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Abstract Is it possible that the current cosmic accelerating expansion will turn into a
decelerating one? Can this transition be realized by some viable theoretical model that
is consistent with the standard Big Bang cosmology? We study a class of phenomeno-
logical models with a transient acceleration, based on a dynamical dark energy with a
very general form of equation of state pde = αρde − βρm

de. It mimics the cosmolog-
ical constant ρde → const for a small scale factor a, and behaves as a barotropic gas
with ρde → a−3(α+1) with α ≥ 0 for large a. The cosmic evolution of four models
in the class has been examined in detail, and all yield a smooth transient acceleration.
Depending on the specific model, the future universe may be dominated by either dark
energy or by matter. In two models, the dynamical dark energy can be explicitly real-
ized by a scalar field with an analytical potential V (φ). Moreover, a statistical analysis
shows that the models can be as robust as ΛCDM in confronting the observational data
of Type Ia supernovae, cosmic microwave background (CMB) and baryon acoustic os-
cillation. As improvements over previous studies, our models overcome the problem
of over-abundance of dark energy during early eras, and satisfy the constraints on dark
energy from WMAP observations of CMB.
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1 INTRODUCTION

Cosmological observations, such as Type Ia supernovae (SN Ia) (Riess et al. 1998; Perlmutter et al.
1999) and cosmic microwave background (CMB) anisotropies (Spergel et al. 2003, 2007; Komatsu
et al. 2009, 2011; Hinshaw et al. 2013) have indicated that the universe is now in an accelerating
expansion. Interpreted in the framework of general relativity, the acceleration can be attributed to the
existence of some dark energy, which currently dominates the total cosmic energy in the Universe.
There have been a number of candidates for dark energy, such as the cosmological constant Λ,
various scalar field dynamical dark energy models (Ratra & Peebles 1988; van den Hoogen et al.
1999; Barreiro et al. 2000; Liddle & Scherrer 1999; Tong et al. 2011; Copeland et al. 1998, 2006),
Chaplygin gas model (Kamenshchik et al. 2001), quantum Yang-Mills condensate models (Zhang
2003; Zhang et al. 2007; Xia & Zhang 2007), etc. So far, there is no observational evidence about
whether the current acceleration is eternal or transient. In an eternally accelerating universe, there
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is an event horizon, and the S-matrix in string theory will be ill-defined (Hellerman et al. 2001;
Fischler et al. 2001; Witten 2001). Recently, the analysis of combined data of SN Ia + baryon
acoustic oscillation (BAO) + CMB (Shafieloo et al. 2009) seems to indicate that the acceleration
may be slowing down. More data are needed to resolve the issue (Guimarães & Lima 2011). Thus
the possibility of return to decelerating expansion in the future has been explored. There have been
various models based on different possible mechanisms (Townsend & Wohlfarth 2003; Sahni &
Shtanov 2003; Russo 2004; Srivastava 2007; Wu et al. 2008; Gong et al. 2008; Bento et al. 2008;
Pavón 2007). In particular, a scalar field with an exponential potential as dark energy in Russo
(2004), and two coupled scalar fields as dark energy in Blais & Polarski (2004) are studied, and, for
a certain range of parameters, a transient acceleration occurs in these scalar models. Some references
(Fabris et al. 2010; Chen et al. 2011; Costa 2010) consider possible interaction between matter and
dark energy that can lead to a transient accelerating expansion. A coupling between Chaplygin gas
and a scalar field is studied in Bilic et al. (2005). Based on certain ansatzs on the dark energy density
to achieve a return to deceleration, some scalar field models are proposed, which have an exponential
type of potential with a quadratic dependence on the scalar field (Carvalho et al. 2006; Alcaniz et al.
2009; Alcaniz 2010). However, as has been checked (Cui et al. 2013), when extended back to earlier
stages, these exponential types of scalar dark energy would be dominant over the matter component,
jeopardizing the standard Big Bang cosmological scenario.

