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Abstract New physics beyond the standard model of particles might cause deviation
from the inverse-square law of gravity. In many theoretical models of modified gravity,
it is parameterized by the Yukawa correction to the Newtonian gravitational force
in terms of two parameters α and λ. Here α is a dimensionless strength parameter
and λ is a length scale. Using the supplementary advances in perihelia provided by
INPOP10a and EPM2011 ephemerides, we obtain new upper limits on the deviation
from the inverse-square law when the uncertainty of the Sun’s quadrupole moment is
taken into account. We find that INPOP10a yields the upper limits as α = 3.1×10−11

and λ = 0.15 au, and EPM2011 gives α = 5.2 × 10−11 and λ = 0.21 au. In both of
them, α is at least 10 times less than the previous results.
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1 INTRODUCTION

Although gravitation was the first known fundamental force in the universe, it still cannot be included
into a quantum framework such as the standard model of strong, weak and electromagnetic interac-
tions. It is an undoubtedly grand challenge to unify gravitation with the three others. Some candidate
theories of quantum gravity predict there may be some possible deviation from the inverse-square
law of gravity. Therefore, searching for such deviation experimentally and observationally might
shed light on new physics (see Adelberger et al. 2003, for a review). In many theoretical models
of modified gravity, one way to parameterize the deviation is the Newtonian gravitational potential
with an additional Yukawa correction (Fischbach et al. 1986, 1992). That is

V = VN(r) + VYK(r), (1)

where

VN(r) =
Gm1m2

r
, (2)

VYK(r) =
Gm1m2

r
α exp

(
− r

λ

)
. (3)
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Here G is the gravitational constant, mi (i = 1, 2) is the mass of the ith body and r is the distance
between them. α is a dimensionless strength parameter and λ is a length scale (see Fischbach &
Talmadge 1999, for a review of constraints on α and λ).

Inspired by the idea of tests of modified gravity using orbital motions of celestial bodies and
artificial objects (e.g. Damour & Esposito-Farèse 1994; Iorio 2002, 2007, 2008; Deng et al. 2009;
Deng 2011; Iorio 2012b; Iorio & Saridakis 2012; Deng & Xie 2013; Xie & Deng 2013), we will
try to find new constraints on α and λ by making use of the supplementary advances in perihelia
provided by INPOP10a (Fienga et al. 2011) and EPM2011 (Pitjeva 2013) ephemerides. It is worth
mentioning that in the previous work of Iorio (2007), the upper bounds were found as α = 1.3×10−9

and λ = 0.18 au1 with EPM2004 ephemeris (Pitjeva 2005). Since INPOP10a and EPM2011 are
significantly improved compared with EPM2004, we expect to obtain tighter upper limits.

In Section 2, we will calculate advances in the perihelia ω̇YK of planets in the solar system
by treating the Yukawa correction as a small disturbance and connecting them with the data of
ephemerides. In Section 3, the supplementary advances in perihelia provided by INPOP10a and
EPM2011 will be used to constrain the Yukawa parameters when the uncertainty of the Sun’s
quadrupole moment is taken into account. Conclusions and discussion will be presented in Section 4.

2 YUKAWA-TYPE ω̇YK AND CONFRONTATION WITH DATA

Following the previous works (e.g. Iorio 2007, 2012b; Deng & Xie 2013), we consider the Yukawa
correction as a perturbation on the Newtonian inverse-square law of gravity. It will cause secular
advances in the perihelia (Iorio 2012b; Deng & Xie 2013)2

ω̇YK = α
na
√

1− e2

eλ
exp

(
− a

λ

)
I1

(
ae

λ

)
, (4)

where I1(z) = dI0(z)/dz and I0(z) is the modified Bessel function of the first kind (Arfken &
Weber 2005). It is closely connected with supplementary advances in perihelia ω̇suppl provided by
modern ephemerides, such as EPM2004 (Pitjeva 2005), INPOP10a (Fienga et al. 2010, 2011) and
EPM2011 (Pitjeva 2013; Pitjeva & Pitjev 2013; Pitjev & Pitjeva 2013).

These ω̇suppl might represent possible mismodeled or unmodeled parts of perihelion advances
according to the inverse-square law of gravity and general theory of relativity. They are almost all
compatible with zero so that they can be used to draw upper bounds on quantities parameterizing
unmodeled forces like α and λ in this case. Nonetheless, the latest results by EPM2011 (Pitjeva &
Pitjev 2013; Pitjev & Pitjeva 2013) returned non-zero values for Venus and Jupiter. Although the
level of their statistical significance was not too high and further investigations are required, we still
take them into account in this work. In the recent past, an extra non-zero effect on Saturn’s perihelion
was studied (Iorio 2009).

