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Abstract A detailed case study of γ-hadron segregation for a ground based atmo-
spheric Cherenkov telescope is presented. We have evaluated and compared various
supervised machine learning methods such as the Random Forest method, Artificial
Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support
Vector Machines as well as the conventional dynamic supercut method by simulating
triggering events with the Monte Carlo method and applied the results to a Cherenkov
telescope. It is demonstrated that the Random Forest method is the most sensitive
machine learning method for γ-hadron segregation.
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1 INTRODUCTION

Multidimensional datasets are very difficult to handle with conventional methods, which are gen-
erally linear in nature. Therefore, when multidimensional data are encountered, the efficiency of
these methods reduces drastically as any interdependence among various parameters is beyond the
realm of linear methods. In the case of ground based atmospheric Cherenkov systems, the typical
characterization of a signal involves more than four attributes/parameters. Present day Cherenkov
systems are operating in an energy regime where conventional methods are losing their edge on
account of fading differences among the discriminating attributes/parameters between signal and
background. Therefore, the ground based gamma ray astronomy community has started exploring
various options including multivariate methods. These multivariate methods fall under the umbrella
of machine learning methods. The simplicity and intrinsic ability of these methods to scrub out in-
terdependence, if any, among various attributes/parameters has made the field of machine learning
methods one of the fastest growing scientific disciplines. These methods employ statistical tools
to decipher hidden relationships, if any, among a few or a collection of attributes/parameters with
comparatively little computing infrastructure.

Machine learning methods have been explored in the field of ground based gamma ray astron-
omy for quite some time. The earliest efforts were initiated by Bock et al. (2004). Later on, for
γ-hadron segregation, the effectiveness of tree based multivariate classifiers was demonstrated by
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two operational ground based observatories, MAGIC (Albert et al. 2008) and HESS (Ohm et al.
2009; Fiasson et al. 2010; Dubois et al. 2009). It should be noted that no machine learning method
is sacrosanct as far as its superiority over other multivariate methods is concerned. Each dataset is
unique and the classifier’s performance is dependent on the dataset under investigation. Therefore,
in order to assess the suitability of a classifier, each dataset needs to be probed independently. In this
paper, we compare and evaluate various supervised machine learning methods to assess their suit-
ability for γ-hadron segregation. A total of five machine learning methods, namely Random Forest
(RF), Artificial Neural Network (ANN), Linear Discriminant Analysis (DISC), Naive Bayes (NB)
Classifier and Support Vector Machine (SVM) with the Radial Basis Function (RBF) and polynomial
kernel have been investigated. They are selected in a way to represent a type of machine learning
stream. Among these five methods, the RF method represents a logic based algorithm. The ANN
methods are perceptron based techniques. On the other hand, DISC and NB Classifier are statistical
learning methods. Furthermore, SVM represents a rather new (1992) machine learning technique.
The signal strength after classification by each machine learning method was compared with re-
spect to the conventional dynamic supercut method and a conclusion is reached to select the best
classification method.

The plan for the paper is as follows: In Section 2, a brief summary of ground based atmospheric
Cherenkov telescopes and the underlying principle will be outlined. Section 3 involves the descrip-
tion of the database used to compare various machine learning methods. The subsequent section
provides an overview of all the machine learning methods. The final two sections deal with a critical
analysis of all the classifiers and the conclusion respectively.

2 GROUND BASED ATMOSPHERIC CHERENKOV SYSTEMS

Ground based gamma ray astronomy is a rather new discipline. The first successful detection of the
TeV source Crab Nebula (Weekes et al. 1989) took place in 1989. With a brief lull in the field, the
next detection took place in 1992 when the second TeV γ-ray source Markerian 421 (Punch et al.
1992) was detected and subsequently in 1996, Mrk501 (Quinn et al. 1996) was detected. Slowly a
series of such extragalactic sources was discovered. With the advent of more sensitive systems, the
catalog1 of TeV γ-ray sources saw the addition of newer sources. The present day field of ground
based gamma ray astronomy is flourishing with new detections of exotic sources. In fact, so far more
than 150 galactic and extragalactic sources have been discovered.