To handle this over-abundance problem within the whole class of scalar field models, one might
directly design some special form of scalar potential and go ahead by trial and error to see if it
works. This is essentially the method used in the references (Carvalho et al. 2006; Alcaniz et al.
2009; Alcaniz 2010) which has not worked for their chosen form of potential. Moreover, there are
an infinite number of possible forms of scalar potentials, and it is not practical to try each of them.
In view of this, we adopt a parameterization approach instead. That is, we take some simple form of
dynamic dark energy density ρde(t) which is less dominant than the matter density ρm(t) during the
early stage of cosmic expansion. If this works, it will automatically overcome the over-abundance
problem and provide a possible model of transient acceleration. In this paper, we will specifically
work with those ρde which mimic the cosmological constant for a small scale factor a and behave,
for large a, like a barotropic gas with ρde → a−3(α+1) and α ≥ 0. In certain cases, an explicit
expression of scalar potential V (φ) is obtained analytically. Depending on specific models in the
class, the future universe may be dominated by either dark energy or by matter. The interesting
characteristic of our simple scalar models is that the dark energy will always be less dominant than
the matter when extended to earlier stages, allowing for a transient acceleration within the framework
of the standard Big Bang cosmology.

2 MODELS

The spacetime background is the homogeneous and isotropic flat Friedmann-Robertson-Walker met-
ric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) . (1)

We will set a = 1 as the current value. The dynamical expansion of spacetime is determined by the
Friedmann equation ( ȧ

a

)2

=
8πG

3
(ρde + ρm) , (2)

ä

a
= −4πG

3

(
ρm + ρde + 3pde

)
, (3)

where ρde is the dark energy density to be discussed in the following, ρm = Ωmρca
−3 is the matter

density and Ωm + Ωde = 1.
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First, we consider a dynamical dark energy density as a function of the scale factor a

ρde(t) = Ωdeρc
1 + r

1 + ra(t)3
, (4)

where Ωde is the current dark energy fraction, ρc is the critical density and r is a dimensionless
parameter of the model. It behaves as ρde ∝ Ωdeρc(1 + r) for a3 ¿ 1/r, and ρde ∝ a−3 for
a3 À 1/r, similar to that of the matter component. However, we do not regard ρde as matter. For
simplicity, we do not include the coupling between dark energy and matter. From the equation of
energy conservation adρde

da + 3(ρde + pde) = 0, the pressure of dark energy is given by

pde(t) = −Ωdeρc
(1 + r)

(1 + ra(t)3)2

= − ρ2
de(t)

Ωdeρc(1 + r)
. (5)

The equation of state of dark energy is wde = pde/ρde = − ρde
Ωdeρc(1+r) . Equation (5) turns out to

be similar to a model p ∝ −ρ−α with α < −1 in Sen & Scherrer (2005), but is different from the
generalized Chaplygin gas model p ∝ −ρ−α with α ≥ −1 (Kamenshchik et al. 2001). Equations (2)
and (3) follow the deceleration parameter explicitly

q = − äa

(ȧ)2

=
1
2
− 3Ωde(1 + r)a3

2(1 + ra3)[Ωm + (r + Ωde)a3]
. (6)

We plot q as a function of a in Figure 1. Here Ωde = 0.74 and Ωm = 0.26 are taken for concreteness.
It is seen that q → 1

2 as the asymptotic values in both the limits a → 0 and a → ∞. Therefore,
this model predicts a decelerating expansion for both the past and the future, and, in the interval
a ∼ (0.5, 5) with q < 0, the current acceleration is transient, as shown in Figure 1 for various values
of r. In fact, for a finite value of r > 0 and a constraint 3r

4r+1 < Ωde, the acceleration is transient and
is always followed by a decelerating expansion. By repeating the calculation, a larger Ωde yields an
earlier entry into the current acceleration, and a larger value of parameter r yields an earlier return to
deceleration. In the limiting case r = 0, the model reduces to the ΛCDM model. On the other hand,
for r 6= 0, the model predicts a dark energy fraction ∼ Ωde(1 + r) for the early stage. However,
based on the observations of CMB, WMAP7 has given an error band ±4% for ΩΛ in the ΛCDM
model (Spergel et al. 2003, 2007; Komatsu et al. 2009, 2011; Hinshaw et al. 2013). To be consistent
with observations, we impose an upper limit r ' 0.04 for our model. That is, for the parameter
r ∼ (0, 0.04), our model is within the constraint from the observations by WMAP.

