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Abstract Considering the fact that the general theory of relativity has become an in-
extricable part of deep space missions, we investigate the relativistic transformation
between the proper time of an onboard clock τ and the Geocentric Coordinate Time
(TCG) for Mars missions. By connecting τ with this local timescale associated with
the Earth, we extend previous works which focus on the transformation between τ and
the Barycentric Coordinate Time (TCB). (TCB is the global coordinate time for the
whole solar system.) For practical convenience, the relation between τ and TCG is
recast to directly depend on quantities which can be read from ephemerides. We find
that the difference between τ and TCG can reach the level of about 0.2 seconds in a
year. To distinguish various sources in the transformation, we numerically calculate
the contributions caused by the Sun, eight planets, three large asteroids and the space-
craft. It is found that if the threshold of 1 microsecond is adopted, this transformation
must include effects due to the Sun, Venus, the Moon, Mars, Jupiter, Saturn and the
velocities of the spacecraft and Earth.
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1 INTRODUCTION

With tremendous advances in modern techniques, Einstein’s general relativity (GR) has become an
inextricable part of deep space missions. It has gone far beyond theoretical astronomy and physics
into practice and engineering (Nelson 2011). Effects due to GR clearly show up in the radio signals
of some space missions (e.g. Bertotti et al. 2003; Jensen & Weaver 2007), which provide the tightest
constraint on GR (Bertotti et al. 2003).

In GR, one important idea is to abandon the concept of absolute time in Newton’s absolute
framework of space and time. There exist different kinds of times: proper time and coordinate times
(Misner et al. 1973). The readings of an ideal clock form the proper time τ , which is an observable
and is associated with the clock itself. The coordinate times cannot be measured directly, but they
might be used as variables in the equations of motion of celestial and artificial bodies and light rays.
The coordinate times are connected with the proper time through a four-dimensional space-time
interval, which depends on kinematics and dynamics of the clock. This dramatically changes the
way clock synchronization and time transfer are considered (Nelson 2011).
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In exploration missions to Mars and other planets, the synchronization of the clock onboard a
spacecraft and the clock on the ground is critical for control, navigation and scientific operation.
According to International Astronomical Union (IAU) Resolutions (Soffel et al. 2003), two inter-
mediate steps are required. Step 1 is to relativistically transform τ to the Barycentric Coordinate
Time (TCB), which is the global time of the solar system. Then, in Step 2, TCB is converted to the
Geocentric Coordinate Time (TCG), which is the coordinate time belonging to the local reference
system of the Earth. Then, TCG can be easily changed to other timescales on the Earth, such as
Terrestrial Time (TT), International Atomic Time (TAI) and the Coordinated Universal Time (UTC).

Taking the YingHuo-1 Mission (Ping et al. 2010a,b) as a technical example of future Chinese
Mars explorations, some works are devoted to investigating Step 1. Deng (2012) studies this trans-
formation by analytic and numerical methods and finds two main effects associated with it: the grav-
itational field of the Sun and the velocity of the spacecraft in the barycentric reference system. The
combined contribution of these two effects can reach a few sub-seconds in one year (Deng 2012).
Pan & Xie (2013) take a clock offset into account in this transformation and find that if an onboard
clock can be calibrated to achieve an accuracy better than ∼ 10−6–10−5 s in one year (depending
on the type of clock offset), the relativistic transformation between τ and TCB must be carefully
handled.

This paper extends previous works by examining the local reference system of the Earth. We will
focus on the relativistic transformation between τ and TCG, which means combining Step 1 and Step
2. In Section 2, we will establish the relativistic transformation between τ and TCG for a mission like
YingHuo-1 according to IAU Resolutions (Soffel et al. 2003) and make the transformation explicitly
depend on variables provided by ephemerides (see Appendix A for details). In Section 3, we will
numerically calculate this transformation and show contributions from various sources. Conclusions
and discussion will be presented in Section 4.

