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Abstract Synchrotron X-rays can be a useful tool to investigate electron accelera-
tion at young supernova remnants (SNRs). At present, since the magnetic field con-
figuration around the shocks of SNRs is uncertain, it is not clear whether electron
acceleration is limited by SNR age, synchrotron cooling, or even escape from the ac-
celeration region. We study whether the acceleration mechanism can be constrained
by the cutoff shape of the electron spectrum around the maximum energy. We derive
analytical formulae of the cutoff shape in each case where the maximum electron en-
ergy is determined by SNR age, synchrotron cooling and escape from the shock. They
are related to the energy dependence of the electron diffusion coefficient. Next, we
discuss whether information on the cutoff shape can be provided by observations in
the near future which will simply give the photon indices and the flux ratios in the soft
and hard X-ray bands. We find that if the power-law index of the electron spectrum
is independently determined by other observations, then we can constrain the cutoff
shape by comparing theoretical predictions of the photon indices and/or the flux ratios
with observed data which will be measured by NuSTAR and/or ASTRO-H. Such study
is helpful in understanding the acceleration mechanism. In particular, it will supply
another independent constraint on the magnetic field strength around the shocks of
SNRs.

Key words: acceleration of particles — ISM: cosmic rays — ISM: supernova rem-
nants — turbulence — X-rays: ISM

1 INTRODUCTION

Observations of synchrotron X-rays indicate that young supernova remnants (SNRs) act as electron
accelerators up to 10–100 TeV (e.g., Koyama et al. 1995). Spectral fitting of the synchrotron radia-
tion from radio to X-ray bands gives us information on the acceleration mechanism. For example, the
maximum energy of electrons Emax,e and the magnetic field strength B are constrained by measur-
ing the roll-off frequency of the spectrum, νroll, which is proportional to BEmax,e

2 (Reynolds 1998;
Reynolds & Keohane 1999). Furthermore, if the rapid cooling time of 1–10 yr is responsible for
the narrowness of thin filaments close to the shock front (Vink & Laming 2003; Bamba et al. 2003,
2005a,b; Yamazaki et al. 2004) and/or time variability of synchrotron X-rays (Uchiyama et al. 2007;
Uchiyama & Aharonian 2008), then B ∼ 0.1–1 mG is inferred, so that Emax,e ∼ 10 TeV. Given the
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values of Emax,e and B as well as the SNR age tage, we can even estimate the maximum energy of
protons Emax,p, which is proportional to Emax,e

2B2tage (see Sect. A.1).
For young SNRs, νroll is typically below the X-ray band (e.g., Bamba et al. 2003, 2005a,b), so

that synchrotron X-rays are emitted by electrons whose energy is near Emax,e. Hence it is expected
that information on the electron spectrum at the highest energy range can be extracted from soft and
hard X-ray data. In particular, the recently launched satellite the Nuclear Spectroscopic Telescope
Array (NuSTAR) (Hailey et al. 2010; Harrison et al. 2013) and ASTRO-H (Takahashi et al. 2010) that
will start in the near future will observe hard X-rays whose photon energy is larger than 10 keV. In
this paper, we focus on the cutoff shape of the electron spectrum and show that it may provide another
independent way to tackle the problems of particle acceleration at young SNRs (Sect. 2). Then, we
show that observations by these satellites will play an important role in this context (Sects. 3 and 4).

2 CUTOFF SHAPE OF THE ELECTRON SPECTRUM

We assume the shape of the electron spectrum around the maximum energy, Emax,e, has the simple
form,

N(E) ∝ E−p exp [− (E/Emax,e)
a] . (1)

As discussed in the following, the spectral index p and the cutoff shape parameter a contain rich
information on the acceleration mechanism. We parameterize the functional form of the electron
spectrum, Equation (1), to be as simple as possible so that the result can be compared with obser-
vations. In practice, when we consider X-ray synchrotron emission from typical young SNRs, only
the energy range around Emax,e is important because the roll-off energy of the synchrotron radiation
is much smaller than 2 keV, so that detailed fluctuations of the electron spectrum caused by more
realistic but somewhat complicated models, such as the nonlinear model, may not be important.