In Figure 2 we plot the ratio ρde/ρm as a function of a. At early times when a ¿ 1 and
ρde/ρm → 0, the dark energy is comparatively small and the universe is matter dominated, as de-
sired. In the distant future when a À 1, the ratio ρde/ρm → (1+r)ΩΛ/rΩm > 1 will asymptotically
approach a constant. Thus the universe in the future will be dominated by ρde, which is decreasing
as ∝ a(t)−3, and a(t) ∝ t2/3, expanding like the matter-dominated case.

The dark energy in this model can also be explicitly realized by a scalar field φ. For simplicity,
we do not consider the effects of the matter component (Barrow 1990). We start with the Lagrangian
of the scalar field

L =
1
2
φ̇2 − V (φ) , (7)

where V (φ) is the potential to be determined. The energy density and the pressure are ρφ = 1
2 φ̇2 +

V (φ) and pφ = 1
2 φ̇2−V (φ) respectively, and satisfy the conservation equation a

dρφ

da +3(ρφ+pφ) =
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Fig. 1 The deceleration parameter q in Eq. (6). Fig. 2 The ratio ρde/ρm in the model of Eq. (5).
ρde will still dominate over ρm in the future.

0, which can be written as the scalar field evolution equation

φ̇2 = −1
3
a
dρφ

da
. (8)

Now we require that ρφ behaves as ρde in Equation (4)

ρφ = Ωdeρc
1 + r

1 + ra3
. (9)

Using Equation (2) without the matter, Equation (8) can be written as
√

8πG

3
dφ

da
= ±

√
ra

1 + ra3
. (10)

By integrating, one obtains

√
6πG(φ− φ0) = ± ln

√
ra3 +

√
1 + ra3

√
ra3

0 +
√

1 + ra3
0

, (11)

where a0 and φ0 are constants. For simplicity, we set φ0 = 0 and a0 = 0. Then Equation (11)
shrinks to √

6πGφ = ± ln
[√

ra3 +
√

1 + ra3
]
. (12)

Taking the + sign yields
2
√

ra3 = e
√

6πGφ − e−
√

6πGφ . (13)

By V = (ρφ − pφ)/2, one has

V =
1
2
Ωdeρc(1 + r)

[
2 + ra3

(1 + ra3)2

]
. (14)

Substituting Equation (13) into Equation (14), we finally obtain V in terms of the field φ

V (φ) = 2Ωdeρc(1 + r)

[
1

(e
√

6πGφ + e−
√

6πGφ)2
+

4
(e
√

6πGφ + e−
√

6πGφ)4

]
. (15)
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Fig. 3 The re-scaled potential V (φ)/Ωdeρc(1+r) is shown.

Note that V (φ) in Equation (15) is proportional to the factor Ωdeρc(1 + r). In Figure 3 the re-scaled
potential V (φ)/Ωdeρc(1 + r) is plotted.

It is worth noticing that the same V (φ) holds if a “−” sign is taken in Equation (12). Indeed, the
resulting Lagrangian L is symmetric under φ → −φ. When

√
6πGφ À 1 the potential reduces to

V (φ) ∝ e−2
√

6πGφ, a simple exponential function of φ, which is similar to what Ratra and Peebles
(Ratra & Peebles 1988) used for dark energy and dark matter in a different context. Notice that
the expression of Equation (15) is a combination of exponential functions of φ, but differs from
the exponential potential with a quadratic φ2 in Carvalho et al. (2006); Alcaniz et al. (2009). In
particular, the profile of our V (φ) is more sloped around φ = 0 than that in Carvalho et al. (2006);
Alcaniz et al. (2009).

To examine the observational viability of this simple model of transient acceleration, we perform
a joint analysis involving the data of SN Ia, CMB and BAO. We use the distance modulus µobs(zi)
data of 557 SN Ia (Amanullah et al. 2010), the shift parameter of CMB by the WMAP observations
(Komatsu et al. 2011), and the BAO measurement from the Sloan Digital Sky Survey (SDSS, Percival
et al. 2010, 2007). We shall follow the computational method in Wang et al. (2008); Fu et al. (2011);
Tong et al. (2011). Assuming that these three data sets of observations are mutually independent and
that the measurement errors for each set are Gaussian, the likelihood function then has the form

L ∝ e−χ2/2 (16)

with
χ2 = χ2

SN + χ2
BAO + χ2

CMB . (17)

χ2
SN =

557∑

i=1

[µobs(zi)− µth(zi)]2

σ2
i

, (18)

