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Abstract A low mass X-ray binary (LMXB) contains either a neutron staror a black
hole accreting materials from its low mass companion star. It is one of the primary
astrophysical sources for studying stellar-mass compact objects and accreting phe-
nomena. As with other binary systems, the most important parameter of an LMXB
is the orbital period, which allows us to learn about the nature of the binary system
and constrain the properties of the system’s components, including the compact ob-
ject. As a result, measuring the orbital periods of LMXBs is essential for investigating
these systems even though fewer than half of them have known orbital periods. This
article introduces the different methods for measuring theorbital periods in the X-ray
band and reviews their application to various types of LMXBs, such as eclipsing and
dipping sources, as well as pulsar LMXBs.
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1 INTRODUCTION

Compact objects, including white dwarfs, neutron stars andblack holes, are the endings of stellar
evolution, and play important roles in the stellar life cycle. An X-ray binary contains either a neutron
star or a black hole accreting material from a companion starand emits strong X-rays from the
region close to the compact object. As a result, X-ray binaries are important astrophysical objects
for studying stellar-mass black holes, neutron stars, as well as their accreting behavior. There are two
types of X-ray binaries that are classified by their mass donors instead of accretors. The companion
of a low mass X-ray binary (LMXB) can be a late-type star or even a white dwarf or a brown dwarf
with mass typically less than a solar mass. The two components of the binary are very close to
each other so that the companion fills its Roche lobe and the material transfers through the inner
Lagrangian point to the accretor side. Because the materialcarries a significant amount of angular
momentum, an accretion disk is formed around the compact object. The material gradually loses its
energy due to viscosity and accretes onto the compact object. A large amount of X-rays are emitted
around the compact object because of the strong gravitational field. By contrast, a high mass X-
ray binary (HMXB) has a massive (≥10 M⊙) early-type star as the companion. The high mass
companion loses its mass mainly through stellar wind and theaccretor captures a large amount of
matter in the close orbit, generating the X-rays.
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The variability of X-ray binaries provides rich information for understanding the properties of
these sources, including the nature of compact objects, accretion disks and the accretion process.
The variability can be periodic, quasi-periodic or even aperiodic with time scales of less than a
millisecond to thousands of days, differing by about 12 orders of magnitude. The amplitude of
variation may be as small as a few percent to a factor of thousands. Various time scale modulations
allow us to study different parts of a binary system. For example, millisecond time scale variations
are believed to be caused by events in the region near the compact object, allowing us to study
the compact object’s properties. Conversely, some long-term modulations may be caused by the
accretion disk precession.

As with other binary systems, the orbital period, which directly reflects characteristics of the
binary system, is the most fundamental parameter for an X-ray binary. The orbital periods of X-
ray binaries range from less than an hour to hundreds of days.HMXBs usually have longer orbital
periods, from days to hundreds of days. LMXBs are more compact, and their orbital periods range
from tens of minutes to several hours. The size of the binary,i.e. the separation between the two
components (a), can be estimated using Kepler’s third law,
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wherema andmd are the masses of the accretor and donor respectively. Equation (1) demonstrates
the compactness of the X-ray binary systems; the size of an HMXB is about tens of solar radii but
the size of an LMXB is typically less than or equal to a solar radius.

However, fewer than half of X-ray binaries have known orbital periods. According to the 4th
edition of catalogs of HMXBs (Liu et al. 2006) and LMXBs (Liu et al. 2007), only 45 out of 114
HMXBs and 74 out of 187 LMXBs have recorded orbital periods. These orbital periods are obtained
from either optical or X-ray bands. Because the X-ray binaries are rather compact, it is almost im-
possible to resolve their orbits in images. Therefore, the measurements of the orbital periods are
primarily achieved by variations in light curves or radial velocities. In most cases, the orbital vari-
ations are easier to detect for systems with high inclination angles. Probably the only exception is
the Be X-ray binary whose orbital period can be determined byrecurring X-ray outbursts due to the
neutron star periodically passing through the disk around the Be star and accreting large amounts of
gas from it.

The orbital periods of many X-ray binaries are measured by their optical emissions. These can
be obtained either from the periodic flux modulations or the orbital Doppler effect of the companion
stars. The optical emissions for an HMXB are mostly from its mass donor with little effect from the
X-ray source. Conversely, for an LMXB, both the companion star and accretion disk may contribute
to optical emissions. For persistent LMXBs or transient LMXBs during the outburst state, the opti-
cal emissions are dominated by the accretion disks, due to the reprocessing of X-rays. The optical
emissions from the accretion disk can be asymmetric or periodically blocked by the companion.
However, the optical modulation from an accretion disk may be coupled with the disk motion so
that the variation period can be different from the orbital period, which will be further discussed in
Section 2.4. For a transient LMXB in its quiescent state, theoptical emissions are from the com-
panion. Because the companion is tidally distorted, the emissions are also asymmetric because of
gravitational darkening and ellipsoidal modulation is observed. Another way to detect the orbital pe-
riod in the optical band, like the single-lined spectroscopic binary, is to measure the radial velocity
variation of the companion star. The radial velocity variation not only provides the orbital period,
but also other orbital parameters, such as the projected semimajor axis (a sin i) of the companion’s
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orbit and eccentricity (e). Furthermore, the mass function

f(m) =
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3 i
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=

PorbK
3
d(1− e2)3/2

2πG
, (2)

whereKd is the semi-amplitude of the radial velocity of the companion, allows us to constrain the
mass of the compact object.