The detection of cosmic γ-ray sources is based on the principle of the detection of Cherenkov
photons produced by cosmic rays in the atmosphere. When cosmic rays enter the atmosphere, they
interact with atmospheric nuclei by hadronic and electromagnetic interaction. Electrons and the cos-
mic γ-rays interact electromagnetically, i.e. they generate secondary particles by ‘pair production’
and the ‘bremsstrahlung’ process. The hadronic cosmic rays, namely protons and ionized nuclei,
interact via the hadronic interaction and also give rise to a number of secondary particles. Such gen-
eration of secondary particles in the atmosphere is called the Extensive Air Shower. The hadronic
showers create π◦ particles that decay into γ-rays making it difficult to distinguish these hadronic
showers from genuine showers initiated by γ-rays. The segregation of showers initiated by γ-rays is
quite challenging because cosmic rays far outnumber the γ-rays by a huge margin.

2.1 The Imaging Atmospheric Cherenkov Technique

The secondary particles generated in extensive air showers move with relativistic speeds and gener-
ate Cherenkov radiation in the atmosphere. The technique of detecting the Cherenkov photon image
is known as the Imaging Atmospheric Cherenkov Technique (IACT). If the shower is close enough to
the telescope, the Cherenkov photons are reflected by the telescope’s reflecting dish and get focused

1 http://tevcat.uchicago.edu/
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Fig. 1 Diagram of a few image parameters.

on the camera (an array of photomultiplier tubes in the focal plane of the detector). The geometrical
projection of the shower onto a detector is called an image. The IACT is used to differentiate be-
tween γ and hadron initiated showers on the basis of the shape and orientation of the images. The
image parameterization was introduced by Hillas and hence these parameters are known as Hillas
parameters (Hillas 1985). Image properties (analyzed offline) provide information about the nature,
energy and incoming direction of the primary particle triggering a shower. A representative diagram
of the Hillas parameter is shown in Figure 1.

3 DATABASE USED IN THIS STUDY

A database of Monte Carlo simulations was generated by using the CORSIKA air shower code (Heck
et al. 1998) with the Cherenkov option. The simulations were carried out for the TACTIC telescope
(Koul et al. 2011) located at the Mount Abu observatory, with an altitude of∼ 1300 m. The simulated
showers were generated at zenith angles of 5◦, 15◦, 25◦, 35◦ and 45◦. The imaging camera with a
total of 349 pixels was considered with the innermost 121 pixels being used for generating the trigger.
The Cherenkov photons triggered the telescope after encountering the wavelength dependent photon
absorption, reflection coefficient of the mirror facets, light cone used in the camera and the quantum
efficiency of photomultiplier tubes. All the triggered events underwent the usual image cleaning
procedures described in the literature (HEGRA Collaboration et al. 1996) to eliminate background
noise.

The simulated events triggering the telescope were selected according to the differential spectral
index 2.6 and 2.7 for γ and protons respectively. The γ events were generated in the energy range
from 1–20 TeV. The corresponding proton events were generated from 2–40 TeV. In order to have
a robust and well contained image inside the camera, the prefiltering cuts of size (photoelectrons)
≥ 50 and a distance cut of 0.4◦ ≤ distance≤ 1.4◦ were applied. This process yielded a total of 7938
events for both γ and protons.

3.1 Image Parameters for Classification

Various Hillas image parameters (Hillas 1985) like length, width, distance, size (photoelectron) and
zenith angle can be used in the process of γ-hadron segregation. However, the size parameter as
well as the zenith angle parameter are not strictly separation parameters for γ-ray and hadronic
showers. In particular, the zenith angle, for instance, by itself cannot be used to separate the events
although different image parameters depend on it. The same is true with the size (photoelectron)
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parameter. A typical problem with these parameters is that in case the training samples for γ-ray
and hadrons have a different distribution in these parameters, these parameters may be considered
as separation parameters. This may lead to a rather risky situation, which is typically handled by
preparing the training samples in such a way that their distributions on those parameters (typically
size and zenith) are as close as possible. In this way, the uncertainty associated with using such
parameters as separation parameters can be avoided. In this study, such complexities have been
taken into account. In addition to these parameters, a derived parameter ‘dens,’ defined (Hengstebeck
2007) as

dens =
log10(size)

length× width
(1)

was also used. A total of two sets of image parameters was considered. The idea was to investigate
various classifiers as a function of the image attributes/parameters. In the first instance, only five
image parameters: length, width, distance, size and frac2 (defined as the ratio of the sum of the two
highest pixel signals to the sum of all the signals), were considered from the simulation database.
In the second case, we considered a total of seven image parameters. Here, in addition to the above
mentioned five parameters, two additional parameters, namely zenith angle and dens parameter,
were also included. However, for classification purposes, the alpha parameter was not considered.
The alpha is a very powerful parameter as it carries the signature of the progenitor (γ or proton). The
alpha distribution is expected to be flat for cosmic ray protons, whereas it reflects a peaky behavior,
for ≤ 18◦ for γ-rays. In order to remove any bias of such a strong parameter, it was not considered
for classification purposes. Moreover, this parameter plays a crucial role in the estimation of signal
strength. If the alpha parameter is used in the classification, then the hadronic background cannot be
evaluated.

