculated when E2 in higher energies are considered. For calculation of the M1 transition, first we
solve the Faddeev equation for nd scattering and the triton to some order, then we take the calculated
Faddeev amplitudes and sandwich it by the photon-interactions with nucleons, when the photon
kernel is expanded to the same order; for more details see Sadeghi & Bayegan (2005); Sadeghi et al.
(2006).

For the doublet channel, the cross section is determined by tt(k, k) (the on-shell amplitude),
multiplied by the wavefunction renormalization,

T (k) = Ztt(k, k) =
3π

M

1
k cot δ − ik

, Z =
8πγ

M

(
1 + γρ + (γρ)2 + . . .

)
. (15)
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Fig. 1 The Faddeev equation for the nd amplitude. The thick solid line is a propagator of the two in-
termediate auxiliary fields Ds and Dt, denoted byD;K is the propagator of the exchanged nucleon;
H is the three-body force.

Fig. 2 Diagrams for photon-interaction to the Faddeev equation up to N2LO. The thick lines corre-
spond to either 1S0 or 3S1 dibaryons, while the thin lines represent nucleons. The wavy line shows
a photon. The solid circles correspond to an insertion of the single nucleon σ·B operator. The solid
square in the fourth diagram in the sequence denotes the insertion of a four-nucleon-magnetic-photon
operator described by a coupling between the 1S0-dibaryon and the 3S1-dibaryon and a magnetic
photon. The photon is minimally coupled. The solid circle in the fifth diagram also denotes the
insertion of a photon to H2: three-body force. The remaining notation is the same as in Fig. 1.

The renormalization of Equation (14) is better understood after introducing the variables t+ = ts+tt,
t− = ts − tt, D+ = (Ds +Dt)/2 and D− = (Ds −Dt)/2, in terms of which Equation (14) reads

(
t+

t−

)
(p, k) =

( K(p, k) +H(E, Λ)
1
2K(p, k)

)
+

2
π

Λ∫

0

dq q2

( D+(q) [K(p, q) +H(E, Λ)] D−(q) [K(p, q) +H(E, Λ)]

− 1
4D−(q)K(p, q) − 1

4D+(q)K(p, q)

) (
t+

t−

)
(q, k) . (16)

Thus, the arguments given for the renormalization in the bosonic case applies with only minor
changes for the 2S 1

2
channel (Bedaque et al. 2003). The wavefunction renormalization factors are

computed from the two-body dibaryon-nucleon bubble, which is explicitly Lorentz invariant (up
to the order one computes). To complete the NLO calculation, the wavefunction renormalization
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constant Z is found from

1
Z

=
1

Z0 + Z1
' 1

Z0
− Z1

Z2
0

=
1
Z0

− i
∂

∂p0
iId(p0,p)

∣∣∣
p0=E=−EB

(17)

and thus Z1 = Z2
0 . The NLO amplitude in the quartet channel is therefore given by

T (k) = Z t(k, k) ' (Z0 + Z1)(t0(k, k) + t1(k, k))
' T0(k) + Z0t1(k, k) + Z1t0(k, k) = T0(k) + T1(k) . (18)

The phase shift for each partial wave is extracted by expanding both sides of the relation

T (k) ' T0(k) + T1(k) . (19)

3 RESULTS AND DISCUSSION

The Faddeev integral equation has been numerically solved up to N2LO with different masses for
a neutron and a proton. The parameters we used are as follows: ~c = 197.327 MeV fm, proton
mass = 938.272 MeV, neutron mass = 939.566 MeV, mass difference = 1.293 MeV; for the NN
triplet channel a deuteron binding energy (momentum) of B = 2.225 MeV (γd = 45.7066 MeV),
a residue of Zd = 1.690(3), effective range r0t = 2.73 fm; for the NN singlet channel an 1S0

scattering length of at = −23.714 fm, L1 ∼ −4.5 by fixing its leading non-vanishing order by the
thermal cross section and nuclear magneton µN = 5.050×10−27JT−1; for more details see Sadeghi
& Bayegan (2005); Sadeghi et al. (2006).

The cut-off was varied between 150 and 500 MeV. The results are shown in Table 1. The er-
ror due to varying the cut-off is very small and steadily decreases by increasing the order of the
calculation.

Table 1 Comparison between previous results and results without (with) isospin violation at each
order. Results for varying the cut-off of the cross section up to N2LO are shown between Λ = 150
MeV and Λ = 500 MeV.

E (10−8 MeV) LO (LO(isospin)) NLO (NLO(isospin)) N2LO (N2LO(isospin))

1 0.0006 (0.0004) 0.00005 (0.00004) 0.0000002 (0.0000002)
2 0.0010 (0009) 0.00040 (0.00032) 0.0000005 (0.0000004)
2.65 0.0012 (0.0010) 0.00060 (0.00046) 0.0000090 (0.0000069)
3 0.0014 (0.0011) 0.00084 (0.00067) 0.0000150 (0.0000134)
10 0.0020 (0.0015) 0.00131 (0.00106) 0.0000600 (0.0000453)

The cross section for nd radiative capture as a function of the center-of-mass energy up to N2LO
is shown in Figure 3. We also show a single point that represents the available experimental results
for this cross section at 0.025 eV (Jurney et al. 1982).