However, there are still some difficulties with measuring the orbital periods in the optical band.
First, some X-ray binaries have no identified optical counterparts. The Galactic HMXBs are mostly
distributed around the Galactic plane where the extinctionin the optical band is high. For LMXBs,
some are located in globular clusters so their optical counterparts are difficult to identify in such
crowded regions with a large number of stars. Even if the optical counterparts are known, measuring
the orbital Doppler effects from the companion for some LMXBs is still very difficult because they
are too dim. An alternative way to probe the orbital periods of X-ray binaries is from their X-ray
emissions. This article focuses on measuring the orbital periods of LMXBs. There are two major
methods for measuring the orbital periods of LMXBs in the X-ray band: from variations in their
X-ray flux or from pulsations of neutron stars. Measuring theorbital period with the X-ray flux is
introduced in Section 2, including general period search methods (Sect. 2.1), the observed minus
calculated (O–C) method (Sect. 2.2), and further discussion on the eclipsing sources (Sect. 2.3) and
dipping sources (Sect. 2.4). It also covers other variations related to measurements of their orbital
period, such as dynamics of the accretion disk. Measurements of orbital periods for LMXBs using
pulsations from neutron stars are described in Section 3. A summary is given in Section 4.

2 MEASURING THE ORBITAL PERIOD WITH X-RAY FLUX MODULATION

One of the primary methods of measuring the orbital period ofan LMXB is from variations in its
X-ray flux. The X-rays emitted from the region near the compact object are periodically obscured,
either fully or partially by the companion, or absorbed by the outer structure of the accretion disk,
which causes the orbital modulations in the X-ray band. Suchmodulations can be seen only for a
binary system with a high orbital inclination angle (i). According to Frank et al. (1987) (see Fig. 1),
no orbital variation can be observed for an LMXB system with an orbital inclination angle less than
60◦. For a system with an orbital inclination angle between60◦ and75◦, periodic X-ray dips caused
by the absorption of X-rays by the vertical structure on the accretion disk can be detected in the
X-ray light curve. If the inclination angle is larger than75◦, an eclipse occurs. Interestingly, a total
eclipse, together with a dip, is seen for orbital inclination between75◦ and80◦ if the X-ray emission
region is point-like. In principle, no X-rays can be detected for a higher inclination angle because
the X-ray source is completely blocked by the finite thickness of the accretion disk. However, if the
X-ray emission region is extended due to the X-rays being scattered by the accretion disk corona
(ADC), the companion can only occult part of the X-ray emission region and result in a partial
eclipse (White & Holt 1982). A typical partial eclipsing X-ray binary is X1822–371 (White et al.
1981).

2.1 Period Search Methods

Because the orbital modulation is periodic, the orbital period can be obtained by various period
search methods, such as the Lomb-Scargle periodogram (hereafter LS periodogram, Lomb 1976;
Scargle 1982) and the phase dispersion minimization (PDM, Stellingwerf 1978). The best method
for searching the orbital period depends on the modulation profile. For example, the LS periodogram,
based on fitting a sinusoidal function to the light curve, is more sensitive to smooth variations. For
a highly non-sinusoidal profile, such as the X-ray dip (Sect.2.4) with a short duty cycle, PDM is a
better choice because the LS power of the signal would be spread out to its harmonics and therefore
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Fig. 1 Various types of X-ray flux modulations from orbital motionsof LMXBs caused by the
different inclination angles. Adopted from Frank et al. (1987).

be buried by noise in the power spectrum. Different period search methods are usually applied to
confirm the periodicity, especially if the modulation profile is unknown prior to measurement. Many
period search methods, such as the LS periodogram, must be applied to the binned light curve.
Furthermore, for the methods where the period is obtained byan index made by the folded light
curve that is folded with a trial period, such as PDM, the bin size in the folded light curve must be
specified. Consequently, results may be slightly differentwith different bin sizes for the same light
curve. However, the X-ray data can be recorded as an event list that provides the event arrival times
for the detected X-ray photons. The Z-test (Buccheri et al. 1983) and H-test (de Jager et al. 1989)
directly operate on the event arrival time without binning and a unique result can be obtained.