4 DIFFERENT CLASSIFICATION METHODS

The problem of γ-hadron segregation is formulated as a two class problem: γ represents one class
and the hadron is the second class. In the literature, a large variety of multivariate classification meth-
ods exists. However, to have a tractable analysis, a few representative supervised machine learning
methods were selected. The classification was carried out by using five different machine learning
methods, namely RF, ANN, DISC, NB Classifier and SVM with the RBF and polynomial kernel.
Except for the RF and the Dynamic Supercut methods, the other methods were applied from a com-
mercially available package named STATISTICA2. On the other hand, the RF method was studied
by using the original RF code3.

4.1 Conventional Method: Dynamic Supercut

The spatial distribution of Cherenkov photons on the image plane of the camera is parameterized on
the basis of the shape and size (light content) of each such image. The conventional parameterization
leads to the estimation of the image parameters (Hillas 1985). In this technique, various sequential
cuts in the image parameters are applied so as to maximize the γ-ray like signal and reject the
maximum number of background events. However, this scheme has a disadvantage because the width
and length parameters grow with the primary energy. It is observed that the width and length of an
image are well correlated with the logarithm of size; the size of the image provides an estimate of
the primary energy. This method of scaling the width and length parameters with the size is known
as the dynamic supercut method (Mohanty et al. 1998). By employing this method, the optimum
number of cut parameters and their values are estimated by numerically maximizing the so called

2 STATISTICA http://www.statsoftindia.com/
3 http://www.stat.berkeley.edu/∼breiman/RandomForests/cc software.htm
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quality factor Q (Gaug 2000). The quality factor is defined as

Q =
εγ√
εP

, (2)

where εγ and εP are γ and hadron acceptances respectively. The γ-acceptance is defined as the
correctly classified γ events out of the total number of γ events and εP is the fraction of proton
events which behave like γ events after the γ-hadron classification. The image parameters in Table 1
lead to the maximum quality factor.

Table 1 Dynamic Supercut Parameters

Parameter Cut Value

Length (L) 0.110◦ ≤ L ≤ (0.235 + 0.0265 ln(size))◦
Width 0.065◦ ≤ W ≤ (0.085 + 0.0120 ln(size))◦
Distance (D) 0.4◦ ≤ D ≤ 1.4◦
Size (S) S ≥ 50 pe
Alpha (α) ≤ 18◦
Frac2 frac2 ≥ 0.35

4.2 Random Forest Method

The RF method is a flexible multivariate selection method. The algorithm for RF was developed by
Leo Breiman and Adele Cutler4.

The RFs are a combination of tree predictors such that each tree depends on the values of a ran-
dom vector sampled independently and with the same distribution for all trees in the forest (Breiman
2001). The classification trees, also known as “decision trees,” are machine learning prediction mod-
els constructed by recursively partitioning the data set. Each binary recursive partitioning splits the
data sets into different branches. The tree construction starts from the root node (the entire dataset)
and ends at a leaf. Every leaf node is assigned to a class. The RF method combines the concept of
‘bagging’ (Breiman 1996) and ‘Random Split Selection’ (Dietterich 2000).

4.2.1 Bagging

The RF builds on the bagging (Breiman 1996) technique, where bagging stands for “Bootstrapping”
and “Aggregating” techniques. The basic idea of bagging is to use bootstrap re-sampling to generate
multiple versions of a predictor and combining them to make the classification. On the other hand,
the bootstrapping is based on random sampling with replacement. It ensures that the probability of
selecting an event in the sampling (with replacement) procedure is constantly 1/n. Therefore, the
probability of not selecting an event is equal to (1–1/n). If the selection process is repeated n times,
where n is very large, the probability of not selecting an event will be ∼ 1/3. Therefore, only 2/3
(∼ 70%) of events are taken for each bootstrap sample.

