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Abstract By employing an adiabatic invariant and implementing the Bohr-
Sommerfield quantization rule, I study the quantization of a regular black hole in-
spired by noncommutative geometry in AdS3 spacetime. The entropy spectrum as
well as the horizon area spectrum of the black hole is obtained. It is shown that the
spectra are discrete, and the spacing of the entropy spectrum is equidistant; in the limit
r2h
4θ ≫ 1, the area spectrum depends on the noncommutative parameter and the cos-
mological constant, but the spacing of the area spectrum is equidistant up to leading
order

√
θe−

2Ml2

θ in θ, and is independent of the noncommutative parameter and the
cosmological constant.
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1 INTRODUCTION

The quantization of black holes is one of the important issues in black hole physics (’t Hooft 1985),
and it has not yet been satisfactorily solved. In early 1973, Bekenstein supposed that the horizon
area of a black hole is an adiabatic invariant, and proposed that the horizon area of a black hole
in equilibrium has a discrete and equally spaced spectrum of the form (Bekenstein 1973, 1974;
Bekenstein & Mukhanov 1995; Bekenstein 1997, 1998)

An = 8πnl2p , n = 0, 1, 2, ... , (1)

where lp denotes the Planck length. Subsequently, Hod (1998) made an important step. He suggested
that in the semiclassical limit, the quantum of the black hole area can be determined from the asymp-
totic value of the real part of complex quasinormal frequencies. This proposal is usually known as
Hod’s conjecture. Based on Hod’s conjecture, Kunstatter (2003) further pointed out that for a sys-
tem with energy E and vibrational frequency ω(E), I =

∫
dE

ω(E) is an adiabatic invariant, and has
an equally spaced spectrum, i.e., I ≈ n~. Applying the Bohr-Sommerfeld quantization rule in the
limit of large n, Kunstatter derived an equally spaced entropy spectrum for a d(≥ 4)-dimensional
Schwarzschild black hole by implementing this approach. However, Maggiore (2008) suggested that
the quasinormal modes of a black hole can be described as a set of damped harmonic oscillators,
and proposed that in the semiclassical limit the quantum of black hole horizon area is determined
by the physical frequency ωp =

√
|ωR|2 + |ωI|2, where ωR and ωI stand for the real and imaginary

parts of the complex quasinormal frequencies respectively; especially in the case of high damping
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or in the limit of large n, ωR ≪ ωI, the physical frequency becomes ωp ≈ |ωI|. Using this proposal
Maggiore found that the area quantum of the Schwarzschild black hole is equally spaced. There have
been many works to study area spectra and entropy spectra in various types of black holes by us-
ing quasinormal frequencies (Dreyer 2003; Polychronakos 2004; Setare 2004a,b; Setare & Vagenas
2005; Vagenas 2008; Medved 2008; López-Ortega 2011, 2009; Daghigh & Green 2009; Fernando
2009; Kwon & Nam 2010; Wei et al. 2009; Wei & Liu 2009; Li et al. 2009).

Recently, Majhi & Vagenas (2011) proposed a new approach to derive the entropy spectrum and
the horizon area spectrum of spherically symmetric static black holes. It is especially interesting that
they derived the entropy spectrum and the horizon area spectrum without employing the quasinormal
frequencies at all. They utilized an adiabatic invariant

∫
pidqi and employed the Bohr-Sommerfeld

quantization rule
∫
pidqi = 2πn~, where pi is the conjugate momentum of the coordinate qi with

i = 0, 1, for which q0 = τ and q1 = r. Note here τ is the Euclidean time. In addition, the Einstein
summation convention is adopted. The extensions of their work to other black holes were developed
in (Chen & Yang 2012a,b; Zeng et al. 2012; Zeng & Liu 2012; Jiang & Han 2012).

