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Abstract By adopting the differential age method, we select 17 832 luminous red
galaxies from the Sloan Digital Sky Survey Data Release Seven covering redshift
0 < z < 0.4 to measure the Hubble parameter. Using the full spectrum fitting package
UlySS, these spectra are reduced with single stellar population models and optimal
age information from our selected sample is derived. With the decreasing age-redshift
relation, four new observationalH(z) data (OHD) points are obtained, which are
H(z) = 69.0±19.6 km s−1 Mpc−1 atz = 0.07, H(z) = 68.6±26.2 km s−1 Mpc−1

atz = 0.12, H(z)=72.9± 29.6 km s−1 Mpc−1 atz = 0.2 andH(z)=88.8± 36.6 km
s−1 Mpc−1 at z = 0.28, respectively. Combined with 21 other available OHD data
points, the performance of the constraint on both flat and non-flat ΛCDM models is
presented.
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1 INTRODUCTION

A variety of cosmological observations are used for a betterquantitative understanding of the expan-
sion of the Universe, for example mapping the cosmic microwave background (CMB) anisotropies
(Spergel et al. 2007; Komatsu et al. 2011), measurement of baryon acoustic oscillation (BAO) peaks
(Eisenstein et al. 2005; Percival et al. 2010), and measurements of “standard candles” such as the
redshift-distance relationship exhibited by type Ia supernovae (SNIa; Riess et al. 1998; Hicken et al.
2009) and gamma-ray bursts (GRBs; Ghirlanda et al. 2004; Li et al. 2008). Hubble parameterH(z),
which is defined asH(z) = ȧ/a, wherea denotes the cosmic scale factor andȧ is its rate of change
with respect to the cosmic time, is directly related to the expansion history of the Universe. The
method based on observationalH(z) data (OHD) has been used to test cosmological models (e.g.,
Yi & Zhang 2007; Chen & Ratra 2011). Besides parameter constraints, OHD can also be used as an
auxiliary model selection criterion (Li et al. 2009).

In practice, the Hubble parameterH(z) is usually defined as a function of redshiftz, with
a(t)/a(t0) = 1/(1 + z), wheret0 is the current cosmic time

H(z) = −
1

1 + z

dz

dt
. (1)
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z is the cosmological redshift andt is the age of the Universe when the observed photon is emit-
ted. The derivative of redshift with respect to cosmic time,dz/dt, has a direct effect onH(z).
H(z) has been measured through the differential age method according to Equation (1), which was
first put forward by Jimenez & Loeb (2002). This differentialage method has been demonstrated
in Jimenez et al. (2003). However, it may be difficult to select galaxies that can act as “cosmic
chronometers” and accurately determining the age of a galaxy by considering stars in a galaxy to be
continuously born, since a young stellar population dominates their emission spectra (Zhang et al.
2010). Luminous red galaxies (LRGs) which have photometricproperties consistent with an old,
passively evolving stellar population (Roseboom et al. 2006) are regarded as good candidates to act
as “cosmic chronometers” (Crawford et al. 2010).

We employULySS1, an available online package used to fit a full-length spectrum. As the rel-
atively homogeneous stellar component of LRGs, we use single stellar population (SSP) fitting and
gain age information, which will be discussed in detail in Section 3. With the age-redshift relation,
four OHD points are deduced accordingly.

There are already 21 OHD points obtained from both the differential age method (Jimenez et al.
2003; Simon et al. 2005; Stern et al. 2010; Moresco et al. 2012) and the BAO method (Gaztañaga
et al. 2009). Currently the number of OHD points is still small compared with SNIa luminosity
distance data. The potential power of OHD in constraining cosmological parameters is explored in
Ma & Zhang (2011) in detail. They conclude that the constraining power of OHD can be as strong as
that of SNIa when its quantity reaches a certain value, whichis 64 based on the error model used in
that paper, thus it is worthwhile to acquire new independentmeasurements for the Hubble parameter.

This paper is organized as follows. We briefly describe the selection of our sample of LRGs in
Section 2. In Section 3, we explain how we derive informationabout the age from LRG spectra using
ULySS and in Section 4 we present our method to obtain the OHD from galaxy ages. A cosmology
constraint using all available OHD including our four new ones is given in Section 5. Finally, in the
last section, we discuss the limitations and prospects of our results.