4.2.2 Random split selection

In addition to bagging, RF also employs “Random Split Selection” (Dietterich 2000). At each node
of the decision tree, m variables are selected at random out of the M input vectors and the best
split is selected out of these m. Typically about square root (M ) = m number of predictors are se-
lected. Two sources of randomness, namely random inputs and random features, make RFs accurate
classifiers. In order to measure the classification power (separation ability) of a parameter and to

4 http://www.stat.berkeley.edu/∼breiman/RandomForests/
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optimize the cut value, the Gini index is used, which measures the inequality of two distributions.
It is defined as the ratio between (a) the area spanned by the observed cumulative distribution and
the hypothetical cumulative distribution for a non-discriminating variable (uniform distribution, 45◦
line), and (b) the area under this uniform distribution. It is a variable between zero and one; a low
Gini coefficient indicates more equal distributions, while a high Gini coefficient shows an unequal
distribution. Breiman (2001) estimated the error rate on out-of-bag data (i.e. oob data). Each tree is
constructed on a different bootstrap sample. Since in each bootstrap training set about one third of
the instances are left out (i.e. out-of-bag), we can estimate the test set classification error by applying
each case that is left out of the construction of the tth tree to the tth tree. To be precise, the oob error
estimate is the proportion of misclassification for the oob data.

In this study, the original RF code in Fortran5 was employed and a total of 100 trees was gen-
erated. The variable defined in the above code as mtry = 2/3 was taken. Very similar results were
obtained in each case. The resultant output of this code was compared with the implementation of
RF in the statistical package R6. It is worth mentioning here that the Fortran code encounters some
memory issues when the number of training/test events crosses a certain threshold. However, this
limitation was not encountered in the RF implementation in R.

4.3 Artificial Neural Network

The ANN consists of many inputs (Gershenson 2003) which are multiplied by weights (strength of
the respective signals), and then computed by a mathematical function that determines the activation
of the neuron. Another function computes the output of the artificial neuron. The specific output
demanded by the user can be obtained by adjusting the weights of an artificial neuron. A multilayer
perceptron (MLP) is perhaps the most popular network architecture in use today, due originally to
Rumelhart and McClelland (Rumelhart et al. 1986) and discussed at length in most neural network
textbooks (Bishop 1995). Each neuron performs a weighted sum of its inputs and passes it through
the transfer function to produce the output.

In this work, we use an MLP network with five inputs, a minimum of three hidden units and a
maximum of 11 hidden units. For classification tasks, the probabilistic output was generated and the
misclassification rate was estimated.

4.4 Linear Discriminant Analysis

Linear Discriminant Analysis is also known as Discriminant Function Analysis (DFA). DFA com-
bines aspects of multivariate analysis of variance with the ability to classify observations into known
categories. It is a multivariate technique which is not only utilized in classification but also estimates
how good the classification is. In this method, the discrimination functions like canonical correlations
are constructed and each function is assessed for significance. The estimation of the significance of a
set of discriminant functions is computationally identical to multivariate analysis of variances. After
estimating the significance, one proceeds for classification. It generally turns out that first one or
two functions play an important role while the rest can be neglected. Each discrimination function
is orthogonal to the previous function.

In the present case, it is known that each class belongs to either γ or hadron; thus, the a priori
probabilities of these classes are known. Accordingly, in this work, the prior probabilities are taken
for classification.

5 http://www.stat.berkeley.edu/∼breiman/RandomForests
6 http://cran.r-project.org/
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4.5 Naive Bayes Classifier

Bayesian classifiers gained prominence in the early nineties and perform very well (Langley et al.
1992; Friedman et al. 1997). A Naive Bayes classifier is a generative classifier technique based on
the concept of probability theory. The Bayes theorem plays a critical role in probabilistic learning
and classification. The Bayes theorem states that

p(B/A) =
p(A/B)p(B)

p(A)
, (3)

where p(A) = Independent probability of A, p(B) = Independent probability of B, p(A/B) =
Conditional probability of A given B, p(B/A) = Conditional probability of B given A, i.e. the
posterior probability.

In “Naive Bayes Classification,” the different variables/attributes/features are assumed to be
strongly (naively) independent, i.e.,

p(〈x1, x2, x3...xn〉|y) =
n∏

i=1

Π(xi|y) . (4)

Using the strong “independence assumption” and the prior probabilities, the most probable class for
a given x is estimated. The best class is the most likely or maximum a posteriori (MAP) class. The
MAP estimate gives

arg max
B

p(B/A) = arg max
B

p(A/B) p(B) . (5)

The training and evaluation from this method is very fast but the assumption of strong independence
among parameters is a condition generally not satisfied in real world problems.