2.1 Spectral Index p

When the diffusive shock acceleration works at the adiabatic shock with a compression ratio of r and
the energy loss effects are negligible, the spectral index is given by p = (r + 2)/(r − 1) in the test-
particle limit (Bell 1978; Blandford & Ostriker 1978). In particular, p = 2.0 in the case of the strong
shock limit r = 4. This simplest case may not be applicable for actual young SNRs, in which GeV-
to-TeV gamma-ray observations of the youngest SNRs such as Cas A and Tycho suggest p > 2.0
(Abdo et al. 2010; Giordano et al. 2012). This fact has already been inferred from both the radio
synchrotron spectrum and the propagation model of cosmic rays (e.g., Strong & Moskalenko 1998;
Putze et al. 2009; Shibata et al. 2011).

If the magnetic field is strong enough (e.g., in the Bohm diffusion model, K(E) ∝ E, see
Eq. (A.5)), synchrotron cooling is responsible for a spectral break, above which the electron spec-
trum becomes softer and the spectral index increases by 1.0, so that p > 3.0 (e.g., Longair 1994).
Note that the spectral steepening by one power occurs for homogeneous stationary sources. It
is also noted that sometimes the synchrotron cooling effect causes spectral hardening or pile-up
(Longair 1994; Drury et al. 1999; Zirakashvili & Aharonian 2007). For typical parameters of young
SNRs, however, such a hard component can hardly be seen for more than a decade of electron en-
ergy. At most a small bump is formed just below Emax,e, which may be seen as a small excess in the
radiation spectrum (see Sect. 4).

2.2 Cutoff Shape Parameter a

The cutoff shape parameter a also depends on the details of electron acceleration, such as the mag-
netic field strength and the energy dependence of the diffusion coefficient. We assume that the dif-
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fusion coefficient of high-energy electrons has the following power-law form

K(E) ∝ Eβ . (2)

Usually the Bohm diffusion, β = 1, is widely adopted. However, in general β may deviate from
unity. For example, it is well known that β becomes 1/3 if particle diffusion is considered in
the Kolmogorov magnetic turbulence, but β = 1/2 for Kraichnan turbulence (e.g., Blandford &
Eichler 1987)1. So in these cases, the value of β even tells us the properties of magnetic turbulence.
In another context, if the wave damping due to ion-neutral collisions is significant, β may approach
≈ 2 (Bykov et al. 2000; Lee et al. 2012).

In the cooling limited case, where Emax,e is determined by the balance of acceleration and
synchrotron cooling (tacc(E) = tsyn(E)), the spectral shape factor a is related to β as

a = β + 1 , (3)

which is analytically derived as in Section B.1. In the age-limited case, where the synchrotron cool-
ing effect is neglected and Emax,e is determined by the finite age, Kang et al. (2009) have given

a = 2β , (4)

by fitting their results of numerical simulation (see also Kato & Takahara 2003). Note that in the
case of Bohm diffusion (that is, β = 1), both age-limited and cooling-limited cases give the same
value, a = 2. If β 6= 1, the values of a for the two cases are different.

It may happen that the maximum energy is limited by the escape process (Ptuskin &
Zirakashvili 2005; Drury et al. 2009; Caprioli et al. 2009; Ohira et al. 2010). Here we consider
the simplest case (see Sect. B.2), in which a free escape boundary exists upstream of the shock front.
In the test particle limit, we analytically derive

a = β . (5)

If nonlinear effects, in particular the decay of self-excited upstream turbulence, are taken into ac-
count, then a may be slightly larger (e.g., Lee et al. 2012) although the precise cutoff shape is at
present highly uncertain (Ellison & Bykov 2011). However, as long as β ≈ 1, the escape process
does not affect the maximum electron energy (Ohira et al. 2012b) and hence the cutoff shape for
young SNRs.

Equations (3), (4) and (5) are derived on the assumption that the shock velocity is constant
with time, but the shock velocity of real SNRs decreases with time after the free expansion phase.
Some young SNRs are still in the free expansion phase or have just entered the Sedov phase, so
that the effect of shock deceleration is not important. Even if the shock velocity is decreasing, our
assumption that the shock is stationary may not significantly influence the result because of the
following reasons. In the cooling limited and escape limited cases, the acceleration time of electrons
with arbitrary energy is smaller than the dynamical time, so that the shock velocity can be treated
as stationary. Even in the age-limited case, high-energy particles produced around the shock suffer
adiabatic expansion after they are transported downstream of the shock and lose their energy. Hence,
at a given epoch, the spectrum for high-energy particles is dominated by those which are being
accelerated at that time, in other words, the energy spectrum of particles does not depend so much
on the past acceleration history. In particular, we are now interested in the energy region near the
upper end of the spectrum because, as seen in the following, X-rays are produced by particles with
energy near the maximum energy. In this energy regime, the electron spectrum is well approximated
by that for the stationary shock case.