2 SOURCE SELECTION FOR OUR SAMPLE OF LRGS

It is important and necessary to select a large homogeneous passively evolving sample of LRGs to
obtain the age-redshift relation. The Sloon Digital Sky Survey (SDSS) (York et al. 2000; Stoughton
et al. 2002; Abazajian et al. 2003) is currently the largest photometric and spectroscopic sky survey,
which includes five-band images over 104 deg2 with accurate photometric calibration and spec-
troscopy of 106 galaxies (Abazajian et al. 2009). The SDSS spectroscopic survey consists of two
samples of galaxies selected with different criteria, which are named the MAIN sample (Strauss
et al. 2002) and the LRG sample (Eisenstein et al. 2003) respectively. The wavelengths for these
galaxy spectra range from 3800Å to 9200Å with spectral resolutionλ/(∆λ) = 1850–2200. Using
dedicated software, the SDSS project has calibrated the spectral flux, and converted the reference
and spectra to the heliocentric frame and the vacuum wavelengths respectively.

We chose the sample by applying LRG selection criteria givenby SDSS Data Release 7
(DR7) which are: (i) Selecting galaxies from the Catalog Archive Server (CAS) database with
theTARGET GALAXY RED flag. (ii) The signal-to-noise ratio (S/N) of ther-waveband should be
greater than 10. (iii) The restrictions should satisfyspecClass = ‘SPEC GALAXY’,zStar =
‘XCORR HIC’,zWarning = 0,eClass < 0,z < 0.4 andfracDev r >0.8. The LRG
selection criteria of SDSS (Eisenstein et al. 2001) are based on the color and magnitude to yield a
sample of luminous, intrinsically red galaxies. However, the sample selected from SDSS according
to Eisenstein’s selection criteria is not very homogeneous. Furthermore, we use the sample from
Carson & Nichol (Carson & Nichol 2010) with a constraint on S/N. As S/N has an impact on our
next fitting step, it is necessary to demand S/N in theR-band to be greater than 10. 17 832 selected

1 ULySS is available at:http://ulyss.univ-lyon1.fr/
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Fig. 1 Redshift distribution of 17 832 LRGs.

quiescent, luminous red galaxies based on the Carson & Nichol sample method from SDSS DR7
cover the redshift range from 0–0.4. The redshift distribution of our sample is shown in Figure 1.

Compared to other works where LRGs are selected based on spectra, the Carson & Nichol sam-
ple calibrates, for the first time, the SDSS spectra on the Lick/Image Dissector Scanner system.
Their general selection criteria are as follows. First obtain LRGs from CAS as outlined in Eisenstein
et al. (2001). Constrain the spectrum using standard emission lines such as Hα, Hβ and OIII 5007 to
increase the number of truly quiescent galaxies. To fully picture physical properties such as velocity
dispersion and absolute luminosity of these LRGs, through correcting velocity dispersions for aper-
ture effects and performingK + e corrections to the magnitude, four subsamples are producedwith
different absolute magnitudes and velocity dispersions. For an explicit description of this method,
please refer to Carson & Nichol (2010).

3 AGE-REDSHIFT RELATION

We proceed to describe our way of obtaining age information for LRGs. There are many methods to
find the age and metallicity of stellar systems from a spectrum, such as SED fitting, spectrophoto-
metric indices (e.g., Lick, Rose indices) and full spectrumfitting (Koleva et al. 2008). In this paper,
we adopt the full spectrum fitting method to analyze the physical properties of stellar populations.
Full spectrum fitting, which makes use of all the informationcontained in the signal, is insensitive
to extinction or flux calibration errors and independent of the shape of the continuum. We adopt the
open-source software package,ULySS, to explore the history of stellar populations.