In addition to finding the orbital period, the primary purpose of a period search is to verify the
significance of the signal. A periodic signal results in highpower and exhibits a peak in the power
spectrum (or a local minimum in the PDM spectrum). However, the peak may be caused by noise
although this probability is small. The significance can be evaluated by hypothesis testing. The null
hypothesis is that there is no periodic signal in the light curve, so that all variations are due to noise.
The null hypothesis would be rejected if the probability that the peak is due to noise (also called the
false alarm probability) is smaller than a prior significance level. Taking the LS periodogram as an
example, the probability distribution of pure white noise in the power spectrum is an exponential
distribution with a mean value of 1. A peak with power greaterthan 6 indicates that the probability
that the peak is caused by noise is less thanexp(−6.0) = 0.0025. In other words, we have a more
than 99.75% (3σ) confidence level for the detection of a periodic signal.

Once the orbital period is determined by the period search method, the error in the period must
also be specified. The uncertainty in the frequency is sometimes estimated as the width of the peak
in the power spectrum but this value can only be considered tobe the upper limit of the uncertainty
(Levine et al. 2011). The width of the peak is inversely proportional to the time span of the light curve
and is independent of the power in the peak. However, we expect that in principle, the uncertainty in
the period is smaller for a more significant signal. Taking the LS periodogram as an example, from
Horne & Baliunas (1986), the uncertainty in frequency may beestimated as

δf =
3

8T
√
P

, (3)

whereT is the time span of the light curve andP is the power in the signal. For a significant
detection of a periodic signal, the LS power is much larger than 1 so the uncertainty in frequency
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is much smaller than1/T . For a period search method where the uncertainty in period is hard to be
determined, a Monte Carlo simulation can be used to estimatethe uncertainty.

Like optical observations, X-ray light curves are usually unevenly sampled so the discrete
Fourier transfer is improper for searching for the periodicity. By contrast, the LS periodogram, which
is based on fitting a sinusoidal function, is suitable for unevenly sampled data. However, all period
search methods suffer from large gaps in the light curves. For X-ray observations, the gaps may be
caused by the Earth occultation, which is more severe for satellites in low orbits, or the observation is
terminated because the target is too close to the Sun. These observation gaps usually result in aliases
around the true signal. If the gaps are periodic, like the Earth occultation, whose period is the or-
bital period of the satellite, the aliases appear to be equally spaced around the signal in the spectrum
where the difference in frequency equals to frequency of thegaps on the light curve. Furthermore, if
the gaps are too large, the aliases may be more powerful than the true signal in the power spectrum,
giving an incorrect period for the light curve.

2.2 O–C Methods

An alternative way to obtain or refine the orbital period is the O–C method. The O–C method can
usually provide a more precise orbital period measurement,about an order of magnitude better than
the period search methods given in Section 2.1. Furthermore, it is able to probe the orbital period
derivative (i.e.Ṗorb, P̈orb etc.) To apply this method, a relatively stable orbital modulation profile
is preferred, allowing a specific reference point, called the fiducial point, in the profile to be well-
defined. The O–C method traces the change in the occurrence times of the fiducial points. For a
given reference timeT0 and expanding the orbital frequency (νorb(t)) as a polynomial, the observed
cycle count (Nobs) can be expressed as

Nobs(t) =

∫ t

T0

νorb(t
′)dt′ =

∫ t

T0

(νorb,0 + ν̇orb,0(t− T0) +
1

2
ν̈orb,0(t− T0)

2 + ...)dt′

= Nobs(T0) + νorb,0(t− T0) +
1

2
ν̇orb,0(t− T0)

2 +
1

6
ν̈orb,0(t− T0)

3 + ... (4)

The reference time, usually called the phase zero epoch, is usually chosen as an occurrence time of
a fiducial point so thatNobs(T0) = 0. However, the observed cycle count number increases rapidly
with time so that it is almost always compared with a “calculated” cycle count number. The linear
ephemeris for the calculated cycle count is usually chosen as

Nc(t) = Nc(T
′

0) + νc,0(t− T ′

0). (5)

The frequency (νc,0), sometimes called folding frequency, may be obtained by the period search
methods discussed above or using a previously reported value. The difference in the cycle count can
be written as

φ(t) = Nc(t)−Nobs(t)
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′

0) + νorb,0(t− T ′

0)

−[Nobs(T0) + νorb,0(t− T0) +
1

2
ν̇orb,0(t− T0)

2 +
1

6
ν̈orb,0(t− T0)

3]

= −[νorb,0(T
′

0 − T0) +
1

2
ν̇orb,0(T

′

0 − T0)
2 +

1

6
ν̈orb,0(T

′

0 − T0)
3]

+[νc,0 − νorb,0 − ν̇orb,0(T
′

0 − T0)−
1

2
ν̈orb,0(T

′

0 − T0)
2](t− T ′

0)

−
1

2
[ν̇orb,0 + ν̈orb,0(T

′

0 − T0)](t − T ′

0)
2 −

1

6
ν̈orb,0(t− T ′

0)
3, (6)