In the construction of ω̇suppl (see Fienga et al. 2010, for details), the effects caused by the Sun’s
quadrupole mass moment J¯2 are considered and isolated in the final results, but the perihelion shifts
caused by the Lense-Thirring effect (Lense & Thirring 1918) due to the Sun’s angular momentum
S¯ are absent. Therefore, the entire relation between ω̇YK and ω̇suppl is

ω̇suppl = ω̇YK + ω̇LT + ω̇δJ¯2
. (5)

Here, the Lense-Thirring term ω̇LT is

ω̇LT = − 6GS¯ cos i

c2a3(1− e2)3/2
, (6)

1 We use lower-case “au” to represent the astronomical unit, according to International Astronomical Union 2012
Resolution B2: http://www.iau.org/static/resolutions/IAU2012 English.pdf.

2 Here, we adopt widely used notations in celestial mechanics: a is the semi-major axis, e is the eccentricity, i is the
inclination, ω is the argument of periastron and n is the Keplerian mean motion.
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where S¯ = 1.9 × 1041 kg m2 s−1 (Pijpers 2003) and c is the speed of light. This effect of the
Sun on planetary motions has been studied in several works (e.g. Iorio 2005b; Iorio et al. 2011; Iorio
2012a). Equation (6) only holds in a coordinate system whose z axis is aligned with the Sun’s angular
momentum. A general formula for an arbitrary orientation can be found in Iorio (2012c). It is useful
in extrasolar planets and black holes, for which the orientation of the spin axis is generally unknown.
We add the third term in Equation (5) to include the uncertainty of the Sun’s quadrupole moment
δJ¯2 , which is currently about ±10% of J¯2 (Damiani et al. 2011; Pireaux & Rozelot 2003; Rozelot
et al. 2004; Rozelot & Damiani 2011; Rozelot & Fazel 2013). The Sun’s quadrupole moment in
INPOP10a is fitted to observations as J¯2 = (2.40± 0.25)× 10−7 (Fienga et al. 2011) and its value
in EPM2011 is J¯2 = 2 × 10−7 (Pitjeva & Pitjev 2013). This uncertainty of J¯2 can cause an extra
precession for a planet as described by Kozai (1959),

ω̇δJ¯2
=

3
2

δJ¯2 R2
¯

p2
n

(
2− 5

2
sin2 i

)
, (7)

where p = a(1− e). Like Iorio (2005a), we will include this uncertainty in our estimation.

3 UPPER LIMITS ON α AND λ

The INPOP10a (Fienga et al. 2011) ephemeris provides ω̇suppl for some planets in the solar system:
Mercury, Venus, Earth-Moon Barycenter (EMB), Mars, Jupiter and Saturn. Similarly, EPM2011
(Pitjeva 2013) also gives those values of the planets from Mercury to Saturn. These numbers are
taken from table 5 in Fienga et al. (2011) and tables 4 and 5 in Pitjeva & Pitjev (2013) and Pitjev
& Pitjeva (2013) respectively (see Table 1 for details). It can be found that ω̇suppl of Mercury and
Venus from EPM2011 are considerably larger than those of INPOP10a, while Venus and Jupiter
have non-zero values of ω̇suppl in EPM2011.

We divide our estimation into two cases: Case I and Case II. In Case I, we neglect the uncertainty
of the Sun’s quadrupole moment, i.e. ω̇δJ¯2

= 0. By using the method of weighted least squares,
we estimate the upper limits of Yukawa parameters as (i) α = 2.4 × 10−11 and λ = 0.15 au by
INPOP10a and (ii) α = 2.1 × 10−11 and λ = 0.23 au by EPM2011. In Case II, we take δJ¯2
into account and simultaneously estimate α, λ and δJ¯2 /J¯2 . We find that (i) INPOP10a yields the
upper limits as α = 3.1 × 10−11, λ = 0.15 au and δJ¯2 /J¯2 = −1.54%; and (ii) EPM2011 gives
α = 5.2× 10−11, λ = 0.21 au and δJ¯2 /J¯2 = −12.2%. These results are summarized in Table 2.