ULySS is a full spectrum fitting package developed by a group at the Université de Lyon (Koleva
et al. 2009b). Its goal is to seek the minimumχ2 in the process of fitting an observed spectrum with
a model spectrum in the pixel space with the MPFIT function. When fitting the observed spectrum
(Fobs(λ)), the package uses a linear combination ofk non-linear components (CMPi) with weights
Wi to approximate it. In this process, the composite model is possibly convolved with a line-of-sight
velocity distribution (LOSVD), multiplied by annth order polynomialPn(λ) and summed with
another polynomialQm(λ) (for more details please refer to Koleva et al. 2009b)

Fobs(λ) = Pn(λ) × {LOSVD(vsys, σ, h3, h4) ⊗

i=k
∑

i=0

WiCMPi(a1, a2, a3, ..., λ)} + Qm(λ). (2)
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For the study of a stellar population, the CMPi is characterized by age and [Fe/H]. It uses
the Levenberg-Marquardt routine to evaluate parameters inindividual CMPi and the coefficients of
Pn(λ) andQm(λ) (Koleva et al. 2009b). This method has already been successfully tested in Wu
et al. (2011). The reliability and robustness of usingULySS for the study of the history of a stellar
population has been verified (e.g., Koleva et al. 2009c,a).

3.1 Model Selection and Matching Resolution

There are several population models and in our paper, and three of them are provided by the pack-
ageULySS: Pegase-HR/ELODIE3.1, Galaxev/STELIB (hereafter BC03) and Vazdekis/Miles. The
information about these models is listed in Table 1. Koleva et al. (2008) also test these three models
and verify their reliability.

Table 1 Information on the Three Models

Model Library Resolution (̊A) Wavelength (̊A) Age (Gyr) [Fe/H] (dex) IMF

Pegase ELODIE3.1 0.55 4000 − 6800 0.1 − 20 −3.21 − 1.62 Salpeter
Galaxev STELIB 3 3200 − 9500 0.1 − 20 −2.3 − 0.4 Chabrier
Vazdekis MILES 2.3 3525 − 7500 0.1 − 17.5 −1.7 − 0.2 Salpeter

The full spectrum fitting uses the redundancy of the spectrumand the multiplicative polynomial
could decrease the influence of flux calibration and Galacticextinction. On the other hand, the fitting
method is more sensitive to the wavelength range of the spectrum. The spectra from SDSS span the
wavelengths from 3800̊A to 9200Å, but as we can see, only the wavelength range of BC03 could
cover the whole wavelength of spectra from SDSS. After comparison of the three different models,
we choose BC03 as a reliable model to use.

The first step in fitting is to match resolutions between the observed spectra with the model we
chose. There are two ways for matching, either by transforming the resolution of the model or the ob-
served spectrum. In our paper, we choose to transform the model provided byULySS by including a
relative line spread function (LSF) between our spectrum and the model. When determining the LSF,
we make use of the template stars, available fromhttp://www.sdss.org/dr7/algorithms/veldisp.html
as standard stars. We perform a fifth order linear interpolation in wavelength and convolve with the
model. In this way, a new matching model is generated, and this whole process can be accomplished
through functions inULySS (Koleva et al. 2009b).

3.2 Single Stellar Population Fit

It is essential to study the stellar population of galaxies if we want to reconstruct their star formation
history. We fit the spectrum with an SSP for the following reasons. Firstly, LRGs are believed to be
drawn from the same parent population with the largest fraction of their stars being formed from a
single burst. Secondly, SSPs that show equivalent properties correspond to a “luminosity weighted”
average over the distributions. Thus with a single SSP fitting, a general view of a galaxy can be
obtained (Du et al. 2010). We carry out an initial study of age-dating using the stellar population
models of Bruzual & Charlot (2003); Stern et al. (2010) to synthesize spectra, a process which is
also provided byULySS.

But when interpreting the galaxy spectra, we find that the initial values of both age and metal-
licity tend to affect the fitting result. It is difficult to remove such influences, especially in low
resolution spectra (Du et al. 2010). The fitting provided byULySS starts from a point (initial value)
in the parameter space (age and metallicity), therefore we emphasize the importance of this point
in the fitting process which may only find a local minimum. In order to identify and understand
the age-metallicity degeneracy and effects of local minimizations, we analyze the age-metallicity
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Fig. 2 Best fit with the BC03 model and the residual spectrum for a galaxy. The top panel shows
the spectrum in black and the best fit in blue. The red regions are rejected from the fit and the indigo
line is the multiplicative polynomial. The bottom panel shows the residuals from the best fit. The
continuous green lines represent the 1σ deviation. The dashed green line shows a residual value of
zero.

degeneracy and construct aχ2 map, which is a function provided byULySS. Theχ2 map is a visu-
alization of parameter space, and the goal of this map is to give a grid of nodes in a 2-D projection
of the parameter space. Theχ2 map returns the minimization of each node (Koleva et al. 2009b). A
subsample of 164 LRG spectra from redshift 0.03 to 0.179 is processed by building theirχ2 maps.
It has been discovered that the metallicity of LRGs are consistent with the assumption that selected
galaxies are thought to have similar metallicities (Jimenez et al. 2003) which range between about
0.1 dex and 0.2 dex.