1372 Y. Chou

whereNc(T
′

0) = Nobs(T0) = 0 if T ′

0 andT0 are the phase zero epochs for calculated and observed
cycle counts respectively.φ(t) is called the phase and is usually less than one cycle. The phase can
be obtained by the location of the fiducial point on the foldedlight curve. If bothT ′

0 andνc,0 are
close to their corresponding true valuesT0 andνorb,0 and the higher-order terms are small, the phase
drift can be continuously traced. The orbital parameters are obtained by fitting a polynomial to the
evolution of the phases of fiducial points from the data. Using the period as a parameter, Equation (6)
can be approximately written (up to quadratic terms) as

φ(t) ≈ φ0 +
Porb,0 − Pc,0

Porb,0Pc,0
(t− T ′

0) +
1

2

Ṗorb

P 2
orb,0

(t− T ′

0)
2. (7)

The phase of the fiducial point is sometimes obtained from thefolded light curve folded by a
single linear ephemeris (i.e.T ′

N = T ′

0 + Pc,0N ), particularly for an orbital profile that is unclear for
a single orbital cycle in a light curve. However, cycle countambiguity must be treated with caution.
The measured phase shiftφ could actually be(φ+/−N ′) whereN ′ is an integer. This could happen
if the folding period (or frequency) deviates by a large amount, perhaps due to a large error, from
the true orbital period and a large gap in the data. Phase uncertainty due to deviation in the folding
period or error would accumulate with time and result in cycle count ambiguity. Therefore, a small
uncertainty in the folding period is essential for extrapolating the folding ephemeris to larger time
spans, especially if there are large gaps in the data. More detailed discussions about this issue can be
found in Chou et al. (2001).

The orbital ephemeris is usually written as a function of cycle count. Taking the quadratic
ephemeris as an example, the time of the fiducial point in theN th cycle is expressed as

TN ≈ T0 + Porb,0N +
1

2
Porb,0ṖorbN

2. (8)

Thus, using the O–C method, the time delay compared to the “calculated” linear ephemeris,T ′

N =
T ′

0 + Pc,0N , is

∆t = TN − T ′

N ≈ (T0 − T ′

0) + (Porb,0 − Pc,0)N +
1

2
Porb,0ṖorbN

2. (9)

The parameters can be obtained or refined by fitting a polynomial to the time delay as a function of
cycle count. The application of the O–C method to measure theorbital period and its derivative will
be further discussed in the following sections for eclipsing and dipping LMXBs.

2.3 Eclipsing X-ray Sources

In addition to the radial velocity variation from the orbital Doppler effect, the most direct evidence
for binary orbital motion is eclipsing. For an X-ray binary with sufficiently high inclination angle,
the X-ray emissions may be totally blocked by the companion if the X-ray emission region is point-
like and exhibits a total eclipsing profile. A typical X-ray total eclipsing profile is shown in Figure 2.
Because the total eclipsing profile can be very well defined, the O–C method is usually applied to
refine the orbital period or trace the change in orbital period. The most commonly used fiducial point
is the mid-eclipse time obtained by fitting a defined model to the profile. The simple step and ramp
model is usually adopted to fit the eclipsing profile (Parmar et al. 1991; Hertz et al. 1997).

To date, total X-ray eclipses have been detected in 12 LMXBs (EXO 0748−676, Her X-1,
X1658−298, XTE J1710−281, AX J1745.6−2901, GRS 1747−321, CXOGC J174540.0−290031,
Swift J1749.4−2807, 1RXS J175721.2−304405 and 4U 2129+47, and two quiescent sources, X5
and W37, in globular cluster 47 Tuc (Heinke et al. 2003, 2005)). For the newly discovered total
eclipsing source 1RXS J175721.2−304405, only a part of the eclipsing profile was observed so
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Fig. 2 A typical total eclipsing profile in the X-ray band detected from EXO 0748–676. Adopted
from Wolff et al. (2009).

Fig. 3 The O–C results from over 20 years’ of monitoring the mid-eclipse time for EXO 0748–676.
The orbital period glitches can clearly be seen. Adopted from Wolff et al. (2009).

its orbital period remains unknown (Maeda et al. 2013). 4U 2129+47 used to be recognized as a
typical partial eclipsing source but a total eclipsing profile has been detected during its quiescen-
t state (Nowak et al. 2002). Among these seven total eclipsing LMXBs, the most well-studied is
EXO 0748−676, a transient source with a neutron star as its accretor. The eclipse timing has been
traced since its discovery in February 1985. However, the phases of the mid-eclipse times behave
irregularly (see Fig. 3) and no simple ephemeris can fit the O–C residuals. It appears that the or-
bital period has abruptly changed several times by an order of milliseconds over more than 20 yr
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Fig. 4 A typical partial eclipsing profile in the X-ray band detected from 4U 1822–37. Adopted from
Parmar et al. (2000).

of monitoring (Wolff et al. 2009). A similar phenomenon was also seen in XTE J1710–281 (Jain &
Paul 2011). This orbital period glitch is likely due to the strong magnetic activity which changes the
gravitational quadrupole moment of the companion star (Wolff et al. 2007, 2009; Jain & Paul 2011).