1 In general, if the spectrum of magnetic turbulence has a form Ek ∝ k−s, then β and s are related as β = 2 − s
under the assumption that accelerated particles scatter via wave-particle resonance interaction. In particular, for Kolmogorov
(s = 5/3) and Kraichnan (s = 3/2) turbulence, we obtain β = 1/3 and 1/2, respectively.
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So far, we have discussed the cutoff shape in the diffusion approximation for particle motion.
For the cooling limited and the age limited cases, the diffusion approximation is valid even around
the maximum energy, because their gyro radii are much shorter than the size of the acceleration
region and/or escape boundary. For the escape-limited case, the mean free path of a particle becomes
large around the escape boundary, so that the diffusion approximation is invalid around the escape
boundary and the cutoff shape could be modified. Even so, it can be said that the cutoff shape
contains rich information on the particle acceleration.

3 SYNCHROTRON X-RAY DIAGNOSTICS OF CUTOFF SHAPE

In this section, we consider the synchrotron radiation from electrons whose energy distribution is
given by Equation (1). Assuming an isotropic pitch-angle distribution of electrons, the energy spec-
trum Fν [erg s−1 cm−2 Hz−1] of the synchrotron radiation is computed. The energy flux, in the pho-
ton energy range between ε1 = hν1 and ε2 = hν2 (ν1 < ν2), is given by F (ε1 − ε2) =

∫ ν2

ν1
Fνdν.

We calculate photon indices and flux ratios in various energy bands, in which we focus on the fol-
lowing. These spectral quantities are determined if we specify four parameters, a, p, Emax,e and the
magnetic field strength B in the emitting region. Note that the flux normalization is not necessary.
The field strength B is only required to determine the frequency that gives the peak of the νFν for the
synchrotron radiation, a so called roll-off frequency νroll(∝ BEmax,e

2), which roughly corresponds
to the characteristic synchrotron frequency of electrons with Emax,e (Reynolds 1998; Reynolds &
Keohane 1999). Different parameter sets but with the same value of BEmax,e

2 give the same photon
indices and flux ratios. Therefore, independent parameters are a, p and BEmax,e

2.
Figure 1 shows the 10–50 keV photon index as a function of 2–10 keV photon index. We adopt

p = 2.0 (thick lines) and 3.0 (thin lines), and a = 0.5 (light blue), 1 (green), 2 (red), 3 (dark blue)
and 4 (purple). Along each line, both a and p are constant, and the quantity BEmax,e

2 changes.
In the limiting case of BEmax,e

2 → ∞, rolloff frequency νroll goes beyond the observation band,
which implies the synchrotron spectrum is well approximated by Fν ∝ ν−(p−1)/2. Then the photon
index becomes an asymptotic value,

Γ∞ =
p + 1

2
, (6)

so that Γ∞ = 1.5 and 2.0 for p = 2.0 and 3.0, respectively, which correspond to the left end of
each line. When BEmax,e

2 decreases, the rolloff frequency νroll crosses the observation bands, so
the photon indices become larger than the asymptotic value Γ∞. After passing through the harder
band 10–50 keV, νroll crosses the softer 2–10 keV band, so the photon index in the former band
is larger than the latter one. For fixed p, if a becomes larger, the flux beyond νroll decreases more
rapidly, resulting in a larger photon index. Hence each line has a steeper slope for larger a. The value
of BEmax,e

2 is reduced to 103µG (TeV)2, which corresponds to the characteristic frequency of the
synchrotron radiation of 2.9× 1016 Hz. Light blue lines in all the figures as well as the thick green
line in Figure 4 have a right end, which corresponds to this lower limit.