ULySS can provide various points in the parameter space as initialvalues, that is to say, if
the number of points is sufficient, it is possible to find the global minimization and thus break the
degeneracy. We set the range of our metallicity to be 0.1–0.2dex for every galaxy in our sample,
while the range for age is from 5000–11200 Myr. Figure 2 showsthe best fit with the BC03 model
and the residual spectrum for a galaxy when a specific group ofinitial values is given.

For each galaxy, groups of age and metallicity values can be collected as results. We ignore the
metallicity and just focus on age. To identify accurate values for the age of each galaxy, we base our
selections on the minimalχ2 criterion. In particular, if all fitted ages for a single galaxy exceed the
age of our Universe, it is not acceptable. There are several reasons that can cause this situation, such
as low resolution of spectra and model dependence. In the fitting process, we set a limit such that
a + σ < 16 Gyr, wherea is the fitting age andσ is the error, to exclude the situation where the age
of a galaxy exceeds the age of the Universe. The fitting resultis shown in Figure 3. For clarity, ages
less than 7 Gyr have not been plotted. In this figure, a clear trend that the ages of galaxies decrease
with the redshift is displayed.
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Fig. 3 Fitting results of the 17 832 LRGs. For clarity, the ages lessthan 7 Gyr have not been plotted.
The lower line shows the theoretical age of the Universet(z) for aΛCDM model withΩm = 0.29
andH0 = 69 km s−1 Mpc−1. The upper line indicatest(z) + 3 Gyr, where the 3 Gyr comes from
the systematic errors. A clear trend is present: the oldest ages of the galaxies decrease with redshift.

4 THE DETERMINATION OF OHD

According to Equation (1), the slope of the linear fit oft(zi), which is the oldest age at redshiftzi,
is directly related to the Hubble parameter. That is, the Hubble parameter atzeff , H(zeff), can be
calculated by formulaH(zeff) = −[1/(1 + zeff)](∆t/∆z)−1, wherezeff = (zmax + zmin)/2.

Mathematically, the value of∆z = zmax − zmin should not be too large, so we divide our
data into four redshift regions,0.03 ≤ z ≤ 0.11, 0.08 ≤ z ≤ 0.16, 0.16 ≤ z ≤ 0.24 and
0.24 ≤ z ≤ 0.32.

To calculatet(zi) for each subsample, we adopt a common bin-dividing method. Take the first
subsample for example. We divide it into several bins from 3 to 20, select the oldest galaxy from each
bin as a set oft(zi) and fit the corresponding points oft(zi) with a straight line to get a candidate of
OHD in this subsample. Here we get18 candidates of OHD in this subsample. The number of bins
corresponding to the selected candidate is callednbest. Three parameters are used here for selecting
the most suitable number of bins that we choose: SSE/n for the mean squared error where SSE is
the sum of squared error,σslope/slope for the relative error in the fitting result of the slope andP≥χ2

for the goodness of fit. The remaining subsamples follow the same method.
Here we explain our reason for choosing the above three parameters as the criteria. Imagine

that a line that defines an envelop can be obtained naturally with ideal data, therefore, we should
take the number of binsn to be as large as possible. Unfortunately, for the real case,the envelop
strongly fluctuates. This is due to the existence of “fake-oldest galaxies,” which formed too late to
be considered as a “cosmic chronometer” compared with the LRGs at other redshifts. Therefore,
largen would increase the risk of selecting the “fake-oldest galaxies” as a “cosmic chronometer.”
That is what the parameter SSE/n can indicate, with value0 representing the ideal case. Conversely,
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too smalln represents large statistical errors, which are evaluated by the parameterσslope/slope.
Moreover,P≥χ2 is calculated to represent the goodness of fit. Taking the three parameters into
account, we finally obtain the value ofnbest for each subsample.