There are five LMXBs exhibiting partial X-ray eclipses (2S 0921–630, 4U 1822–37, XTE 2123–
056, 4U 2129+12 and 4U 2129+47). The partial X-ray eclipse provides evidence that the X-ray
emission region is extended due to the X-rays being scattered in the ADC (White & Holt 1982).
For an ADC source, the value ofLx/Lopt is about 20 whereas this value is about 100–1000 for the
other LMXBs. 4U 1822–37 is one of the best-studied partial eclipsing LMXB systems. However, the
orbital modulation profile is not purely a partial eclipse. In addition to the partial eclipse profile, there
is a smooth variation that reaches its minimum at about 0.2 cycles before the eclipse (Parmar et al.
2000, see Fig. 4). This smooth variation is caused by the X-rays from ADC being obscured by the
structure at the rim of the accretion disk (White & Holt 1982). The minimum of the partial eclipse is
usually chosen as the fiducial point (also called the arrivaltime of the eclipse). Its value is obtained
by fitting a Gaussian to the partial eclipse profile, plus a function (e.g. a polynomial or a sinusoidal
function) to model the smooth modulation (Iaria et al. 2011). After more than 30 yr of tracing the
orbital evolution, the rate of change for orbital period wasreported to be1.59(9)×10−10 s s−1, which
is three orders of magnitude greater than the theoretical prediction based on mass conservation in
the binary system (Iaria et al. 2011). On the other hand, 4U 1822–37 is also an X-ray pulsar whose
neutron star has a spin period of 0.59 s (Jonker & van der Klis 2001), which provides an alternative
way to independently probe the evolution of orbital period.
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2.4 Dipping X-ray Sources

In addition to eclipsing sources, some LMXBs exhibit orbital modulations in the X-ray band that are
believed to be due to absorption of X-rays by structure in theaccretion disk. The typical one is the
dipping source. X-ray dips have been seen in more than a dozenLMXBs, where the X-ray intensity
periodically decreases by a factor with duration from<0.1 up to∼0.4 duty cycles.

Figure 5 shows a typical light curve of a dipping LMXB. This iscaused by the absorption of
X-rays emitted from the region around the compact object by the vertical structure in the outer part
of the accretion disk. Therefore, the period of the dip is considered to be the orbital period of the
binary system. X-ray dips have been seen in total eclipsing LMXBs (e.g. EXO 0748–676) and partial
eclipsing sources (e.g. 4U 2129+12). However, there are a number of LMXBs exhibiting only pure
dips without an eclipse, which are classified as dipping LMXBs. By contrast, some LMXBs have
smooth orbital variations (e.g. 4U 1820–30 see Stella et al.1987) that are also likely to be caused by
the absorption of the accretion disk structure, but they arenot classified as dipping sources.

To probe the orbital evolution of dipping LMXBs, the dip center time (usually determined as the
time at which the minimum dip intensity occurs) is usually selected as the fiducial point. However,
because the dip is caused by the absorption of the accretion disk structure, it is not completely phase
locked with the orbital phase, but sometimes shows phase jitter (e.g.±0.05 cycle for X1916–053,
see Chou et al. 2001). Both the dip center time and the dip profile changes with time (Chou et al.
2001; Hu et al. 2008). Furthermore, the dip even occasionally disappears at the expected time (Smale
& Wachter 1999; Chou et al. 2001). Because of the variable dipprofile, the fiducial point (the dip
center time) is sometimes difficult to uniquely define. For example, Chou et al. (2001) obtained a dip
center time by fitting a quadratic curve around the intensityminimum, whereas Homer et al. (2001)
used a Gaussian to model the dip profile, but neither approachis suitable for a dip with a complicated
profile. Hu et al. (2008) introduced a method to extract the parameters of a dip, including the dip
center time, dip width, and strength, regardless of how complicated the dip profile is. With these
parameters, the X-ray dip not only provides information about the evolution of orbital period, but
also dynamics of the accretion disk as it is caused by absorption in the structure of the accretion disk
(Chou et al. 2009).