Both INPOP10a and EPM2011 indicate the dimensionless strength of the possible deviation
from the inverse-square law of gravity cannot exceed the level of a few parts in 1011. Our estimations
of α are at least 10 times less than the result of Iorio (2007) who uses EPM2004 (Pitjeva 2005) (see
Table 2). This is a natural outcome because ω̇suppl provided by INPOP10a (Fienga et al. 2011)
and EPM2011 (Pitjeva & Pitjev 2013; Pitjev & Pitjeva 2013) are improved by at least one order of
magnitude than those given by EPM2004 (Pitjeva 2005). Furthermore, the values of δJ¯2 /J¯2 by
INPOP10a and EPM2011 (see Table 2) are compatible with the current uncertainty of ±10%.

Like the method used in previous works (Iorio 2007, 2008), to check our estimation, we will
calculate the ratios of the supplementary precession of perihelion for different pairs of planets A
and B and will compare them to the corresponding ratios of the precession on the right-hand side of
Equation (5). A quantity can be constructed as (Iorio 2007, 2008)

ηAB =
∣∣∣∣
ω̇A

suppl

ω̇B
suppl

−
ω̇A

YK + ω̇A
LT + ω̇A

δJ¯2

ω̇B
YK + ω̇B

LT + ω̇B
δJ¯2

∣∣∣∣. (8)

If Equation (5) is correct, ηAB must be compatible with zero. Like in Iorio (2008), they can be
calculated in terms of two groups of planets: the inner ones and the outer ones.

Table 3 shows some values of ηAB, which are obtained by using the results of Case II. Their
close-to-zero values demonstrate the validity of our estimations.
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Table 1 Supplementary Advances in the Perihelia ω̇suppl

Given by INPOP10a and EPM2011

ω̇suppl (mas cy−1)

INPOP10a a EPM2011 b

Mercury 0.4± 0.6 −2.0± 3.0
Venus 0.2± 1.5 2.6± 1.6
EMB −0.2± 0.9 —
Earth — 0.19± 0.19
Mars −0.04± 0.15 −0.020± 0.037
Jupiter −41± 42 58.7± 28.3
Saturn 0.15± 0.65 −0.32± 0.47

Notes: a Taken from table 5 in Fienga et al. (2011). b Provided by table 4
in Pitjeva & Pitjev (2013) and table 5 in Pitjev & Pitjeva (2013).

Table 2 Summary of α, λ and δJ¯2 Estimated by ω̇suppl

α λ (au) δJ¯2 /J¯2 Adopted Ephemeris

Iorio (2007) 1.3× 10−9 0.18 – EPM2004 (Pitjeva 2005)
Case I 2.4× 10−11 0.15 – INPOP10a (Fienga et al. 2011)

2.1× 10−11 0.23 – EPM2011 (Pitjeva & Pitjev 2013)
Case II 3.1× 10−11 0.15 −1.54% INPOP10a (Fienga et al. 2011)

5.2× 10−11 0.21 −12.2% EPM2011 (Pitjeva & Pitjev 2013)

Table 3 ηAB Obtained by the Results of Case II

ηAB

A B INPOP10a EPM2011

Venus Mercury 2.3× 10−1 7.2× 10−1

EMB/Earth Mercury 3.1× 10−1 6.6× 10−2

Mars Mercury 2.3× 10−2 6.5× 10−3

EMB/Earth Venus 2.9× 10−1 2.0× 10−1

Mars Venus 2.7× 10−1 2.1× 10−2

Mars EMB/Earth 4.5× 10−1 2.7× 10−3

Saturn Jupiter 1.6× 10−1 1.5× 10−1

4 CONCLUSIONS AND DISCUSSION

Using the supplementary advances in perihelia provided by INPOP10a (Fienga et al. 2011) and
EPM2011 (Pitjeva 2013) ephemerides, we estimate new upper limits on the deviation from the
inverse-square law of gravity which is parameterized by the Yukawa correction to the Newtonian
gravitational force with two parameters: a dimensionless strength parameter α and a length scale λ.
After taking the uncertainty of the Sun’s quadrupole moment into account, we find that INPOP10a
yields the upper limits as α = 3.1× 10−11 and λ = 0.15 au and EPM2011 gives α = 5.2× 10−11

and λ = 0.21 au. In both of them, α is at least 10 times less than the previous results of Iorio (2007).
With tremendous advances in techniques for deep space exploration in the solar system,

ephemerides are going to be increasingly improved by high-precision datasets provided from track-
ing spacecrafts and by sophisticated data analysis (e.g. Fienga et al. 2013; Verma et al. 2013a,b). The
resulting upper limits on deviation from the inverse-square law of gravity are expected to be much
tighter in the near future.
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