2 TRANSFORMATION BETWEEN τ AND TCG

Within IAU Resolutions (Soffel et al. 2003), the proper time τ of a clock onboard a spacecraft and
t ≡TCB have a relation up to the first order post-Newtonian (1PN) approximation as

τ − t = −ε2
∫ t

t0

( ∑

A

GmA

rsA
+

1
2
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s

)
dt +O(ε2J (A)

n , ε4), (1)

where ε ≡ 1/c and the non-spherically symmetric parts of the each body’s gravitational field are
omitted. The index “s” stands for the spacecraft and the index “A” enumerates each body whose
gravitational effect needs to be considered. Also, T ≡TCG can be transformed to t by

t− T = ε2
{ ∫ t
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[ ∑
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where “E” means the Earth. Adding Equations (1) and (2), we can immediately derive the relation
between τ and T as

τ − T = −ε2
∫ t
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)
dt + ε2

∫ t
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+ε2vE · (x− xE) +O(ε2J (A)
n , ε4). (3)

In order to obtain values of τ − T , one possible way is to numerically integrate the right-hand
side (RHS) of Equation (3) with the help of ephemerides, which can provide positions and velocities
of bodies in the solar system with respect to their own times. However, it is not so convenient to
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perform this calculation because the time variable in the integrals on the RHS is TCB, instead of the
Barycentric Dynamical Time (TDB). TDB is the widely used independent variable of ephemerides
describing the solar system. Therefore, for practical purposes, it is necessary to make the RHS of
Equation (3) explicitly depend on TDB. By making use of the relation between TCB and TDB (Petit
& Luzum 2010), we can obtain the new relation as

τ − T =
3∑

i=1

∆Ti +
7∑

j=1

∆T ′j +O(ε2J (A)
n , ε4, L2

B), (4)

whose RHS directly depends on TDB. The structures of ∆Ti (i = 1, 2, 3) are identical to those of all
components in Equation (3), except for their dependence on TDB. ∆T1 comes from the relativistic
transformation between τ and t; ∆T2 and ∆T3 originate from the relativistic transformation between
t and T . The detailed derivation of Equation (4) and its full expressions are given in Appendix A. In
the next section, we will numerically investigate each component in this equation. It is worth noting
that Equation (4) still keeps the difference between TCB and TDB, which is ignored in previous
works (Deng 2012; Pan & Xie 2013).

3 NUMERICAL ANALYSIS ON τ − T

Like the context assumed by Pan & Xie (2013), we suppose a spacecraft orbits around Mars from
2017-Jan-01 00:00:00.0000 (TDB) to 2018-Jan-01 00:00:00.0000 (TDB). All of the time variables
are rescaled from this starting point in the remaining parts of this paper. The orbital inclination of
the spacecraft with respect to the Martian equator is 5◦. The apoapsis altitude is 80 000 km and
the periapsis altitude is 800 km, with a period of about 3.2 days. To evaluate Equation (4), we
numerically integrate it by Simpson’s rule (Stoer & Bulirsch 2002) and using the ephemeris DE405.
In particular, the positions and velocities of celestial bodies are taken from DE405 and the orbit of
the spacecraft is solved by numerically integrating the Einstein-Infeld-Hoffmann equation (Einstein
et al. 1938) with the Runge-Kutta 7 method (Stoer & Bulirsch 2002). The stepsize is one-hundredth
of its Keplerian period. In the calculation, we include the gravitational contributions from the Sun,
eight planets, the Moon and three large asteroids: Ceres, Pallas and Vesta.

Figure 1 shows the contributions of ∆T1 [Eq. (A.8)], ∆T2 [Eq. (A.9)] and ∆T1 + ∆T2. ∆T1,
which has the component τ − t that can decrease to about −0.3 s in a year. ∆T2 describes the
component t − T that can reach about 0.5 s in a year. Thus, ∆T1 + ∆T2 can reach the level of
∼ 0.2 s in a year. An issue of theoretical and practical importance is to separate contributions from
different sources.

Figure 2 shows these contributions due to the gravitational effects from celestial bodies and the
kinematic effect from the spacecraft. If we take ±1 microsecond (µs) in a year as the threshold and
neglect all terms that have absolute values less than 1 µs, it is shown that only the Sun, Mars, Jupiter,
Saturn and the velocity of the spacecraft need to be considered in ∆T1. Similarly, Figure 3 shows
the various contributions caused by different sources in ∆T2, except for the sub-figure at the bottom
right corner. Again, if we take 1 µs in a year as the threshold, what we need to consider are the effects
caused by the Sun, Venus (marginally), the Moon, Jupiter, Saturn and the velocity of Earth.