Fig. 5 A typical X-ray dip profile detected from X1916–053. The dashed lines are the expected
center times of the dip. Adopted from Chou et al. (2001).
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X1916–053 is a typical dipping LMXB and exhibits many interesting timing phenomena. It
shows recurrent X-ray dips, first discovered by White & Swank(1982) and Walter et al. (1982) with
a period of 3000 s. The secondary dip is sometimes seen with a phase difference of∼ 0.5 with
respect to the primary one. Other periods in the X-ray band ranging from 2985 s to 3015 s have
been reported with marginal evidence (Walter et al. 1982; White & Swank 1982; Smale et al. 1989;
Yoshida et al. 1995; Church et al. 1997). The most interesting point is that its optical counterpart
modulates with a stable period of 3027 s, which is only∼1% longer but significantly different from
the 3000 s X-ray dips (Callanan et al. 1995). Two different models to explain the discrepancy have
been proposed. The∼1% longer periodicity in the optical band compared to the X-ray band is
likely caused by the coupling of a∼3.9 d disk precession with the 3000 s orbital motion which is
exhibited as the positive superhump seen in the SU UMa type dwarf novae. On the other hand, to
explain the period of the∼199 d long-term modulation found by Priedhorsky & Terrell (1984) and
the stable optical period (Callanan et al. 1995; Chou et al. 2001), Grindlay (1989, 1992) proposed
that X1916–053 is a hierarchical triple system. The long-term variation is due to the changes of
eccentricity of the inner binary, which affects the accretion rate, similar to the∼171 d modulation
seen in 4U 1820–30 (Chou & Grindlay 2001). The triple model predicts that the optical period
(3027 s) is the orbital period whereas the SU UMa model suggests the X-ray dip period (3000s) is
the orbital period like in other dipping LMXBs. However, the∼ 199d long-term periodicity has
never been confirmed by subsequent observations (e.g. Wen etal. 2006). Other predictions from the
triple model have also not been confirmed, except for the marginal evidence that the X-ray bursts
occur clustered around dips (Chou et al. 2001). On the other hand, although the optical period of
X1916–053 is rather stable (Ṗopt ≈ 10−10 s s−1) in comparison to the superhumps shown by SU
Ma systems (̇Psup ∼ 10−5 s s−1), the X-ray dip period seems even more stable than the optical one
(Chou et al. 2001). Chou et al. (2001) noted that the superhump may be stable in some cataclysmic
variable (CV) systems (e.g. AM CVn,̇Psup = 1.7 × 10−11 s s−1, Solheim et al. 1998). Therefore,
the evidence is more favorable for the SU UMa model than the triple model. Furthermore, Retter
et al. (2002) found a negative superhump with a period of 2979s to be a consequence of retrograde
nodal precession of the accretion disk with a period of 4.8 d coupling to orbital motion. Hu et al.
(2008) discovered a 4.87 d periodic variation in the dip width (Fig. 6).

These observations suggest that X1916–053 is the first LMXB to be classified as a permanent
superhump system with both positive and negative superhumpvariations, like some CVs, such as
AM CVn.

The configurations of CVs and LMXBs are very similar, even though the accretors and emission
spectra are different. The superhumps (at least the positive ones) are believed to be caused by the
presence of a 3:1 resonance in the accretion disk (Whitehurst 1988). This resonance can only occur
for accretion with a mass ratio ofq = md/ma . 1/3. This extreme value is more easily achieved
in LMXBs than in CVs because of the larger mass of the accretor. Consequently, superhumps are
expected in many LMXBs. In principle, superhumps may be seenin all the black hole LMXBs, as all
verified stellar-mass black holes have mass larger than3.2 M⊙ and the masses of the donors are in
general less massive than 1M⊙. Superhumps have been detected in a few black hole LMXBs during
their X-ray outburst states, including GRO J0422+32, Nova Mus 1991, GS 2000+25 (O’Donoghue &
Charles 1996) and XTE J1118+480 (Zurita et al. 2002). For LMXBs with neutron stars as accretors,
Haswell et al. (2001) noted that superhumps are expected where the orbital period is less than 4.2 h.
In addition to X1916–053, a 693.5 s positive superhump period was detected in the far-ultraviolet
band byHST in 4U 1820–30, an ultra-compact LMXB with an orbital period of 685 s (Wang &
Chakrabarty 2010). Recently, Cornelisse et al. (2013) reported the discovery of a negative superhump
in XB 1254–690, a dipping LMXB with orbital period of 3.9 h, inthe optical band, as well as
marginal evidence for the presence of a positive superhump.It appears reasonable that most of the
superhumps in LMXBs are detected in the longer wavelength bands as they reflect the behavior of
the accretion disk. X1916–053 is currently the only case where superhumps may be detected in the
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Fig. 6 The dip parameters of X1916−053 in 1998 from observations by RXTE folded with a 4.87 d
period. The dispersion (i.e. dip width) has a clear 4.87 d periodicity. Adopted from Hu et al. (2008).

X-ray band. However, because X-ray dips are caused by the absorption of the disk structure, they
allow us to probe precessions of the disk. Superhumps or phenomena related to precession of the
accretion disk are expected to be detected in other dipping LMXBs.