In every subsample, we expect thenbest satisfies the smallest SSE/n, the largestP≥χ2 and the
smallest absolute value ofσslope/slope. In the first subsample, then = 6 case satisfies the criterion
perfectly, as doesn = 7 in the second subsample andn = 6 in the third subsample. For the fourth
case, judging theσslope/slope first, we can see that bothn = 10 andn = 12 share the smallest value.
Then, considering the second parameter SSE/n, we chosen = 12 for a smaller value. Besides, its
P≥χ2 is also satisfied.

Figure 4 shows the oldest ages in each bin when we divide the subsamples into their correspond-
ing nbest bins and their optimal fits are also plotted. We will next introduce how we derive the best
parameters for linear fitting and their error bars.

When we fitn sets of data (zi, ti) with a straight linet = kz + b and the error ofti is σi

(i = 1, 2, ..., n), the best parameters for the linear fitting are obtained by minimizing theχ2

χ2 =

n
∑

i=1

(ti − kzi − b)2

σ2
i

. (3)

To get the error forσk, we must rewrite Equation (3) as follows so that we can estimate errors for
the regression parameters

χ2 =
n

∑

i=1

(

ti
σi

− k
zi

σi
− b

1

σi

)2

. (4)

This form ofχ2 is the same as that when we fit the data of (ti/σi,zi/σi, 1/σi) with a linear function
of t

σ = k z
σ + b 1

σ with the same method for minimizingχ2.
Then, using the well known formula for confidence intervals of regression coefficients at a con-

fidence level of1 − α (seeing any textbook on regression such as He & Liu 2011, for details), we
can get the error ofk which can be regarded asσk (i.e.σslope in Table 2)

σk = σslope = |t(α/2, n−2)|

√

S(1, 1)

n − 2
× SSE, (5)

where |t(α/2, n−2)| is the absolute value of the inverse of Student’s t Cumulative Distribution
Function withn − 2 degrees of freedom for the corresponding probabilities inα/2, which can be
calculated with function of tinv in MATLAB and theS(1, 1) is the element in the first row and first
column in the inverse of the following matrix











n
∑

i=1

z2
i

σ2
i

n
∑

i=1

zi

σ2
i

n
∑

i=1

zi

σ2
i

n
∑

i=1

1

σ2
i











. (6)

In addition, the steps above can be easily performed by MATLAB Toolboxes.
With Equation (1), we can get the relation between the error of H(z) andσslope

σH =
1

1 + zeff

1

σ2
slope

, (7)

with which the error ofH(z) is finally calculated.
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Fig. 4 The oldest ages in each bin when we divide the subsamples intotheir correspondingnbest

bins and their optimal fitted results. The solid line represents the best fitting for each subsample.
In the first subsample,zmin = 0.033, zmax = 0.109 andzeff = 0.07. In the second subsample,
zmin = 0.090, zmax = 0.156 andzeff = 0.12. In the third subsample,zmin = 0.170, zmax = 0.236
andzeff = 0.20, and in the forth subsample,zmin = 0.243, zmax = 0.315 andzeff = 0.28.

Table 2 Fitting Results

n 4 5 6 7 8 5 6 7 8 9

−σslope/slope 0.64 0.44 0.28 0.31 0.28 0.49 1.45 0.38 0.54 0.74
SSE/n 0.053 0.076 0.049 0.106 0.094 0.251 0.964 0.319 0.802 1.575
P≥χ2† 0.900 0.945 0.990 0.980 0.993 0.969 0.915 0.997 0.992 0.980

n 4 5 6 7 8 10 11 12 13 14

−σslope/slope 1.08 0.43 0.41 0.50 0.44 0.41 0.43 0.41 0.43 0.43
SSE/n 0.028 0.019 0.017 0.034 0.031 0.208 0.113 0.175 0.163 0.211
P≥χ2† 0.945 0.992 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000

Notes:† Too large ofP≥χ2 values in these two subsamples result from too large of errors. The two other parameters
are taken into account mainly because of the very closeP≥χ2 in this subsample.

5 COSMOLOGICAL CONSTRAINTS FROM OHD

Now we have a total of 25 available OHD which are listed in Table 3 and plotted in Figure 5. Using
these 25 OHD, we constrain the cosmological parameters. Thebest fit parameters of the model via



Four New ObservationalH(z) Data 1229

Fig. 5 All available OHD points. The solid line plots the theoretical Hubble parameterHfid as
a function ofz from the spatially flatΛCDM model withΩm = 0.3, ΩΛ = 0.7 and H0 = 72
km s−1 Mpc−1. The OHD points are listed in Table 3.