4.6 Support Vector Machine

The SVM was introduced by Boser et al. (1992). It is based on the concept of decision planes termed
hyperplanes. These hyperplanes are constructed in multidimensional space for classification. The de-
cision planes separate the classes. The linear decision plane is too limited in its application because
of the heterogeneous nature of experimental data. In such a case, the linear decision plane lacks the
ability to perform classification. Here nonlinear classifiers based on the kernel function play a vital
role. The kernel function (mathematical function) maps the data into a higher dimensional hyper-
plane (feature space), where each coordinate corresponds to one feature of the data items. In this
way, the data are transformed into a set of points in a Euclidean space, leading to the classification.

In the present work, the RBF and polynomial kernels are used. A polynomial of degree 3 with
type 2 classification was employed. The parameters γ = 0.2 and ν = 0.5 were considered. For the
RBF, these parameters were 0.2 and 0.35 respectively.

5 COMPARISON OF CLASSIFICATION METHODS

The above listed methods were employed to classify the events into γ and hadron cases. A total of
7938 events of each type was considered as described in an earlier section. Around 70% of the events
were used for training all the machine learning methods and the rest of the data was used as a test
sample. The same training and test data were used by all the methods to have a one to one corre-
spondence in the results. After training, the test sample was passed through the trained classifier and
predictions of γ and hadron classes were made. Our aim is to identify the best classifier. The accu-
racy of the prediction rules can be evaluated by the Receiver Operator Characteristic (ROC) curves
which are graphical techniques (Fawcett 2006) to compare the classifiers and visualize their perfor-
mance. These curves are applied virtually in the field of decision making, like in signal detection
theory (Egan 1975) and more recently in the medical field (Swets 1988).
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5.1 Evaluation

We are considering a binary classification problem where the two cases are γ and hadrons. For a
binary classification problem, a total of four outcomes are possible. Two outcomes are related to the
correct classification for the two classes and two for incorrect classification. The True Positive (TP)
class denotes the correct classification of class γ and True Negative (TN) class represents the correct
classification of class hadron. The False Negative (FN) class reflects the class γ incorrectly classified
as class hadron and False Positive (FP) class is the incorrect classification of class hadron as class γ.

The ROC plot is generated by using the above mentioned scenario for possible outcomes (TP,
TN, FP, FN). The correctly classified γ are represented as the true positive rate (TPR), estimated by
defining it as in (Fawcett 2006). The true positive rate is defined as

TPR =
TP

TP + FN
. (6)

The hadrons classified as γ are represented by the False Positive Rate (FPR), defined as

FPR =
FP

FP + TN
. (7)

TPR and FPR can be defined in terms of the fraction of correctly classified γ and hadrons. From
Equations (6–7), it can be shown that

TPR = εγ , (8)
FPR = εhadron . (9)

Hence the TPR is the accepted γ fraction and the FPR is defined as the accepted hadron fraction. The
best classifier is the one which provides the maximum TPR for the minimum FPR. It should be noted
that we are not generating the ROC curves in the strict sense. The ROC curves lie between (0, 0) and
(1, 1). In the present study, in order to better understand the results, the hadron rejection was plotted
on a logarithmic axis. Therefore, the ROC plots in this study will differ from conventional ROC
plots.

In order to find the best classifier, the decision boundary for prediction was varied. Each decision
boundary generated one point in the γ-acceptance (TPR) and hadron acceptance (FPR) curves. These
rates were plotted and the resultant plot is referred to as a decision-plot. The decision-plot was
generated for each classifier. If the decision-plot skews towards the left side, it indicates greater
accuracy, i.e. a higher ratio of true positive to false positive. In order to compare various classifiers,
the decision plot is generated after the classification by all the methods. The top most plot in the
decision-plot turns out to be the best classifier because for the same hadron acceptance, the upper
plot gives the highest γ-acceptance.