The term ∆T3 [Eq. (A.10)] is at the end of the communication link of the spacecraft and depends
on the location of the observer. If we consider a tracking station on the ground, ∆T3 will show a
strong effect caused by the rotation of the Earth, which can reach the level of about 2 µs with the
period of a day. In the bottom right corner, the sub-figure gives the curve of ∆T3 on the assumption
that the station is located in Beijing, China. In the calculation, we take values describing the direction
of the pole of rotation and the prime meridian of the Earth from the report of the IAU Working Group
on Cartographic Coordinates and Rotational Elements (Archinal et al. 2011), which is a sufficiently
good approximation for our purposes.
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Fig. 1 Curves of ∆T1, ∆T2 and ∆T1+∆T2. Their mathematical descriptions are given in Eqs. (A.8)
and (A.9).
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Fig. 2 In ∆T1, contributions from the Sun, Mercury, Venus, Earth, the Moon, Mars, Ceres, Pallas,
Vesta, Jupiter, Saturn, Uranus, Neptune and the velocity of the spacecraft.
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Fig. 3 In ∆T2, contributions from the Sun, Mercury, Venus, the velocity of the Earth, the Moon,
Mars, Ceres, Pallas, Vesta, Jupiter, Saturn, Uranus, and Neptune; the curve of ∆T3 is shown in the
bottom right corner for a station located in Beijing, China.

Table 1 The Maximum Contributions of |∆T ′j | (j = 1, · · · , 7)

Terms Sources max(|∆T ′j |) (s) Terms Sources max(|∆T ′j |) (s)

∆T ′1 ∼ 5× 10−9 ∆T ′4
∆T ′2 ∼ 7× 10−9 Sun ∼ 6× 10−9

∆T ′3 Mercury ∼ 2× 10−14

Sun ∼ 2× 10−8 Venus ∼ 2× 10−14

Mercury ∼ 6× 10−15 Mars ∼ 2× 10−15

Venus ∼ 2× 10−14 Ceres ∼ 2× 10−17

Earth ∼ 2× 10−13 Pallas ∼ 7× 10−18

Mars ∼ 2× 10−9 Vesta ∼ 8× 10−18

Ceres ∼ 2× 10−17 Jupiter ∼ 8× 10−12

Pallas ∼ 5× 10−18 Saturn ∼ 1× 10−12

Vesta ∼ 2× 10−17 Uranus ∼ 2× 10−14

Jupiter ∼ 2× 10−11 Neptune ∼ 5× 10−15

Saturn ∼ 4× 10−11 ṽE · ãE ∼ 6× 10−9

Uranus ∼ 6× 10−14 ∆T ′5 ∼ 2× 10−7

Neptune ∼ 3× 10−14 ∆T ′6 ∼ 8× 10−12

ṽs · ãs ∼ 6× 10−8 ∆T ′7 ∼ 2× 10−14

For ∆T ′j (j = 1, · · · , 7) , whose mathematical expressions are given in Equations (A.11)–
(A.17), we numerically calculate their contributions in the same case and find the maximum absolute
values of their contributions are all less than 1 µs (see Table 1 for details).



238 J. Y. Pan & Y. Xie

4 CONCLUSIONS AND DISCUSSION

In this work, we take a mission like YingHuo-1 as an example and investigate the relativistic transfor-
mation between the proper time τ of the onboard clock and TCG, extending previous works which
focus on the transformation between τ and TCB. For practical convenience, the relation between τ
and TCG is converted to directly depend on quantities which can be read from ephemerides. We find
that the difference between τ and TCG can reach the level of about 0.2 s in a year. If the threshold of
1 µs is adopted, this transformation must include the effects due to the Sun, Venus, the Moon, Mars,
Jupiter, Saturn and the velocities of the spacecraft and Earth.

In subsequent works, we will focus on establishing a relativistic algorithm for time synchroniza-
tion of missions to Mars by including geometric and relativistic time delays. Moreover, the clock
offset will also be taken into account. We hope they may be helpful for tests of fundamental physics
in the solar system with onboard clocks and radio/laser links (e.g. Deng & Xie 2013a,b).