On the other hand, in recent years, black holes inspired by noncommutative geometry have
aroused a lot of interest among researchers because noncommutativity is supposed to remove the
so-called paradox of black hole information loss (Hawking 2005). Nicolini et al. first found a non-
commutative solution inspired by a Schwarzschild black hole in four dimensions (Nicolini et al.
2006a,b; Nicolini 2005). In their papers, the effect of noncommutativity is incorporated in the mass
term of the gravitational source, i.e., instead of being represented by a Dirac delta function, the
mass density of the black hole is replaced by a Gaussian distribution. Subsequently, many works
inspired by black holes that use noncommutative geometry were done. Kim et al. (2008) investi-
gated thermodynamical similarity between the noncommutative Schwarzschild black hole and the
Reissner-Nordström black hole; Nozari & Mehdipour investigated Parikh-Wilczek tunneling of non-
commutative black holes (Nozari & Mehdipour 2008, 2009; Mehdipour 2010a,b); Mann & Nicolini
(2011) investigated the pair creation of noncommutative black holes in a background with a pos-
itive cosmological constant; Giri (2007) found and calculated the asymptotic quasinormal modes
of a Schwarzschild black hole inspired by noncommutative geometry; Ding & Jing (2011) studied
the influence of a noncommutative spacetime parameter on strong field gravitational lensing in the
Reissner-Nordström black hole spacetime; Mureika & Nicolini (2011) comprehensively analyzed a
noncommutative (1 + 1)-dimensional black hole; Myung et al. (Myung et al. 2007; Myung & Yoon
2009), Tejeiro & Larranaga (2012) and Liang & Liu (2012) studied black hole thermodynamics in
noncommutative spaces (for a comprehensive review of black holes inspired by noncommutative
geometry, see Nicolini 2009).

Inspired by the work of Majhi and Vagenas, in the present paper, I study the entropy spectrum
and horizon area spectrum of a regular black hole inspired by noncommutative geometry (Myung &
Yoon 2009) by utilizing an adiabatic invariant and implementing the Bohr-Sommerfield quantization
rule to explore the quantization of the noncommutative black hole.

Strictly speaking, one should use
∮
pidqi to study the quantization of the black hole since only

this quantity, not
∫
pidqi, is invariant under canonical transformation, and thus only

∮
pidqi is a

proper observable (Akhmedov et al. 2008; Jiang & Han 2012). However, a freely falling particle
which crosses the horizon does not have any barrier in the Painlevé coordinates, and this leads to∮

pidqi =

∫
pouti dqi −

∫
pini dqi =

∫
pouti dqi − 0 =

∫
pouti dqi,

where pouti (pini ) are for outgoing (incoming) particles. Therefore,
∫
pouti dqi can be treated as an

adiabatic invariant in the Painlevé coordinates.
In this paper, I have improved the Majhi-Vagenas method. First, I Euclideanize the metric in or-

der to quantize the noncommutative black hole via the adiabatic invariance and the Bohr-Sommerfeld
quantization rule, then introduce Painlevé coordinates. Since

∫
pouti dqi can be treated as an adiabatic
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invariant in the Painlevé coordinates, we can use it to discuss the quantization of the noncommutative
black hole. I get the entropy spectrum as well as the horizon area spectrum of the black hole, and it
is found that the spectra are discrete, and the spacing of the entropy spectrum is equidistant. In the
limit r2h

4θ ≫ 1, the area spectrum depends on the noncommutative parameter and the cosmological

constant, but the spacing of the area spectrum is equidistant up to leading order
√
θe−

2Ml2

θ in θ, and
is independent of the noncommutative parameter and the cosmological constant.

The paper is organized as follows. In Section 2, we review some results related to a regular non-
commutative black hole in three dimensions. In Section 3, we will study the entropy spectrum and
horizon area spectrum of this noncommutative black hole. Section 4 is for conclusion and discussion.

2 REVIEW OF RESULTS RELATED TO A REGULAR NONCOMMUTATIVE BLACK
HOLE IN THREE DIMENSIONS

We take the units G = c = kB = 1, in which l2p = M2
p = ~, where Mp is Planck mass and lp = is

Planck length which has been mentioned above.
Myung & Yoon (2009) constructed a regular black hole in a three dimensional anti-de Sitter

space by introducing an anisotropic perfect fluid inspired by the four dimensional noncommutative
black hole. In this black hole model, a new mass density of a cylindrically symmetric, smeared
gravitational source, i.e. a Rayleigh smeared mass density distribution, is introduced as

ρθ(r) =
Mr

4(πθ)
3
2

e−
r2

4θ , (2)

where θ is the noncommutative parameter. The corresponding mass distribution is given by the
integral of the density over the black hole volume

mθ(r) =

∫ r

0

2πr′ρ(r′)dr′ =
2M√
π
γ

(
3

2
,
r2

4θ

)
. (3)

In the limit r√
θ
→ ∞, one gets mθ(r) → M .