Figure 2 shows the flux ratio R1 = F (10 − 30 keV)/F (30 − 80 keV) as a function of the
2–10 keV photon index. In the case of BEmax,e

2 →∞, the flux ratio R = F (ε1 − ε2)/F (ε3 − ε4)
of two energy bands ε1 − ε2 [keV] and ε3 − ε4 [keV] has an asymptotic value

R → ε2−Γ∞
2 − ε2−Γ∞

1

ε2−Γ∞
4 − ε2−Γ∞

3

, (7)

for Γ∞ 6= 2, but

R → ln(ε2/ε1)
ln(ε4/ε3)

, (8)

for Γ∞ = 2. Hence in the present case (ε1 = 10 keV, ε2 = ε3 = 30 keV and ε4 = 80 keV), we
have Γ∞ = 1.5 and R1 → 0.668 for p = 2.0, but Γ∞ = 2.0 and R1 → 1.12 for p = 3.0. When
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Fig. 1 Photon index in the 10–50 keV band as a function of the 2–10 keV photon index. Along each
line, both a and p are constant, and the quantity BEmax,e

2 changes from 103µG (TeV)2 to ∞;
open triangles, squares and circles are for BEmax,e

2 = 104, 105 and 106µG (TeV)2, respectively.
Thick lines are for p = 2.0, while thin lines are for p = 3.0. Light blue, green, red, dark blue and
purple lines are for a = 0.5, 1, 2, 3 and 4, respectively. The filled square and triangle are observed
data for RX J1713.7−3946 and Cas A, respectively (see Sect. 4.1).

Fig. 2 The flux ratio R1 = F (10−30 keV)/F (30−80 keV) as a function of the 2–10 keV photon
index. The meanings of each line and point are the same as in Fig. 1.
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Fig. 3 The flux ratio R2 = F (2− 10 keV)/F (10− 80 keV) as a function of the 2–10 keV photon
index. The meanings of each line and point are the same as in Fig. 1.

Fig. 4 The flux ratio R1 = F (10 − 30 keV)/F (30 − 80 keV) as a function of R3 = F (2 −
10 keV)/F (10− 30 keV). The meanings of each line and point are the same as in Fig. 1.

BEmax,e
2 becomes small, both the flux ratio and the 2–10 keV photon index become large, however

the decay slope is steeper for large a.
Figure 3 shows the flux ratio R2 = F (2 − 10 keV)/F (10 − 80 keV) as a function of the 2–

10 keV photon index. In the limit of BEmax,e
2 → ∞, we have Γ∞ = 1.5 and R2 → 0.302 for

p = 2.0, but Γ∞ = 2.0 and R2 → 0.774 for p = 3.0.
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Fig. 5 The same as in Fig. 1 but for p = 2.3 and 3.3.

Fig. 6 The same as in Fig. 2 but for p = 2.3 and 3.3.

Figure 4 shows the flux ratio R1 = F (10 − 30 keV)/F (30 − 80 keV) as a function of R3 =
F (2 − 10 keV)/F (10 − 30 keV). In the limit of BEmax,e

2 → ∞, we have R1 → 0.668 and
R3 → 0.755 for p = 2.0, but R1 → 1.12 and R3 → 1.46 for p = 3.0.

Figures 5 and 6 are the same as Figures 1 and 2, respectively, but for p = 2.3 and 3.3. The former
is typical for the source spectrum of Galactic cosmic rays, which is inferred by the propagation model
(e.g., Strong & Moskalenko 1998; Putze et al. 2009; Shibata et al. 2011). It is also expected from
gamma-ray observations that young SNRs such as Cas A and Tycho have an energy spectrum with
p = 2.3 (see Sect. 4.1.2; Abdo et al. 2010). The latter case (p = 3.3) is realized if the synchrotron
cooling is significant enough to provide a cooling break below which the electron spectrum has
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p = 2.3. In the limit of BEmax,e
2 → ∞, we have Γ∞ = 1.65 and R1 → 0.779 for p = 2.3, but

Γ∞ = 2.15 and R1 → 1.31 for p = 3.3. Since the differences are too small, we do not show the
counterparts of Figures 3 and 4 for p = 2.3 and 3.3.

4 SUMMARY AND DISCUSSION

We have derived the β-dependence on a both in the cooling-limited and escape-limited cases, al-
though based on the test-particle approximation for stationary shocks. We claim that the cutoff shape
of the particle distribution and/or radiation spectrum potentially becomes a new tool to study the ac-
celeration mechanism. Then, we have calculated the spectral properties of synchrotron radiation for
an electron distribution given by Equation (1) in terms of the flux ratios and photon indices in var-
ious energy bands. We have presented typical reference lines predicted by the simplest one-zone
synchrotron model. All the figures in our paper can be directly compared with observations in the
near future. In the next era of hard X-ray observation with NuSTAR and ASTRO-H, the observed data
should first be compared with those lines. If the data deviate from the prediction of the model, it
will provide us information on the acceleration mechanism, radiation mechanism, the inhomogene-
ity of the source (validity of one-zone model), and so on. Note that if we consider the softer band
(2–10 keV) in addition to the harder bands (> 10 keV), then the energy range becomes broader, so
that we can easily constrain spectral parameters.

