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Abstract Einstein’s general relativity (GR) has become an inevitable part of deep
space missions. According to the International Astronomical Union (IAU) Resolutions
which are built in the framework of GR, several time scales and reference systems are
recommended to be used in the solar system for control, navigation and scientific op-
eration of a spacecraft. Under the IAU Resolutions, we derive the transformations be-
tween global and local velocities of an arbitrary orbiter. These transformations might
be used in orbit determination with Doppler tracking and prediction of Doppler ob-
servables for the spacecraft. Taking the YingHuo-1 Mission as a technical example of
future Chinese Mars explorations, we evaluate the significance and contributions of
various components in the transformations. The largest contribution of the relativistic
parts in the transformations can reach the level of ∼ 5 × 10−5 m s−1. This suggests
that, for such a spacecraft like we have assumed, if the accuracy of Doppler tracking
is better than ∼ 5 × 10−5 m s−1 then the relativistic parts of the transformations of
velocities will be required.
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1 INTRODUCTION

Einstein’s general relativity (GR) has become an inevitable part of deep space missions. This is
driven by significant increases of measurement accuracy with modern techniques. It also makes GR
go far beyond the territory of theoretical astronomy and physics into the realm of practice and en-
gineering. Relativistic effects obviously appear in the radio links of the Cassini spacecraft (Bertotti
et al. 2003) and the New Horizons spacecraft (Jensen & Weaver 2007). Measurement of the fre-
quency shift in the links connecting Cassini and Earth yields the most stringent test to demonstrate
the validity of GR in the solar system (Bertotti et al. 2003); whereas Kopeikin et al. (2007) pointed
out that this test of GR is under a restrictive condition that the Sun’s gravitational field is static, and
if this restriction is removed then the test becomes less stringent.
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One fundamental point associated with GR is to distinguish between proper time and coordinate
times (Misner et al. 1973; Landau & Lifshitz 1975). The reading of an ideal clock is the proper
time τ , which is in the reference frame of the clock. Although coordinate times cannot be measured
directly, some of them can be taken as independent variables in the equations of motion of celestial
and artificial bodies, as well as photons. Coordinate times are related to proper time through the
invariant 4-dimensional space-time interval, which depends on the motion of the clock (effects of
special relativity) and gravitational fields (effects of GR). This dramatically changes the method of
clock synchronization and time transfer (Nelson 2011). In exploration missions to Mars and other
planets, synchronization of the clock onboard a spacecraft and the clock on the ground is critical
for control, navigation and scientific operation. According to the International Astronomical Union
(IAU) Resolutions (Soffel et al. 2003), which are built in the framework of GR, relativistic synchro-
nization of clocks requires several time scales. The procedures of time transfer have been widely
investigated (e.g. Petit & Wolf 1994, 2005; Nelson 2011; Deng 2012; Pan & Xie 2013, 2014). These
time/frequency transfer links might also be used for testing theories of gravity (e.g. Samain 2002;
Wolf et al. 2009; Christophe et al. 2009, 2012; Deng & Xie 2013a,b, 2014).

In addition to the need for diverse time scales in GR, a variety of reference systems are also
required. Although all reference systems are mathematically equivalent, using some specific systems
can largely simplify calculations in modeling astronomical and astrophysical processes. In the solar
system the description of a gravitational body’s motion is not conceivable without a self-consistent
theory of astronomical relativistic reference systems because the solar system has a hierarchical
structure. Although the Sun is the most massive body in the system, giant planets, like Jupiter and
Saturn, can still make it revolve at some distance around the solar system barycenter. Thus, a global
barycentric reference system for the solar system is required to describe the orbital motion of bodies
in the solar system and to model the light propagation from distant celestial objects. On the other
hand, the rotational motion of a body is more natural to describe in their local reference systems
associated with each of the bodies. A local reference system of a body is also adequate to describe
its oblateness and the motion of its satellites. The IAU Resolutions (Soffel et al. 2003) also lay down
a foundation for definitions and applications of these reference systems in the solar system.