Acknowledgements This work is funded by the National Natural Science Foundation of China
(Grant Nos. 11103010 and J1210039), the Fundamental Research Program of Jiangsu Province of
China (No. BK2011553), the Research Fund for the Doctoral Program of Higher Education of China
under No. 20110091120003 and the Fundamental Research Funds for the Central Universities (No.
1107020116). This project/publication was made possible through the support of a grant from the
John Templeton Foundation. The opinions expressed in this publication are those of the authors
and do not necessarily reflect the views of the John Templeton Foundation. The funds from the
John Templeton Foundation were provided by a grant to The University of Chicago which also
managed the program in conjunction with National Astronomical Observatories, Chinese Academy
of Sciences.

Appendix A: τ − T : DEPENDENCE ON TDB

As a time variable of ephemerides, TDB is related to TCB as (Petit & Luzum 2010)

TDB = TCB− LB × (JDTCB − T0)× 86400 s + TDB0, (A.1)

where JDTCB is the TCB Julian date and T0 = 2443144.5003725, and where LB = 1.550519768×
10−8 and TDB0 = −6.55 × 10−5 s are defining constants. In the form of a Julian date which is
adopted as the time variable of ephemerides by Jet Propulsion Laboratory, we can have

JDTDB = JDTCB − LB × (JDTCB − T0) + JDTDB0 , (A.2)

where JDTDB0 = TDB0/(86400 s) = −7.5810185185× 10−10. It can yield

JDTCB = JDTDB + gJD(JDTDB) +O(L2
B), (A.3)

where gJD(JDTDB) ≡ LB × (JDTDB − T0)− (1 + LB)JDTDB0 .
If there is a function of JDTCB, it can be expanded as

f(JDTCB) = f [JDTDB + gJD(JDTDB) +O(L2
B)]

= f(JDTDB) + gs(JDTDB)
df

dt

∣∣∣∣
t=JDTDB

+O(L2
B), (A.4)
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where gs(JDTDB) = gJD(JDTDB) × 86400 s. By making use of it and setting T̃ ≡TDB so that
dT̃ = (1− LB)dt, we can obtain

τ − t = −ε2
∫ t

t0

( ∑

A

GmA
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+

v2
s

2

)
dt +O(ε2J (A)

n , ε4)

= −ε2(1 + LB)
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( ∑
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+

ṽ2
s

2

)
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−ε2
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[
−

∑
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r̃3
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(r̃sA · ṽsA) + ṽs · ãs

]
[gs(JDT̃ )− LBTDB0]dT̃

+O(ε2J (A)
n , ε4, L2

B), (A.5)

where r̃sA = |xs(T̃ )− xA(T̃ )| and ṽs = vs(T̃ ). Hereafter, a quantity with a tilde means it takes a
value at T̃ . Similarly, the relation between t and T can be expanded as

t− T = ε2
∫ t
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[ ∑
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]
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s(JDT̃ )ãE · ṽE

+O(ε2J (A)
n , ε4, L2

B). (A.6)

After combining Equations (A.5) and (A.6), we can finally obtain

τ − T =
3∑

i=1

∆Ti +
7∑

j=1

∆T ′j +O(ε2J (A)
n , ε4, L2

B), (A.7)

where

∆T1 = −ε2
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( ∑
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2

)
dT̃ , (A.8)

∆T2 = ε2
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E

2

)
dT̃ , (A.9)

∆T3 = ε2ṽE · (x− x̃E), (A.10)
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and

∆T ′1 = −ε2LB

∫ T̃

T̃0

( ∑

A

GmA

r̃sA
+

ṽ2
s

2

)
dT̃ , (A.11)

∆T ′2 = +ε2LB

∫ T̃

T̃0

( ∑

A 6=E

GmA

r̃EA
+

ṽ2
E

2

)
dT̃ , (A.12)

∆T ′3 = −ε2
∫ T̃

T̃0

[
−

∑

A

GmA

r̃3
sA

(r̃sA · ṽsA) + ṽs · ãs

]
[gs(JDT̃ )− LBTDB0]dT̃ , (A.13)

∆T ′4 = +ε2
∫ T̃

T̃0

[
−

∑

A 6=E
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r̃3
EA

(r̃EA · ṽEA) + ṽE · ãE

]
[gs(JDT̃ )− LBTDB0]dT̃ ,(A.14)

∆T ′5 = −ε2gs(JDT̃ )ṽ2
E , (A.15)

∆T ′6 = +ε2gs(JDT̃ )ãE · (x− x̃E), (A.16)

∆T ′7 = −ε2g2
s(JDT̃ )ãE · ṽE . (A.17)
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