χ2
BAO =

(A−Aobs)2

σ2
A

, (19)

χ2
CMB =

(R−Robs)2

σ2
R

. (20)

The detailed specifications of these formulae have been given in Fu et al. (2011). Variations in
values of the model parameters yield respective values of χ2. For demonstration, we take the model
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Fig. 4 The χ2 of the transient acceleration models based upon the joint data of SN Ia, BAO and
CMB. The dashed line is from the first model with r = 0.02 in Eq. (4). The dotted line is from the
second model in Eq. (21) with r = 4.28 and r′ = −4.25. For comparison, χ2 of ΛCDM (r = 0) is
also shown in the solid line.

of r = 0.02 and let Ωm vary. The resulting χ2(Ωm) is plotted (in the dashed line) in Figure 4.
To compare with the standard ΛCDM, we also plot the case of r = 0 (corresponding to ΛCDM).
The minimum is χ2 = 542.88 at Ωm = 0.268 for the model with r = 0.02, whereas ΛCDM has
χ2 = 542.86 at Ωm = 0.271. Its corresponding likelihood L is 0.99 times that of ΛCDM. Thus
the joint analysis shows that the model with r = 0.02 is quite close to ΛCDM in confronting the
observational data, and is robust in providing a transient acceleration.

The above model can be extended so that the universe in the future is dominated by the matter
term ρm, while retaining the return to deceleration. We consider a dark energy density

ρde = Ωdeρc
1 + r + r′

1 + ra3 + r′aε(a)
, (21)

where r and r′ are constant parameters, and ε(a) is some function of the scale factor a. By energy
conservation, one obtains

pde = − θ

Ωdeρc(1 + r + r′)
ρ2
de , (22)

where
θ ≡ 1 + r′aε(a) − 1

3
r′a

d

da
aε(a) . (23)

Then the deceleration parameter is

q =
1
2
− 3

2
Ωde(1 + r + r′)θa3

(1 + ra3 + r′aε(a))[Ωm + (r + (1 + r′)Ωde)a3 + Ωmr′aε(a)]
. (24)

This model allows a return to deceleration as long as ε(a) > 3 for a small a, and ε(a) < 3 for a
large a. For instance, taking ε(a) = (2a + 4)/(a + 1), one has ε(a) → 2 for a →∞, and ε(a) → 4
for a → 0, and the ratio ρde

ρm
→ Ωde

Ωm

1+r+r′
r as a → ∞. A future matter domination is achieved if

1+r+r′
r < Ωm

Ωde
. To be specific, we take r = 4.28 and r′ = −4.25 for Ωde = 0.74 and Ωm = 0.26

respectively, yielding ρde
ρm

→ 0.685 in the future.



A Class of Transient Acceleration Models Consistent with Big Bang Cosmology 135

Fig. 5 The deceleration parameter q in Eq. (24) in
the second model.

Fig. 6 The ratio ρde/ρm of Eq. (21) in the second
model. ρm will dominate over ρde in the future.

Figures 5 and 6 demonstrate q and ρde
ρm

, respectively. It is also checked that larger values of r or
r′ yield an earlier return to the decelerated expansion. To be consistent with the error band ±4% for
ΩΛ by WMAP7 (Komatsu et al. 2011), the allowed value of the parameters should be constrained
to r + r′ < 0.04. In confronting the joint data of SN Ia, BAO and CMB, the χ2 of this model with
r = 4.28 and r′ = −4.25 is also obtained and shown (in the dotted line) in Figure 4. Its minimum
is χ2 = 543.60 at Ωm = 0.276. Its corresponding likelihood L is 0.69 times that of ΛCDM. Thus,
this second model is also close to ΛCDM by statistical analysis, although it is not as good as the first
model.

In the above two models, the dark energy has a negative pressure pde < 0. In fact, the first model
can be generalized so that a positive pressure pde > 0 for a À 1 can be achieved. Consider

ρde = Ωdeρc
1 + r

1 + ra3(α+1)
, (25)

where α is a positive constant. In the limit α → 0, this reduces to Equation (4) of the first model.
From energy conservation, the pressure is given by

pde = αρde − 1 + α

Ωdeρc(1 + r)
ρ2
de , (26)

consisting of two terms. When a À 1, one has ρde ¿ Ωdeρc(1 + r) α
1+α , and pde ' αρde, which is

positive. From Equations (25) and (26) follows the deceleration parameter

q =
1
2
− 3

2
Ωde(1 + r)(1− αra3α+3)a3

(1 + ra3α+3)[Ωm(1 + ra3α+3) + Ωde(1 + r)a3]
, (27)

which is shown in Figure 7 for α = 1/3 and r = 0.0287. When a À 1, the matter will dominate,
similar to the second model.