The value of p may be determined by the slope of the radio synchrotron and/or GeV-to-TeV
gamma-ray spectrum. Once p is independently determined, then comparing theoretical lines of
Figures 1, 2, 5 or 6 with observed data, which will be provided by NuSTAR and/or ASTRO-H, we can
constrain the value of a. As discussed in Section 2.2, it is helpful if the acceleration is age-limited,
cooling-limited or escape-limited. In particular, we can check if a ≈ 2 or not, which corresponds
to the popular case of Bohm diffusion in age- or cooling-limited acceleration. One may expect that
a = 2 is typical. Indeed, some observational results are consistent with the case of a = 2 (e.g.,
Nakamura et al. 2012), although no firm conclusion has been derived.

In addition to other observational information such as a wide-band radiation spectrum, spatial
and temporal variability in X-ray and so on, the value of a will provide another independent con-
straint on the magnetic field strength (for a typical example, see Sect. 4.1.1), which, however, is not
always applicable. From another point of view, if we know, by other observations, the field strength
and understand how Emax,e is determined, then with the aid of Equations (3), (4) or (5), we can
further constrain the value of β, which gives us rich information on the acceleration process, in
particular, the electron transport mechanism.

Note that our present method is able to constrain the value of a without detailed spectral fitting
which needs brightness. It is easier than the spectral fitting analysis to observationally determine the
flux ratios and/or photon index. Even for sources whose X-ray brightness is too small to perform
a precise spectral fitting, we will be able to discuss the spectral parameter a. Hence we can obtain
a larger sample, which enables us to do the statistical analysis. Consequently, we will be able to
extract more general properties of particle acceleration at SNRs, which cannot be done by individual
analysis for the small number of bright sources.

Figure 3 shows that all the curves are degenerate with each other, along which the observed data
points should lie if the X-ray emission arises from synchrotron radiation. If there are outliers, we
can discuss the existence of extra components, such as a bump in the electron spectrum near Emax,e

due to effects of pile-up via synchrotron cooling (Longair 1994; Drury et al. 1999; Zirakashvili
& Aharonian 2007) and/or nonlinear acceleration (e.g., Malkov & Drury 2001), jitter or diffusive
synchrotron emission (Toptygin & Fleishman 1987; Medvedev 2000; Reville & Kirk 2010; Teraki &
Takahara 2011), secondary synchrotron radiation that originates from accelerated protons generating
charged pions (e.g., Yamazaki et al. 2006), nonthermal bremsstrahlung emission (Laming 2001a,
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2001b; Vink & Laming 2003; Vink 2008; Ohira et al. 2012a), and so on. Similar discussion may be
done with Figure 4.

A caveat is that the one-zone model is adopted for simplicity. Clearly our plots change if we
see emissions from different regions which have a different parameter set of B, Emax,e, p, a as well
as flux normalization. In order to avoid or minimize this problem, hard X-ray observations of small
emission regions are necessary. In this sense, the hard X-ray imaging system onboard NuSTAR or
ASTRO-H is useful.

In this paper, we have focused on hard X-rays which arise from synchrotron radiation of elec-
trons near Emax,e. It may be possible to do a similar analysis in gamma-ray bands using next gen-
eration gamma-ray telescopes like CTA (Actis et al. 2011). However, at present there are several
uncertainties. First, the emission mechanism is uncertain: even for the representative case of SNR
RX J1713.7−3946, we have not yet determined whether the gamma-ray emission is leptonic or
hadronic (see Sect. 4.1.1). Second, in the leptonic case, where the gamma-rays arise from inverse
Compton emission of accelerated electrons, seed photons are uncertain; in addition to CMB, in-
frared and optical photons, whose intensity is uncertain and depends on the position of SNRs in
the Galactic plane, significantly contribute to the gamma-ray emission. Finally, systematic error of
the gamma-ray measurement might be too large for our discussion. If all of the above uncertainties
are removed, the flux ratio and/or photon index in gamma-ray bands will be another independent
diagnostic. In particular, if gamma-rays are hadronic, we can obtain the cutoff shape of protons near
Emax,p, which cannot be done by hard X-ray analysis. However, even in this case, we need to do
a careful analysis because spatial inhomogeneity of target matter modifies the gamma-ray spectrum
(e.g., Ohira et al. 2011; Inoue et al. 2012).