OHD are determined by minimizing theχ2

χ2
OHD(pmodel) =

N
∑

i=1

(Hobs(zi) − Hth(zi))
2

σ2
obs,i

, (8)

wherepmodel is a vector of free parameters. Based on the basic equations defining theΛCDM model,
we have the following two models: for a flatΛCDM (Ωk = 0),

Hth(z) = H0

√

Ωm(1 + z)3 + (1 − Ωm) with p flat = (Ωm, H0);

for a non-flatΛCDM,

Hth(z) = H0

√

Ωm(1 + z)3 + ΩΛ + (1 − ΩΛ − Ωm)(1 + z)2,

with pnon−flat = (ΩΛ, Ωm, H0). For both models, the likelihood function can be written asL ∝ exp
(−χ2

OHD/2).
We use the MCMC method to calculate the likelihood in the independent parameter space.

Markov chains are generated and analyzed via the Python MCMCcode –Pymc. The parameter
H0 and the density parameterΩ = (Ωm, ΩΛ) are treated as independent parameters in these two
models (Wei 2010), and all of their prior distributions are set to be a uniform distribution (Table 4).

Figures 6 and 7 show the one-dimensional marginalized probability distribution for each pa-
rameter in the diagonal entries and the two-dimensional marginalized confidence regions in the off-
diagonal entries of the flatΛCDM model and non-flatΛCDM model respectively. The respective
confidence regions (68.7%, 95.45%, 99.73%) for each parameter are calculated. The best fit pa-
rameters are indicated in the contour plots with vertical and horizontal lines.

To compare the results of constraining the “new version OHD”with the results of adding the
new points we obtained in this paper and the “old version OHD”(see Table 3 for details), we display
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Fig. 6 OHD constraint region for flatΛCDM. Red lines represent the “new version” of OHD and the
blue ones denote the “old version.” The plots along the diagonal show the 1-D probability density
function (PDF) and the vertical lines from center to edge show the respective confidence intervals;
The plots that are off the diagonal show the 2-D confidence regions with inner and outer contours
denoting the respective confidence levels. The open blue circles indicate the best fit point by the “old
version” while the red crosses show the ones from the “new version.”

Fig. 7 Same as Fig. 6 except for non-flatΛCDM.
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Table 3 All Available OHD

z H(z)† σH(z)† Reference

0.090 69 12 Jimenez et al. (2003)
0.170 83 8 Simon et al. (2005)
0.270 77 14 Simon et al. (2005)
0.400 95 17 Simon et al. (2005)
0.900 117 23 Simon et al. (2005)
1.300 168 17 Simon et al. (2005)
1.430 177 18 Simon et al. (2005)
1.530 140 14 Simon et al. (2005)
1.750 202 40 Simon et al. (2005)
0.480 97 62 Stern et al. (2010)
0.880 90 40 Stern et al. (2010)
0.179 75 4 Moresco et al. (2012)
0.199 75 5 Moresco et al. (2012)
0.352 83 14 Moresco et al. (2012)
0.593 104 13 Moresco et al. (2012)
0.680 92 8 Moresco et al. (2012)
0.781 105 12 Moresco et al. (2012)
0.875 125 17 Moresco et al. (2012)
1.037 154 20 Moresco et al. (2012)
0.24 79.69 3.32 Gaztañaga et al. (2009)
0.43 86.45 3.27 Gaztañaga et al. (2009)
0.07 69.0 19.6 ††

0.12 68.6 26.2 ††

0.20 72.9 29.6 ††

0.28 88.8 36.6 ††

† The unit is km s−1 Mpc−1. †† Work in this paper.

Table 4 The Prior Used for Model Parameters

Model Parameters Prior Distribution

Ωm Uniform (0.0,1.5)†
ΩΛ Uniform (0.0, 2.5)†
H0 Uniform (50, 100)†

† Uniform (lower limit, upper limit) stands for a uniform
distribution in the interval [lower limit,upper limit].

both results in Figures 6 and 7 with different colored lines to distinguish them: the red lines refer to
the “new version OHD” and the blue ones denote the “old version OHD.”