In the fully relativistic framework of reference systems under IAU Resolutions (Soffel et al.
2003), we will investigate the transformations between global and local velocities of an orbiter
around a celestial body, which is a practical issue for deep space missions. These transformations
might be used in orbit determination with Doppler tracking and in the prediction of Doppler observ-
ables for the spacecraft. Doppler tracking can be used to determine its global velocities in the line
of sight with respect to a tracking station in the solar system’s barycentric reference system (Moyer
& Yuen 2000; Kopeikin et al. 2011). In order to determine its orbit, such as the solution of orbital
elements in the local reference system of the body, these global velocities need to be transformed
to local velocities with respect to the body. When one predicts Doppler shifts of the spacecraft, its
local velocities, which might be calculated based on the orbital elements, need to be transformed
into global ones. It is certain that, if the accuracy of measurement is sufficiently high, a classical
Galilean transformation will not be adequate and relativistic transformations will be required.

In Section 2, relativistic transformations between the global and local velocities for an orbiter
around a gravitational body will be derived. Taking the YingHuo-1 Mission (Ping et al. 2010a,b)
as a technical example of future Chinese Mars explorations, we will evaluate the significance and
contributions of various components in the transformations given in Section 3. The conclusions and
a discussion will be presented in Section 4.

2 RELATIVISTIC TRANSFORMATIONS BETWEEN GLOBAL AND LOCAL
VELOCITIES

In order to derive the relativistic transformations between global and local velocities, we need a
global reference system and a local reference system for body C in the solar system. The definitions
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of these reference systems are adopted from the IAU Resolutions (Soffel et al. 2003; Kopeikin et al.
2011), although our notations might be different from the original ones. It is worth mentioning that
the formulae obtained in this section can be used on a spacecraft around an arbitrary body. These
formulae might also be derived in a framework which extends the IAU Resolutions (Soffel et al.
2003), such as in the framework of the scalar-tensor theory of gravity (Kopeikin & Vlasov 2004; Xie
& Kopeikin 2010; Kopeikin & Xie 2010; Kopeikin et al. 2011). Although it is beyond the scope of
this paper, the approach involved in this framework is almost identical to ours.

2.1 From Global Velocity to a Local One

In the local reference system of gravitational body C, the local coordinates of a field point in the
vacuum are (cΞC,ZC), where ΞC is its local coordinate time and ZC is the position vector of
the field point. For an orbiter with negligible mass surrounding body C, its position vector can
also be represented by ZC. The local coordinates (cΞC,ZC) of the spacecraft have the following
relationships with its global coordinates (ct,xP) (Soffel et al. 2003)

ΞC = t + ε2ξ0
C , (1)

Zi
C = ri

PC + ε2ξi
C , (2)

where ε ≡ c−1 and c is the speed of light, and ri
PC = xi

P − xi
C and xi

P and xi
C are respectively the

positions of the spacecraft and body C in the global reference system. The scalar function ξ0
C and the

vector function ξi
C are, respectively,

ξ0
C = −AC − vk

Crk
PC +O(ε2), (3)

ξi
C =

1
2
vi
Cvk

Crk
PC + ŪC(xC)ri

PC + ak
Crk

PCri
PC −

1
2
ai
Cr2

PC +O(ε2) , (4)

where vi
PC = vi

P − vi
C, vi

P and vi
C are, respectively, the velocities of the spacecraft and body C in

the global reference system, ai
C is the acceleration of body C in the global reference system, and

d
dt
AC =

1
2
v2
C + ŪC(xC) . (5)

Here, the Newtonian gravitational potential ŪC(xC) is defined as

ŪC(xC) =
∑

A 6=C

UA(xC) , (6)

and UA(xC) is the Newtonian gravitational potential of body A, which is evaluated at xC.
With the help of
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where a dot means derivative with respect to time, we can express the local velocity of spacecraft
V i