3 MEASURING ORBITAL PERIOD BY USING AN X-RAY PULSAR

If one of the components of a binary system is a pulsar, the orbital period and other orbital parameters
can be obtained from the orbital Doppler effect of the pulsar, or more precisely from the pulse
arrival time delay due to orbital motion. However, the pulsation was rarely seen in neutron star
LMXBs before 1998, probably because the weak magnetic field (∼ 108 − 109 G) was “buried”
or “screened” by the accreted matter so the accretion flow cannot be channeled onto the magnetic
poles (Cumming et al. 2001), or due to insufficient sensitivities of X-ray telescopes. The only cases
were 4U 1626–67 (Ps = 7.67 s, Rappaport et al. 1977), Her X-1 (Ps = 1.24 s, Tananbaum et al.
1972), GX 1+4 (Ps ≈ 2.3 min, Lewin et al. 1971) and GRO J1744–28 (Ps = 0.467 s, Finger
et al. 1996). The accretor of the LMXB identified as a neutron star was usually determined from its
display of an X-ray burst, a thermonuclear explosion on the surface of the neutron star. The LMXBs
were considered to be progenitors of radio millisecond pulsars (Ps . 10 ms, Alpar et al. 1982;
Radhakrishnan & Srinivasan 1982), but no millisecond pulsation had ever been detected in LMXBs
by 1998, even though there were some indirect evidences thatmany of the neutron stars in LMXBs
spin at a frequency of hundreds of Hz, like the quasi-periodic oscillation (QPO) during the X-ray
burst (called burst QPO). The first accreting millisecond X-ray pulsar (AXMP) SAX 1808.4–3658
was discovered in 1998 by theRossi X-ray Timing Explorer (RXTE), an X-ray telescope with a large
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Fig. 7 Pulse arrival time delay due to orbital motion observed fromXTE J1807–294. The orbital
period and other orbital parameters (e.g., the projected radius) can be detected from this technique.
Adopted from Chou et al. (2008).

X-ray photon collecting area and unprecedented time resolution (1µs) (Wijnands & van der Klis
1998). Its 2 h orbital period was immediately determined using the pulse arrival time delay technique
(Chakrabarty & Morgan 1998). To date, a total of 15 AXMPs havebeen discovered. Of these, 14
of them have had their orbital periods measured precisely using their pulsations; the exception is
Aql X-1 where the pulsation was detected for only 150 s (Casella et al. 2008), which is too short to
determine the orbital parameters for this binary that has anorbital period of 18.95 h. Furthermore,
the frequency of a burst QPO has been demonstrated to be identical to (or double that of) a neutron
star’s spin frequency (Chakrabarty et al. 2003), which provides us with an alternative way to measure
the neutron star spin period in an LMXB. As a result, the burstQPO sources with QPO frequencies
of hundreds of Hz are also called “nuclear-powered millisecond pulsars” (Chakrabarty et al. 2003).

However, not all LMXBs with pulsations can have orbital periods determined through the orbital
Doppler effect or the pulse arrival delay technique. The ultra-compact LMXB 4U 1626–67, with a
pulsation period of 7.67 s and orbital period of 0.7 h, detected by the sidebands of optical pulsation
(Middleditch et al. 1981), shows neither a periodic Dopplershift nor a pulse arrival delay caused
by the orbital motion due to its very small projected semimajor axis (ax sin i < 0.04 light-second,
Middleditch et al. 1981). In addition, the orbital parameters are almost impossible to measure for
systems where the pulsation is only detectable for a short time, such as Aql X-1 (150 s vs. 19 h
orbital period) and burst QPOs (several seconds vs. orbitalperiod of tens of minutes to several
hours). Otherwise, the pulsation provides a way to very precisely measure the orbital parameters,
as well as the neutron star spin parameters. Higher pulsation frequency can give higher precision
orbital and spin parameters, which allow us to measure the evolution of these parameters, such as
changes in orbital or spin period, over a short time span for observations. For example, we consider
an analysis technique similar to the O–C method to measure the spin period of a millisecond pulsar
with a spin frequency of about 100 Hz. If the deviation between the true spin period (observed) and
the guessed period (calculated) is only10−6 of the spin period, the pulse phase will have significant
drift in less than106 cycles, which corresponds to less than 10 ks. In other words,the spin period
can be measured with an error of less than10−6 in a time span of 3 h.