The constraints in Figures 6 and 7 show the good performancesin constrainingΛCDM. In
Figures 6 and 7 the 1-D marginalized constraints are more stringent than the old one and for the
same model the contour plots against the same pair of parameters have a smaller region at the same
level of confidence. Since the number of newly added points issmall, the amount of shrinkage is
also small.

6 CONCLUSIONS AND DISCUSSION

In this paper, we present our measurements of four new OHD data points from the ages of passively-
evolving galaxies at redshift0 < z < 0.4. A large sample of spectra from LRGs has been fitted by us
with SSP models and an age-redshift relation is obtained anddisplayed. By computing the relative
ages of these LRGs, we gain four new OHD data points. Combining them with 21 other available
OHD points, we constrain cosmological parameters using theupdated dataset of OHD. It should
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be mentioned that similar work (Liu et al. 2012) used the SDSSDR7 to constrainH0, a particular
value of the Hubble parameter atz = 0. We hope to give a tighter constraint on cosmology param-
eters with our new OHD data points. Unfortunately, these four points give limited improvements
for constraining cosmological parameters more accurately, because of the relatively large error bars
associated with these points.

Here, we explain the possible reasons. Firstly, the low S/N of the spectra from SDSS leads
to a large uncertainty when calculating the age of the galaxies. Combining spectra from various
observational project may be a solution, as discussed in Jimenez et al. (2003); Stern et al. (2010).
Comparing our points with previous ones, especially those in Simon et al. (2005) and Moresco et al.
(2012), although there is a large difference in terms of accuracy, we would like to illustrate the
following. One is a theoretically good method to obtain the age of an LRG in Moresco et al. (2012).
Still, there are many problems in the method that need to be solved. The other is that the results from
Simon et al. (2005) are more accurate than ours because of thehigh quality of their spectra. OHD in
Stern et al. (2010), whose quality of spectra and method of fitting spectra are similar to ours, share a
comparable degree of accuracy with us, which also demonstrates the objectivity of our OHD.

Second, as our selected LRGs are incomplete and unable to cover all old galaxies in the Universe,
there could be some difficulty in tracing the “cosmic chronometers.” That is to say, the oldest age in
our sample may not represent cosmic age at that redshift. This should be improved through future
redshift surveys and lead to successful realization of the differential age method. In addition, as
high S/N is essential for a precise fitting which determines the age of galaxies, we suggest that
the accuracy of OHD would be improved if the S/N of spectra increases. We employULySS to
reconstruct the stellar population of galaxies. Though therobustness ofULySS has been illustrated,
the fitting may still be a local minimum because of the limitation of good initial values. There
has been significant advancement in modeling stellar populations of LRGs and we expect these to
improve the accuracy of this process in the future.

The number of OHD is still small compared with SNIa data sets.The advantages of constraining
cosmological models with OHD (Jimenez & Loeb 2002; Maor et al. 2001) have been demonstrated,
therefore increasing the number of OHD is imperative. OHD play almost the same role as that of
SNIa for the joint constraints on theΛCDM model. The number of OHD points will be extended
in further decades with more and deeper observations of galaxies and at that time the OHD set
alone will be capable to be used in place of current SNIa data sets (Ma & Zhang 2011). Fortunately,
we have seen that the proposed observational plan to conducta Sandage-Loeb test (Corasaniti et al.
2007) can be used to extend our knowledge of cosmic expansioninto an even deeper redshift. Finally,
we think it is reasonable to expect that OHD will complement SNIa, BAO and weak lensing and help
us derive more information about the evolution history of our Universe.
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Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Carson, D. P., & Nichol, R. C. 2010, MNRAS, 408, 213
Chen, Y., & Ratra, B. 2011, Physics Letters B, 703, 406



Four New ObservationalH(z) Data 1233

Corasaniti, P.-S., Huterer, D., & Melchiorri, A. 2007, Phys. Rev. D, 75, 062001
Crawford, S. M., Ratsimbazafy, A. L., Cress, C. M., et al. 2010, MNRAS, 406, 2569
Du, W., Luo, A. L., Prugniel, P., Liang, Y. C., & Zhao, Y. H. 2010, MNRAS, 409, 567
Eisenstein, D. J., Annis, J., Gunn, J. E., et al. 2001, AJ, 122, 2267
Eisenstein, D. J., Hogg, D. W., Fukugita, M., et al. 2003, ApJ, 585, 694
Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560
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