C in terms of the global quantities as

V i
C ≡

dZi
C

dΞC
=

dri
PC

dΞC
+ ε2

dξi
C

dΞC
=

dri
PC

dt

dt

dΞC
+ ε2

dξi
C

dΞC
= vi

PC +
5∑

j=1

gi
j +O(ε4) , (9)

where
gi
1 = f1v

i
PC, gi

2 = f2r
i
PC, gi

3 = f3v
i
C, gi

4 = f4a
i
C, gi

5 = −f5ȧ
i
C , (10)

and

f1 = ε2
[
1
2
v2
C + 2ŪC(xC) + 2rPC · aC + vC · vPC

]
, (11)

f2 = ε2
[

˙̄UC(xC) + rPC · ȧC + vPC · aC

]
, (12)

f3 =
1
2
ε2(rPC · aC + vC · vPC) , (13)

f4 = ε2
(

1
2
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)
, (14)

f5 =
1
2
ε2r2

PC . (15)

On the right-hand-side of Equation (9), there are a lot of terms. The first one, vi
PC, comes from a clas-

sical Galilean transformation, which is at the Newtonian order. All the other terms with ε2 account
for the relativistic contributions, which are associated with kinematics (i.e. positions and velocities)
and dynamics (i.e. acceleration and its time derivative) of the spacecraft and body C, and gravita-
tional potentials. If the gravitational potentials and terms related to acceleration in Equation (9) are
negligible, then this will reduce to the special relativistic transformation of velocity (Poincaré 1906).

With Equation (9), we can transform the global velocity of a spacecraft into the local velocity
with respect to body C. This might be used in orbit determination of the spacecraft with Doppler
tracking.

2.2 From a Local Velocity to the Global One

In order to obtain the transform from a local velocity to the global velocity, we will apply the same
procedure. We can find

t = ΞC + ε2ζ0
C , (16)

ri
PC = Zi

C + ε2ζi
C , (17)

where the scalar function ζ0
C and the vector function ζi

C are, respectively,
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CZk
C +O(ε2) , (18)

ζi
C = −1

2
vi
Cvk

CZk
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By making use of the relations defined by Equation (7) and
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we can express the global velocity of spacecraft vi
PC in terms of the local quantities

vi
PC =

dZi
C

dt
+ ε2

dζi
C

dt
=

dZi
C

dΞC
+ ε2

dZi
C

dΞC

dξ0
C

dt
+ ε2

dζi
C

dt
= V i

C −
5∑

j=1

Gi
j +O(ε4) , (21)

where

Gi
1 = F1V

i
C, Gi

2 = F2Z
i
C, Gi

3 = F3v
i
C, Gi

4 = F4a
i
C, Gi

5 = −F5ȧ
i
C , (22)

and

F1 = ε2
[
1
2
v2
C + 2ŪC(xC) + 2ZC · aC + vC · V C

]
, (23)

F2 = ε2
[

˙̄UC(xC) + ZC · ȧC + V C · aC

]
, (24)

F3 =
1
2
ε2

(
ZC · aC + vC · V C

)
, (25)

F4 = ε2
(

1
2
ZC · vC −ZC · V C

)
, (26)

F5 =
1
2
ε2Z2

C . (27)

The structure of Equation (21) is quite similar to that of Equation (9). The first term V i
C on its right

hand side is a case of a classical Galilean transformation and all the other terms with ε2 account
for the relativistic contributions. If the gravitational potentials and terms related to acceleration in
Equation (21) are negligible, it will also return to the special relativistic transformation of velocity
(Poincaré 1906). With this equation, we can transform the local velocity of a spacecraft with respect
to body C into the global velocity. This might be used in the prediction of Doppler shifts of the
spacecraft.

Again, Equations (9) and (21) can be applied to an orbiter around an arbitrary body in the solar
system. There is an important property of these two transformations in that the scalar functions of
relativistic contributions f· and F· are correspondingly equal at the post-Newtonian order, that is,

f1 = F1 +O(ε4) , f2 = F2 +O(ε4) , f3 = F3 +O(ε4) ,

f4 = F4 +O(ε4) , f5 = F5 +O(ε4) .