The decision-plot is the qualifying metric to select the most suitable classification method. In
addition to the decision-plot, the difference among various classifiers was also quantified by estimat-
ing the signal strength at a representative γ-acceptance value. The quantifying metric is designated
as “signal strength” and defined as

σ =
S√

(2B + S)
, (10)

where S = εγNS and B = εpNB (Li & Ma 1983) are the signal and background events respectively.
The signal strength was estimated by taking NB = 10 000 and NS = 500 (Bock et al. 2004). Since
the conventional dynamic supercut method estimated the γ-acceptance to be 57.4%, the hadron
acceptance from each classifier was derived from the decision-plot at a γ-acceptance of 57.4%. The
decision plot was generated for two sets of image parameters. As mentioned earlier, two sets were
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Fig. 2 Signal vs. background acceptance. The left panel is the classification result by using the five
attributes/parameters. The right panel represents it for seven attributes/parameters.

 0

 20

 40

 60

 80

 100

 99  99.2  99.4  99.6  99.8  100

γ-
A

cc
ep

ta
nc

e

Projected Hadron Rejection

RF
ANN
DISC

NB

Fig. 3 γ-acceptance as a function of projected hadron rejection.

considered to evaluate the classification strength as a function of the number of image parameters.
The decision-plots for these two cases are shown in Figure 2.

The comparison of decision-plot for RF methods for five and seven sets of image parameters
shows that the RF method yields a better classification strength. This difference in the classification
is, however, small and of the order of∼ 10% in the γ-ray acceptance for the given hadron acceptance
range. This difference results because of the larger number of image parameters and guides us to
choose more numbers of image parameters during the training of the classification method. The
decision-plot for the artificial neural network method also reflects a tendency to prefer more numbers
of image parameters for better classification. As per the decision-plot, the other two methods also
indicate a positive effect on the classification strength with more numbers of image parameters.
The decision plot provides an estimate of the possible γ-acceptance for a user chosen background
(hadron) rejection. Any classifier yielding the maximum γ-acceptance for a given hadron acceptance
decides the quality of the classifier. Figure 3 shows the γ-acceptance as a function of projected
hadron-rejection for four representative projected hadron-rejection values, viz 99%, 99.3%, 99.6%
and 99.9%.

For a hadron rejection of 99.9%, the RF method yields ∼ 40% γ-acceptance. In comparison
to this, any classifier coming closest to RF is ANN, which for the same hadron rejection secures
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Table 2 Misclassification Rate and Signal Strength with Five and Seven Image Parameters

Misclassification Rate (%) Signal Strength
Classification method R5/R7 σ5/σ7

Random Forest 5.44/4.43 15.46 / 15.73
Automated Neural Network 7.40 / 5.82 9.8 / 13.30
Dynamic Supercut method — 9.1 / 12.92
Linear Discriminant Analysis 12.11 / 10.08 8.10 / 10.37
Naive Bayes Classifiers 20.57 / 14.00 7.8 / 10.32
Support Vector Machine
(i) with RBF kernel 9.18 / 16.08 na
(ii) with polynomial kernel 10.19 / 16.12 na

a mere ∼ 3% for γ-acceptance. The other two classifiers fail to go beyond 99.6% for projected
hadron rejection. Furthermore, they yield a much smaller γ-acceptance compared to the above two
classifiers, even at a projected hadron acceptance of 99.6%.

In addition to estimating the signal strength, the misclassification rate was also estimated by
using a confusion matrix. The misclassification rate and the signal strength are shown in Table 2.

The positive effect of a greater number of parameters is better seen by a quantification of the
misclassification rate as well as the signal strength. Table 2 shows that a higher number of at-
tributes/parameters for training the classifier improves the signal strength while the misclassification
rate goes down.

Such improvement in the misclassification rate as well as the signal strength is equally visible
in all the classification methods. It should be noted that entries related to the SVM in Table 2 are
absent. Only the misclassification rate is given. Many classification methods (ANN, DISC, NB)
used in STATISTICA give the probabilistic output as well as the prediction probability, but there are
instances where the prediction is a hard prediction, i.e. in terms of YES or NO output. In the case of
SVM, the STATISTICA package yields hard predictions, thereby hindering the generation of a set
of confusion matrices for different decision boundaries. Due to the lack of probabilistic output from
SVM, it is difficult to estimate the signal strength. However, the misclassification rate from Table
2 for SVM with both the kernels (RBF and polynomial) suggests that for the given dataset, γ and
hadron acceptances will remain lower compared to those of the RF and ANN methods. Based on
this premise, it can be concluded that the SVM will not be able to match these two classifiers for our
requirement.