This dark energy can also be realized by a scalar field φ. By calculation, we obtain

2
√

ra3(1+α) = e
√

6πG(1+α)φ − e−
√

6πG(1+α)φ , (28)
and the potential

V (φ) = 2Ωdeρc(1 + r)

[
1− α

(e
√

6πG(1+α)φ + e−
√

6πG(1+α)φ)2
+ 4

1 + α

(e
√

6πG(1+α)φ + e−
√

6πG(1+α)φ)4

]
.

(29)
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Fig. 7 The deceleration parameter q in Eq. (27) in
the third model.

Fig. 8 The deceleration parameter q in Eq. (31) in
the general model.

In the special case α = 0, Equation (29) reduces to Equation (15) of the first model.
In fact, Equation (26) can be further extended into the following most general form

pde = αρde − βρm
de , (30)

where α, β > 0 and m > 1 are constant. By energy conservation, Equation (30) yields

ρde = Ωdeρc(
1 + r

1 + ra3(α+1)(m−1)
)

1
m−1 , (31)

where the parameter r ≡ σ(α+1)
β , and σ is an integral constant and can be fixed by the initial

condition ρde|a=1 = Ωdeρc. The deceleration parameter is

q(a) =
1
2
− 3

2
Ωde(1− αra3(α+1)(m−1))a3

(1 + ra3(α+1)(m−1))[Ωdea3 + Ωm( 1+ra3(α+1)(m−1)

1+r )
1

m−1 ]
. (32)

When m = 2, this general model reduces to the third model, and reduces to the first model if further
α = 0. In the limit ρde ¿ (α/β)1/m−1, Equation (30) reduces to pde ' αρde, a barotropic gas.
The general model in Equation (31) has the following asymptotic behavior: in the limit a → 0,
ρde → (α+1

β )1/(m−1) like the cosmological constant, and, in the limit a À 1, ρde → a−3(1+α),
which mimics a barotropic gas. As we have checked by detailed computations, shown in Figure 8
for α = 1/3 and m = 2.5, the general model also allows a transient accelerating expansion, in
which the matter will dominate for a À 1, similar to the second and third models. Štefančić (2005)
also discussed a special case of α = −1 for Equation (30) in a different context.

3 CONCLUSIONS AND DISCUSSION

We have demonstrated, by explicit model constructions, that the current cosmic acceleration driven
by some dynamical dark energy can be transient, and can smoothly transit into re-deceleration. Four
specific models have been examined in detail, each being a special case of the most general one with
the equation of state: pde = αρde−βρm

de. In all the models, the dark energy behaves like a barotropic
gas with ρde → a−3(α+1) with α ≥ 0 for a À 1, and the total cosmic energy can be dominated by
either ρm as in the last three models, or by ρde as in the first model. Our dark energy models can be
realized by a scalar field φ. In two cases, by analytical integration, we have also obtained the explicit
expressions of scalar field potential V (φ), which is as simple as a combination of the exponential
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functions of φ, and approaches V (φ) ∝ e−2
√

6πGφ for a À 1. This function V (φ) differs from the
previous exponential type of potential in literature.

The interesting feature of these models is that the dark energy density will always show ρde →
const, and is less dominant than the matter during earlier stages. This is an improvement over the
previous models of transient acceleration that employed the exponential type of scalar field poten-
tials. Moreover, in all our models the fraction of dark energy at a ¿ 1 is very close to the value of
the cosmological constant ΩΛ in ΛCDM, and is within the error band from WMAP observations.
Besides, the joint likelihood analysis also shows that the transient acceleration models can be as ro-
bust as ΛCDM in confronting the observational data of SN Ia, CMB and BAO. Therefore, our models
can be further incorporated into the framework of the standard Big Bang cosmology to achieve the
possible transient acceleration.
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