This also means the overall relativistic corrections in Equations (9) and (21) have the same absolute
values but with opposite signs. This is convenient when we numerically evaluate their contributions,
so that we will only focus on Equation (9) for a Mars orbiter as a case study in the next section.

3 CASE STUDY OF A MARS ORBITER

Taking the YingHuo-1 Mission (Ping et al. 2010a,b) as a technical example of future Chinese Mars
explorations, we will evaluate the significance and contributions of various components in the trans-
formation given by Equation (9).

We assume there is a spacecraft orbiting around Mars from 2017 January 1st at the time
00h00m00.00s to 2018 January 1st at 00h00m00.00s under the time scale of the Barycentric
Dynamical Time (TDB). All the time coordinates are represented by taking 00h00m00.00s on 2017
January 1st as a zero point in the other parts of this paper. The orbital inclination of the spacecraft
with respect to the Martian equator is 5◦. The apoapsis altitude is 80 000 km and the periapsis al-
titude is 800 km, with a period of about 3.2 d. In particular, the positions and velocities of celestial
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Fig. 1 The curves of f1, f2, f3, f4 and f5 based on the technical example of the Mars orbiter we
assumed.
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Fig. 2 The relativistic contributions of gi
1, gi

2, gi
3, gi

4 and gi
5 are respectively shown in rows. Their x,

y and z components are shown in columns.

bodies are taken from the ephemeris DE405 provided by NASA’s JPL and the orbit of the spacecraft
is solved by numerically integrating the Einstein-Infeld-Hoffmann equation (Einstein et al. 1938)
with the Runge-Kutta 7 method (Stoer & Bulirsch 2002), with the step-size being one-hundredth
of its Keplerian period. In the calculation, we include the gravitational contributions from the Sun,
eight planets, the Moon and three large asteroids, Ceres, Pallas and Vesta.

Figure 1 shows the curves of f1,··· ,5 based on this technical example. Among them, the di-
mensionless f1 and f3 can, respectively, reach the levels of ∼ 10−8 and ∼ 10−10. The relativistic
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contributions of gi
1,··· ,5 are, respectively, shown in the rows of Figure 2. Their x, y and z components

are shown in the columns. gi
1 has the largest contribution in the relativistic transformation between

the global and local velocity. Its greatest value can reach the level of ∼ 5× 10−5 m s−1. The contri-
butions of gi

2,··· ,5 are all less than it by at least one order of magnitude (see Fig. 2). These relativistic
contributions are hardly able to affect most current Doppler tracking, except for some specific cases
such as Cassini (Bertotti et al. 2003). In the case we investigated here, if the accuracy of Doppler
tracking is better than ∼ 5 × 10−5 m s−1, then the Galilean transformations are not sufficiently
adequate for practice and the relativistic parts of the transformations of velocities will be required.

4 CONCLUSIONS AND DISCUSSION

Einstein’s general relativity (GR) has become an inevitable part of deep space missions. This is
driven by significant increases in measurement accuracy with modern techniques, such as Doppler
tracking. According to the IAU Resolutions (Soffel et al. 2003), which are built in the framework of
GR, several time scales and reference systems are recommended to be used in the solar system for
control, navigation and scientific operation of a spacecraft. Under the IAU Resolutions, we derive
the transformations between global and local velocities for an arbitrary orbiter (see Eqs. (9) and
(21)). These transformations might be used in orbit determination with Doppler tracking and in the
prediction of Doppler observables for the spacecraft.

Taking the YingHuo-1 Mission as a technical example of future Chinese Mars explorations, we
evaluate the significance and contributions of various components in the transformations. The largest
contribution of the relativistic parts in these transformations can reach a level of ∼ 5× 10−5 m s−1.
This suggests that, for such a spacecraft like we have assumed, if the accuracy of Doppler tracking
is better than ∼ 5 × 10−5 m s−1 then the Galilean transformations are not sufficiently adequate for
practice and the relativistic parts of the transformations of velocities will be required.

With the rapid development of optical time/frequency standards (e.g. Chou et al. 2010a,b), we
might be able to access more of these subtle relativistic effects in the transformations of velocities in
the future.
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