For a pulsar in a binary system, the phase drift (or pulse arrival time delay) may be caused by
orbital motion (see Fig. 7) as well as a change in the neutron star’s spin frequency (if the observed
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time span is long enough). Because the LMXB is an old system, the orbital eccentricity is almost
always close to zero. On the other hand, the evolution of spinfrequency is usually modeled as a
polynomial. If the effect of the frequency derivative is small, the observed frequency of pulsation
can be written as

ν(t) = ν0
2π(ax sin i)

cPorb
sin

[

2π(t− Tπ/2)

Porb

]

+ ν0 + ν̇(t− T0) +
1

2
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2 + ...
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2
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2 + ... (10)

wherePorb is the orbital period,forb is the orbital frequency,ax is the orbital radius of the neutron
star,i is the inclination angle,A ≡ ax sin i/c, Tπ/2 is a reference time when the neutron star is
at superior conjunction andT0 is a reference time for the pulsation, which usually takes the time
of a specified fiducial point of pulsation. The cycle count canbe evaluated using the definition
in Equation (4). The phase is defined as the fractional part ofthe cycle count. Because the X-ray
detector records the event arrival time, the phase can be defined for each X-ray event as
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, (11)

whereti is the event arrival time of theith X-ray photon. The pulse profile can be obtained by
binning the event phases.

However, if the parameters applied to Equation (11) deviatefrom the true values, a significant
phase drift can be introduced in the evolution of the pulse profile. Therefore, we may adopt a method
analogous to the O–C method to refine the parameters. If the deviations between guessed and true
parameters are small, the phase drift of the pulse profile canbe expressed (to first order approxima-
tion) as
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where the parameters with superscripts (0) indicate the guessed parameters and the parameters with
δ are the differences between true and guessed parameters. Corrections to the parameters can be ob-
tained by fitting the phase drift with time. Although Equation (12) is complex, it is basically a linear
fitting with an exact solution. The initial orbital parameters and pulsar frequency may be obtained
by the orbital Doppler shift from the power spectra, and the initial pulsar frequency derivative may
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Fig. 8 Pulse phase vs. X-ray flux of XTE J1807–294 from its 2003 outburst. The negative phase
drops are seen to coincide with the X-ray flux enhancements. Adopted from Chou et al. (2008).

be set to zero if the time span for data is not very large. This correction process can be repeated until
the corrections to parameters are much smaller than the corresponding errors from the fitting.

In principle, there is no pulse phase drift either from orbital motion or from the secular term
(i.e. [−1/2(t−T

(0)
0 )2]δν̇ + [−1/6(t− T

(0)
0 )3]δν̈...) in Equation (12) when the best orbital and spin

parameters are applied to the folding. In other words, all the fiducial points of pulsations should be
aligned at phase zero. However, this simple model is not usually applicable to AXMPs because the
secular term is too complicated to model as a polynomial. Such abnormal secular phase variation,
also called timing noise, is believed to be due to changes in accretion rate (Patruno et al. 2009). A
typical example is the pulse variation of AXMP XTE J1807–294during its 2003 outburst. Chou et al.
(2008) discovered that the pulse phase exhibited a large phase drop six times during the∼90 d when
the pulsation was detectable. These large phase drops are too large to be explained by any known
theories of accretion torque. However, by comparing with the X-ray light curve, these phase drops
coincide with the X-ray flares (Fig. 8). Furthermore, the fractional pulse amplitude is also enhanced
during the flare. Chou et al. (2008) noted that these observations imply that the accreting hot spot
shifts as the accretion rate changes during the X-ray flare. Therefore, although the AXMP is a good
candidate for studying accretion torque because of its small moment of inertia (INS ≈ 10−5IWD)
and high spin frequency (allowing precise measurement of parameters), the problem of timing noise
due to variation in accretion rate must be solved in advanced. Nevertheless, precise orbital parameters
are still essential for this study. The problem is that thereis no good model to describe the timing
noise. Fortunately, the time scale of the timing noise is usually much longer than the orbital period
in AXMPs. This phase drift can be removed locally by modelingit as a linear trend for a short time
span of data and obtaining the orbital parameters (see Chou et al. 2008 for more details).
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4 SUMMARY

X-ray binaries have been one of the most important astrophysical sources in the X-ray band since the
beginning of X-ray astronomy in the early 1960s. LMXBs, withbinary separations on the order of
a solar radius, allow us to study the nature of compact objects, accretion phenomena, accretion disk
dynamics and the evolution of accreting or close binary systems. The orbital period is a fundamental
parameter for a binary system. In addition to the optical band, X-ray emissions provide another way
to measure the orbital period of LMXB systems. To date, more than 30 yr of X-ray observation data
have been archived. Because it is generally believed that the orbital period derivative for an LMXB
system isṖorb/Porb ∼ 10−7 − 10−8 yr−1, the orbital period derivatives for some of the LMXBs
with orbital periods of hours may be resolved from historical data by the O–C method discussed
in Section 2.2. This allows us to learn more about evolution of the accreting binary and accretion
mechanism. Furthermore, some LMXBs with very short orbitalperiods (< 80 min), called ultra-
compact X-ray binaries, e.g. 4U 1820–30 (Porb = 11.5 min), XTE J1807–294 (Porb = 40.5 min)
and X1916–053 (Porb = 50 min), whose mass-losing companions are hydrogen-deficientdegener-
ate stars (Rappaport et al. 1982), are good candidates for probing gravitational wave radiation, in
addition to the AM CVn systems in the future.
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