Note that the strength of the ROC curves is generally exploited by comparing various classifiers
and a suitable classifier is selected. The classifier is selected on the basis of its position in the ROC
space. The top left most plot is considered to be the best classifier. However, this view of selecting
the classifier on the basis of its position in the top left most part of the decision-plot is over sim-
plistic. The Precision-Recall (PR) curves are more fundamental than the ROC plots. According to
the theorem (Davis & Goadrich 2006), “For a fixed number of positive and negative examples, one
curve dominates a second curve in the ROC space if and only if the first dominates the second in the
PR space.” The precision is defined as

Precision =
TP

TP + FP
. (11)

The precision essentially reflects the fraction of examples classified as positive which are truly pos-
itive, i.e. predicted positives (here class γ). The Recall is the TPR. In the PR space, the recall is
plotted on the x-axis and the precision is plotted on the y-axis.

The classifier attaining the top position in the PR space and hence in the ROC space (as per
the above mentioned theorem) is regarded as the best classifier. Therefore, in order to reach the
conclusion about the best classifier, it is important to evaluate the classifier performance in the PR
space. The PR plot is generated for both sets of image parameters and is shown in Figure 4.
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Fig. 4 PR curves. The left panel represents the PR curve for the five attributes/parameters. The right
panel represents it for seven attributes/parameters.

The RF method retains the top most position in the ROC curve as well as in the PR space
compared to the other classifiers. Therefore, on the basis of these two curves, it can be concluded
that since the RF method dominates all the other classifiers, for the given dataset, it turns out to be
the best classifier. It should be be noted that the superiority of the PR curve over ROC plots is more
pronounced when there is skewness in the class distribution of a dataset.

6 CONCLUSIONS

Five different machine learning methods were evaluated and compared to decide which of these
methods is most suitable for γ-hadron segregation. Given the position of all the methods in the ROC
space, the PR space and the misclassification rate for the given dataset, the trend reflects the superi-
ority of RF and ANN compared to other methods, i.e. the DISC, NB Classifier and SVM. The signal
strength was estimated by using a confusion matrix at a representative value for γ-acceptance of
0.574. This acceptance value was chosen because the conventional dynamic supercut method yields
the same γ-acceptance. The dynamic supercut method yields a signal strength of σ0.574 = 12.92,
whereas the signal strengths are 15.73 and 13.30 from the RF method and the ANN method respec-
tively. It is clear that these two methods yield better results compared to the conventional dynamic
supercut method. For the given dataset, the RF method gives an almost 20% improvement in the
signal strength over the ANN method. A similar story is repeated in the estimation of the misclas-
sification rate. It is of course difficult to make a generalized statement about the superiority of the
RF method over any other method. Yet, the dominance of the RF method in the ROC plot as well as
in the PR space indicates that for the given dataset, results are tilting in favor of the RF method. In
addition to the above classifying metric, the RF method has an advantage in terms of computational
time over the perceptron based methods, like ANN. As the number of perceptrons increases, it be-
comes very computationally expensive; an increase in the number of attributes/parameters adds to
the computational expense. Also, unlike the ANN method, which acts as a black box, the RF method
is quite easy to understand. Furthermore, the RF method demands very little processing capabilities.
Finally, the RF method takes care of parameters with little or no separation power, whereas ANN
performance can be severely affected by the inclusion of such parameters.

In the next phase, a similar study will be carried out with a bigger dataset and the best method
will be employed for γ-hadron segregation by taking experimental data. With the ever increasing
data volume and the inclusion of larger numbers of attributes/parameters in the field of ground based
γ-ray astronomy, the RF method, or rather the tree based method, is gaining all around popularity
and soon it might become the preferred method of choice.
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Appendix A: VARIOUS MACHINE LEARNING METHODS

In addition to the five machine learning methods, various machine learning methods from the TMVA
package (Hoecker et al. 2007) were tested and their resultant decision-plot is presented. Various ma-
chine learning methods are as follows: Boosting Decision Tree (BDT), BDT with gradient boost
(BDTG), BDT with decorrelation (BDTD) + Adaptive Boost, TMlpANN (ROOT’s own ANN),
Fisher Boost (Linear discriminant with Boosting) and Probability Density Estimator Range-Search
(PDERS). For all these methods, the default settings given by the TMVA developers were used. It is
clear from the decision-plot (Fig. A.1) that the RF method outperforms all the other methods.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1

γ-
A

cc
ep

ta
nc

e

Hadron Acceptance

RF
ANN
DISC

NB
BDT

BDTG
BDTD

TMlpANN
FisherBoost

PDERS
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