The lower incomplete Gamma function in the above equation is defined to be

γ(a, x) =

∫ x

0

ta−1e−tdt . (4)

The line element is obtained by solving the Einstein equation as (Myung & Yoon 2009)

ds2 = −fθ(r)dt
2 + f−1

θ (r)dr2 + r2dϕ2 , (5)

where

fθ(r) =
r2

l2
− 16M√

π
γ

(
3

2
,
r2

4θ

)
=

r2

l2
− 8mθ(r) , (6)

where l is related to the cosmological constant by Λ = − 1
l2 . In the limit of r√

θ
→ ∞, this solution

reduces to the well known BTZ black hole solution with mass M ,

ds2 = −
(
8M +

r2

l2

)
dt2 +

(
8M +

r2

l2

)−1

dr2 + r2dϕ2 . (7)

For given θ, the horizon of the black hole described by element (5) is

rh =
4
√
Ml

π
1
4

γ
1
2

(
3

2
,
r2h
4θ

)
. (8)
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In the commutative limit, θ → 0, one retrieves the horizon of the BTZ black hole as

rBTZ
h = 2

√
2Ml . (9)

Using the mathematical formula

d

dx
γ

(
3

2
, x2

)
= 2x2e−x2

, (10)

the Hawking temperature of the noncommutative black hole is calculated to be

Th =
~
4π

∂rfθ|rh =
~rh
2πl2

1− ( rh
2
√
θ
)3e−

r2h
4θ

γ
(

3
2 ,

r2h
4θ

)
 . (11)

Finally, it should be emphasized that there exists an extreme mass M0 below which no non-
commutative black hole can be found. For M > M0, there are two horizons, i.e., the cosmological
horizon rC and event horizon rh. For the extreme case of M = M0, there is a unique degener-
ate horizon rh = r0, at which the Hawking temperature of the noncommutative black hole drops
to absolute zero. The horizon radius of the black hole in the extreme case is determined from the
condition fθ(r0) = 0 and ∂rfθ(r0) = 0 as

γ

(
3

2
,
r20
4θ

)
=

(
r20
4θ

) 3
2

e−
r20
4θ . (12)

The numerical solution is r0 ≃ 2
√
θ. Then the mass of the extreme black hole can be obtained from

the condition fθ(r0) = 0 as

M0 =
θ
√
πθe

r20
4θ

2r0l2
≃ e

√
πθ

4l2
. (13)

3 QUANTIZATION OF THE NONCOMMUTATIVE BLACK HOLE

3.1 Entropy Spectrum of the Black Hole

In order to quantize a noncommutative black hole via adiabatic invariance and the Bohr-Sommerfeld
quantization rule, let us first Euclideanize the metric given in Equation (5) by using the transforma-
tion t → −iτ as done in Majhi & Vagenas (2011). This leads to

ds2 = fθ(r)dτ
2 + f−1

θ (r)dr2 + r2dϕ2 . (14)

Then we do a Painlevé coordinate transformation (Painlevé 1921),

dτ → dτ +

√
fθ(r)− 1

fθ(r)
dr . (15)

The element (14) becomes

ds2 = fθ(r)dτ
2 + 2

√
fθ(r)− 1dτdr + dr2 + r2dϕ2 . (16)

The outgoing radial null path (ds2 = dϕ = 0) is given by

ṙ =
dr

dτ
= i(1−

√
1− fθ(r)) ≃ iκ(r − rh) , (17)
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where κ is the surface gravity of the black hole defined by

κ =
1

2

∂fθ(r)

∂r

∣∣∣∣∣
rh

. (18)

Now, we consider an adiabatically invariant quantity of the form∫
pidqi =

∫ ∫ pi

0

dp′idqi =

∫ ∫ H

H0

dH ′

q̇i
dqi

=

∫ ∫ H

H0

dH ′

ṙ
dr +

∫ ∫ H

H0

dH ′dτ

= 2

∫ r

r0

∫ H

H0

dH ′

ṙ′
dr′ . (19)

Here, for convenience, I have omitted the “out” of pouti . For the second step of Equation (19), I have
utilized Hamilton’s canonical equation q̇i = dH

dpi
, where Hamiltonian H is the total energy of the

black hole. In addition, note that the lower integration limit should be set to H0 (it equals the mass
of the black hole in the extreme case M0). For the last step, I have used ṙ = dr

dτ and here the lower
integration limit r0 for r′ is the horizon radius of the black hole in the extreme case.