We compare our results with calculations from the other potential model in Table 2. It shows
a comparison between results of different models that depend on modern potentials and those that
are independent of EFT up to N2LO as well as experimental data. Recent calculations by Viviani et
al. (Viviani et al. 1996; Marcucci et al. 1998), with (without) considerations of gauge invariance, are
within 10% (15%) of the measured values and these show sensitivity to short-range physics. Song et
al. (2009) reported values for the nd radiative capture cross section, about 6% smaller than the mea-
surement, with a larger sensitivity (∼ 15%) to the cut-off variation. They obtained model independent
predictions for the thermal capture cross section σ = 0.490±0.008 mb and photon polarization pa-
rameter Rc = 0.462±0.03. We have noted the differences between the N3LO M1 operators used by
these authors (their reliance on resonance saturation to constrain the low-energy constants included
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Fig. 3 The cross section for neutron radiative capture by a deuteron as function of the center-of-mass
kinetic energy E in MeV. The red dashed line and the red solid line correspond to cross sections of
N2LO with and without isospin correction, respectively. The black short dashed line and black long
dashed line correspond to cross sections of NLO with and without isospin correction, respectively.
The blue dotted line corresponds to the cross section of the LO case (color online). The single point
shows experimental results for this cross section at 0.025 eV.

Table 2 Comparison between different theoretical results for neutron radiative capture by a deuteron
at thermal energies (0.0253 eV). The bottom rows show our EFT result with and without correction
of isospin violation. Errors are estimated in comparison with experimental data.

Theory σ (mb) Error

AV14/VIII(IA+MI+MD+∆PT ) (Viviani et al. 1996) 0.658 29%
AV18/IX(IA+MI+MD+∆PT ) (Viviani et al. 1996) 0.631 24%
AV14/VIII(IA+MI+MD+∆) (Viviani et al. 1996) 0.600 18%
AV18/IX(IA+MI+MD+∆) (Viviani et al. 1996) 0.578 14%
AV18/IX(gauge inv.) (Marcucci et al. 1998) 0.523 3%
AV18/IX(gauge inv.+3N-Current) (Marcucci et al. 1998) 0.556 10%
HBχPT(N3LO) (Song et al. 2009) 0.490 3%
EFT(LO) (Sadeghi et al. 2006) 0.485 5%
EFT(LO)+isospin Correction 0.485 5%
EFT(NLO) (Sadeghi et al. 2006) 0.496 3%
EFT(NLO)+isospin Correction 0.497 3%
EFT(N2LO) (Sadeghi et al. 2006) 0.503 0.9%
EFT(N2LO)+isospin Correction 0.505 0.5%
Experiment (Jurney et al. 1982) 0.508

in magnetic moments) and those in our work. The predicted nd radiative capture cross section by
Girlanda et al. (2010) is also in good agreement with our data, but exhibit a significant dependence
on the input Hamiltonian. Their results are found to be, at least for the case of nd radiative capture,
within 4% of the experimental data (Jurney et al. 1982).

The results also show that the importance of isospin violation can be estimated to be of higher
order. In fact, the splitting between the 1S0 scattering lengths shown by the neutron-neutron (ann)
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and neutron-proton (anp) cases can be estimated as (1/ann − 1/anp)/Q, where Q is the typical
momentum in the system. Counting the nucleon mass in this way ensures that all iterations of the
potential contribute to the scattering amplitude at leading order (q/Λ)0 and thus have to be resumed.
The larger relative size of the ISB corrections compared to the two-nucleon sector should be noted.
ISB three-nucleon forces are suppressed by Q/Λ compared to the isospin conserving three-nucleon
forces, while the suppression factor in the case of two-nucleon forces is (Q/Λ)2. The leading ISB
corrections to the two-nucleon and three-nucleon forces arise from different sources. In particular,
the dominant contribution to the three-nucleon forces is governed by the proton to neutron mass
difference, which only gives a subleading ISB correction to the two-nucleon force. The leading ISB
three-nucleon contact interaction is of the order (Q/Λ)6 and therefore does not need to be included.

4 SUMMARY AND CONCLUSIONS

Calculation of the cross section for nd radiative capture at zero energies, using pionless EFT, pro-
vides a unique, model independent and systematic low-energy version of QCD for processes involv-
ing momenta below the pion mass. We applied pionless EFT to find numerical results for the M1

transition by considering isospin violation.
At very low-energies relevant for BBN, M1 contributes the dominant term to the calculation.

Three-nucleon forces are also considered for accurate calculation and are needed up to order N2LO
for results that are independent of the cut-off. Hence, cross section is completely determined to be
σtot = [0.485(LO) + 0.012(NLO) + 0.008(N2LO)] = [0.505± 0.003] mb, by considering isospin
effects in higher order calculations. The uncertainty in the calculated cross section at very low energy
(0.0253 eV) is estimated to be less than 1% up to N2LO.

For future calculations, this study should be extended in various directions. A more systematic
study of ISB in the processes including two- and three-nucleon systems, based on the formalism
developed here, should be pursued. In particular, one should construct the electroweak current oper-
ators to the same accuracy and work out the corresponding three-nucleon force.
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