4.1 Application to Specific Cases

In the following, let us consider the case of Cas A and RX J1713.7−3946 as representative examples.

4.1.1 RX J1713.7−3946

Tanaka et al. (2008) presented results from Suzaku observations of RX J1713.7−3946. XIS and
HXD, onboard Suzaku, detected X-rays from this SNR in 0.4–12 keV and 12–40 keV bands, and
measured photon indices in these bands to be 2.39±0.01 and 3.2±0.1, respectively. We adopt these
values as 2–10 keV and 10–50 keV photon indices, respectively. Furthermore, using the results of
the spectral analysis from Tanaka et al. (2008), we calculate the energy flux of the whole SNR as
F (2 − 10 keV) = (4.59 ± 0.04) × 10−10 erg s−1 cm−2 and F (10 − 80 keV) = (1.32 ± 0.05) ×
10−10 erg s−1 cm−2, which lead to the flux ratio, R2 = 3.5± 0.2. The derived value of R2 and the
adopted 2–10 keV photon index are on theoretical lines in Figure 3, which implies that the X-ray
emission is the synchrotron radiation.

Recently Fermi measured the gamma-ray spectrum of RX J1713.7−3946 in the 3–300 GeV
energy range, whose photon index (1.5 ± 0.1) is typical for leptonic inverse Compton emission
from high-energy electrons with the spectral index p ≈ 2.0 (Abdo et al. 2011). Hence, at first, let
us consider the possibility that gamma-rays are emitted by inverse Compton scattering. Assuming
CMB and infrared photons are the seeds of the scattering, Li et al. (2011) extracted the electron
distribution from the observed gamma-ray spectrum and obtained p ≈ 2.0 and a ≈ 0.6, although
the uncertainty is large. Lee et al. (2012) set a = 0.5 to explain the gamma-ray spectrum. The value
a ≈ 0.6 implies β = 0.3 in the age-limited case, but β = −0.4 in the cooling-limited case. The latter
is unlikely because the negative value of β is quite unnatural in the context of magnetic turbulence.
This is also inferred from the fact that the flux ratio of synchrotron X-rays to inverse Compton
gamma-rays leads to the field strength B ∼ 10–20 µG (e.g., Katz & Waxman 2008; Yamazaki et



174 R. Yamazaki et al.

al. 2009; Ellison et al. 2010), so that the effect of synchrotron cooling is not significant2. However,
one can find from Figures 1 and 5 that no lines for a = 0.5 are consistent with the measured photon
indices in the 2–10 keV and 10–50 keV bands. In particular, a ≈ 1.5 if p ≈ 2.0. This fact was
indicated by Tanaka et al. (2008), in which they found that the X-ray spectrum taken by Suzaku is
consistent with both cases a = 1 and a = 2. Therefore, the simple leptonic inverse Compton model
fails to simultaneously explain both the X-ray and the gamma-ray spectral shapes.

On the other hand, hadronic scenarios for the observed hard gamma-ray spectrum are still viable
if we consider the shock-cloud interaction (Inoue et al. 2012) or extreme limit of nonlinear particle
acceleration (e.g., Yamazaki et al. 2009). In these cases, a strong magnetic field (B ∼ 0.1–1 mG)
is predicted, which is also inferred from the detection of time variability and thin filaments of the
synchrotron X-rays, although there are some counter arguments (e.g., Katz & Waxman 2008; Bykov
et al. 2008; Reynolds et al. 2012). Hence, the electron acceleration is limited by synchrotron cooling,
so that the spectral index of electrons near Emax,e should be p ≥ 3.0 (see Sect. 2.1). One can see
from Figure 1 that if p ≈ 3.0, then the observed photon indices in the 2–10 keV and 10–50 keV
bands tell us a ≥ 2, so that β ≥ 1. Therefore, Bohm diffusion is consistent with observations.

Note that, however, this argument is not conclusive. We consider the spectrum of the whole SNR.
As discussed previously, a one-zone model may not be adequate. Further observations resolving
smaller emission regions are necessary.