Employing Equation (17), we can rewrite the adiabatically invariant quantity as∫
pidqi = 2

∫ H

H0

dH ′

iκ

∫ r

r0

dr′

r′ − rh
= 2

∫ H

H0

π

κ
dH ′ . (20)

Using the relation between Hawking temperature and surface gravity

Th =
~κ
2π

, (21)

the adiabatically invariant quantity in Equation (20) becomes∫
pidqi = ~

∫ H

H0

dH ′

Th
= ~

∫ S

0

dS′ = ~S , (22)

where in the second step, I have utilized the first law of black hole thermodynamics dH = ThdS, and
chosen S = 0 for the black hole in the extreme case according to the third law of thermodynamics.
Finally, implementing the Bohr-Sommerfield quantization rule∫

pidqi = 2πn~ (23)

in Equation (22), we derive the entropy spectrum as

S = 2πn, n = 0, 1, 2, 3, ... . (24)

Therefore, the spacing in the entropy spectrum is

∆S = Sn+1 − Sn = 2π . (25)

This shows that the entropy spectrum is quantized and equidistant for this noncommutative black
hole.
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3.2 Horizon Area Spectrum of the Black Hole

Equation (8) cannot be solved in a closed form, so we take the large radius regime r2h
4θ ≫ 1, using

(9) and the following mathematical formula

γ

(
3

2
,
r2h
4θ

) ∣∣∣∣∣ r2
h

4θ ≫1

≃
√
π

2
−

(
rh

2
√
θ
+

√
θ

rh

)
e−

r2h
4θ . (26)

We can solve rh by iteration. Keeping up to the leading order
√
θe−

2Ml2

θ , we get

rh ≃ 2
√
2Ml −

(
4Ml2√

πθ
+

√
θ

π

)
e−

2Ml2

θ . (27)

Similarly, Equation (11) can be approximately written as

Th ≃ ~
√
2M

πl

[
1− 4M

√
2Ml3

θ
√
πθ

(
1− θ

4Ml2
− θ2

16M2l4

)
e−

2Ml2

θ

]
. (28)

From (22), the entropy of the noncommutative black hole can be directly calculated as

S =

∫ M

M0

dM

Th

=

∫ M

M0

πl

~
√
2M

[
1 +

4M
√
2Ml3

θ
√
πθ

(
1− θ

4Ml2
− θ2

16M2l4

)
e−

2Ml2

θ

]
dM

≃ 1

~

[
π
√
2Ml −

(
2Ml2

√
π

θ
+

1

2

√
πθ

)
e−

2Ml2

θ

]

−1

~

[
π
√
2M0l −

(
2M0l

2

√
π

θ
+

1

2

√
πθ

)
e−

2M0l2

θ

]
. (29)

On the other hand, using (27), we obtain the horizon area of the noncommutative black hole as

A = 2πrh ≃ 4π
√
2Ml −

(
8Ml2

√
π

θ
+ 2

√
πθ

)
e−

2Ml2

θ . (30)

Comparing (29) and (30), we get

A ≃ 4~S + 4π
√

2M0l −

(
8M0l

2

√
π

θ
+ 2

√
πθ

)
e−

2M0l2

θ . (31)

Inserting (24) into (31), we get the area spectrum of the noncommutative black hole as

A ≃ 8πn~+ 4π
√
2M0l −

(
8M0l

2

√
π

θ
+ 2

√
πθ

)
e−

2M0l2

θ . (32)

This implies that the area spectrum of a noncommutative black hole is quantized, but it depends
on the noncommutative parameter and the cosmological constant (since M0 depends on these two
quantities).

The spacing in the area spectrum is

∆A = 8π~ = 8πl2p . (33)

This shows that the area spectrum is equidistant and is independent of both the noncommutative
parameter and the cosmological constant for a noncommutative black hole.



Horizon Area Spectrum and Entropy Spectrum of a Noncommutative Regular Black Hole 83

4 CONCLUSIONS AND DISCUSSION

I study the quantization of a regular black hole in AdS3 spacetime by introducing an anisotropic
perfect fluid inspired by the four dimensional noncommutative black hole. The entropy spectrum
as well as the horizon area spectrum of the black hole is obtained. It is found that the spectra are
discrete, and the spacing of the entropy spectrum is equidistant. In the limit r2h

4θ ≫ 1, the area
spectrum depends on the noncommutative parameter θ and the cosmological constant Λ, but the
spacing of the area spectrum is equidistant up to leading order

√
θe−

2Ml2

θ in θ, and is independent
of the noncommutative parameter and the cosmological constant.

In addition, I would like to emphasize that, in this paper, the entropy spectrum of the noncom-
mutative regular black hole (24) is obtained by implementing the Bohr-Sommerfield quantization
rule (23). Nevertheless, it is worthwhile to study how to obtain the entropy spectrum (24) from the
result of the straightforward calculation (29) in the limit of a large horizon radius r2h

4θ ≫ 1 rather than
using the Bohr-Sommerfield quantization rule. I hope this problem can be solved in the future.
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