4.1.2 Cas A

XIS and HXD onboard Suzaku have measured the spectrum in the 3.4–40 keV band (Maeda et
al. 2009). They found that the non-thermal component in this energy range is described by a single
power-law form with a photon index of 3.06± 0.05. Here we adopt this value as the 2–10 keV pho-
ton index, although a thermal component prevents us from precisely determining the index. Using
their fitting parameter, we have F (2 − 10 keV) = (6.5 ± 0.9) × 10−10 erg s−1cm−2. Other ob-
servations in higher energy bands, such as Swift/BAT (14–195 keV) (Baumgartner et al. 2013) and
BeppoSAX/PDS (15–300 keV) (Vink & Laming 2003), show a softer photon index of 3.26 ± 0.09
and 3.32 ± 0.05, respectively. Hence we expect the photon index in the 10–50 keV band is slightly
softer (3.1–3.3) than the value 3.06 measured by Suzaku. Using the parameters given by Swift/BAT,
we have F (10 − 80 keV) = (9.6 ± 0.7) × 10−11 erg s−1cm−2. Then we obtain the flux ratio
R2 ≈ 6.8± 1.6.

Although the index of the electron spectrum, p, is not yet fixed, the measured gamma-ray spec-
trum shows that p is larger than 2.0 (Abdo et al. 2010). Here we adopt p ≈ 2.3 as a typical value.
Then, one can plot the observed data in Figures 3 and 5. Placing the observed 2–10 keV photon index
of 3.06 ± 0.05 and the flux ratio R2 ≈ 6.8 ± 1.6 in Figure 3, we find that the data are marginally
consistent with the theoretical prediction for the synchrotron radiation. However, the observed data
point of 2–10 keV and 10–50 keV photon indices does not lie on any lines in Figure 5. Furthermore,
the observed data show that for a given value of 2–10 keV photon index, the 10–50 keV photon index
is smaller than expected via the synchrotron radiation. Hence, one can claim the existence of an extra
component. At present, the origin of the hard X-rays above 10 keV for Cas A is a matter of debate.
In particular we are interested in whether the emission is nonthermal bremsstrahlung or synchrotron
(Laming 2001a,b; Vink & Laming 2003; Vink 2008). Our discussion here may contribute to this
topic. Note that, however, this argument is based on a one-zone model. At present, it is uncertain
whether 2–10 keV and 10–80 keV X-rays come from the same emission region, which is left for
future observations.

One may insist on explaining the observed photon indices by only the synchrotron radiation.
Indeed, it is marginally possible that the observed 2–10 keV and 10–50 keV photon indices lie on

2 There are several possibilities to explain the observed time variability and thin filaments of the synchrotron X-rays
without amplification of the magnetic field (e.g., Katz & Waxman 2008; Bykov et al. 2008).
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the theoretical line of p ≥ 3 and a ≈ 0.5. In this case, the acceleration is not limited by synchrotron
cooling because generally β > 0 is expected (see Eq. (3)). This is apparently inconsistent with
the observational implications that magnetic field strength is large enough (B ≥ 0.5 mG) for the
electron acceleration to be cooling limited (Vink & Laming 2003; Bamba et al. 2005a).
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Appendix A: CHARACTERISTIC ENERGIES

In this section, we assume the Bohm diffusion, K(E) ∝ E, for simplicity. More detailed analysis
is found in Ohira et al. (2012b). The extension to a more general case (K(E) ∝ Eβ) is easy and
omitted here.

A.1. Maximum Energy of Accelerated Electrons and Protons

Let vs and Bd be the shock velocity and the downstream magnetic field, respectively. First, suppose
that the maximum energy of electrons is determined from the balance of the synchrotron loss and
acceleration. Then, equating the acceleration time,

tacc(E) = 20ξcE/3ev2
s Bd,

with the synchrotron cooling time,

tsyn(E) = 125 yr(E/10 TeV)−1(Bd/100 µG)−2 ,

we obtain

E(cool)
max =

24
ξ1/2

( vs

108 cm s−1

) (
Bd

10 µG

)−1/2

TeV , (A.1)

where ξ is a gyro factor. On the other hand, if the cooling is not significant, that is, tacc(E), tage ¿
tsyn(E), then the maximum energy can be determined by the condition tacc(E) = tage, and we
obtain

E(age)
max =

4.8× 102

ξ

( vs

109 cm s−1

)2
(

Bd

10 µG

)(
tage

103 yr

)
TeV . (A.2)

For young SNRs, we typically expect the maximum energies of electrons and protons, Emax,e and
Emax,p, are E

(cool)
max and E

(age)
max , respectively. Then, using Equations (A.1) and (A.2), we eliminate

v2
s /ξ and obtain

Emax,p ≈ 83
(

Emax,e

10 TeV

)2 (
Bd

100 µG

)2 (
tage

103yr

)
TeV . (A.3)
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A.2. The Cooling Break Energy

Let t be the characteristic time of SNR evolution, which may be the expansion time of tage itself.
Then the cooling break, Eb, appears in the electron spectrum at the energy where tsyn(Eb) = t, that
is,

Eb = 12.5 TeV
(

t

102 yr

)−1 (
Bd

100 µG

)−2

. (A.4)

The cooling break appears if Eb < Emax,e = E
(cool)
max , which can be rewritten as

Bd > 139 µG ξ1/3
( vs

108 cm s−1

)−2/3
(

t

102 yr

)−2/3

. (A.5)

Appendix B: ANALYTICAL DERIVATION OF ASYMPTOTIC SPECTRAL SHAPE

B.1. The Case of Cooling-limited Acceleration

Zirakashvili & Aharonian (2007) obtained the asymptotic electron spectrum near the maximum
electron energy in the cooling-dominated phase, such as

N(E) = A0(E) exp [S0(E)] , (B.1)

A0(E) = E−1/2 exp

[∫ E
√

K2
∂

∂E

√
b2 +

√
K1

∂
∂E

√
b1√

b1K1 +
√

b2K2

dE′
]

, (B.2)

S0(E) = −
(

γs

vs

)2 ∫ E (√
b1K1 +

√
b2K2

E′

)2

dE′ , (B.3)

where γs = 3r/(r − 1) (r is the shock compression ratio), and vs is the shock velocity. Functions
K(E) and b(E) = dE/dt are the diffusion coefficient and energy loss rate of electrons, respectively.
Subscripts 1 and 2 indicate upstream and downstream regions of the shock, respectively. In the case
of synchrotron cooling, b(E) is proportional to E2.

We assume that K(E) = K0E
β and b(E) = b0E

2 where K0 and b0 are constants, and that
ratios b1/b2 and K1/K2 are also constant. Then we obtain

A0(E) ∝ E1/2 . (B.4)

However, for typical parameters of young SNRs, this positive slope can hardly be seen in the X-ray
emission. Furthermore, neglecting non-dimensional terms on the order of unity, we derive

S0(E) ≈ −(K0b0/v2
s )Eβ+1 .

By the way, acceleration time and synchrotron cooling time are calculated as tacc(E) ≈ K0E
β/v2

s

and tsyn(E) ≈ (b0E)−1, respectively, where we again neglect terms on the order of unity. Then
equating them, we obtain

E(cool)
max ≈ (v2

s /K0b0)1/(β+1) .

Therefore, we finally derive

S0(E) ≈ −
(

E

E
(cool)
max

)β+1

. (B.5)
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B.2. The Case of Escape-limited Acceleration

We assume the test-particle regime and place a free escape boundary upstream at a distance of `
away from the shock front x = 0, that is, the particle distribution function is zero at x = −` (< 0).
Then the stationary transport equation is solved to find a particle spectrum around the shock front
given by (Caprioli et al. 2009; Reville et al. 2009)

N(E) ∝ exp

{
− 3r

r − 1

∫ E d log E′

1− exp [−vs`/K(E′)]

}
, (B.6)

where vs is the velocity of the shock. In the escape-limited case, the maximum energy is determined
by the condition (Ohira et al. 2010)

K(E(esc)
max )

vs
= ` . (B.7)

Then, one can see
K(E)/vs` = K(E)/K(E(esc)

max ) = (E/E(esc)
max )β .

Changing variables into
y(E′) = (E′/E(esc)

max )β ,

we derive

N(E) ∝ exp

{
− 3r

r − 1
× 1

β

∫ y(E) d log y

1− e−1/y

}
. (B.8)

In the case of E ¿ E
(esc)
max , the term e−1/y can be neglected, so that we obtain

N(E) ∝ E−3r/(r−1) .

On the other hand, if E À E
(esc)
max , we approximate 1− e−1/y ≈ 1/y, resulting in

N(E) ∝ exp
[
− (E/E(esc)

max )β
]
,

where a term on the order of unity is again neglected.
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