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Abstract We investigate the Hall effect in a standard magnetized accretion disk which
is accompanied by dissipation due to viscosity and magneticresistivity. By consider-
ing an initial magnetic field, using the PLUTO code, we perform a numerical magne-
tohydrodynamic simulation in order to study the effect of Hall diffusion on the physi-
cal structure of the disk. Current density and temperature of the disk are significantly
modified by Hall diffusion, but the global structure of the disk is not substantially
affected. The changes in the current densities and temperature of the disk lead to a
modification in the disk luminosity and radiation.
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1 INTRODUCTION

The accretion process is one of the most important parts of star formation theory. Accretion disks
are the birthplaces of stars and planets. The mechanism by which angular momentum is lost by the
material in accretion disks is a classic problem in astrophysics. A major difficulty arises when we
have a magnetic field, as the formation and evolution of the disk are greatly affected by such fields.
Magnetic tension appears to be one of the main sources of torque required to transport angular
momentum from the material in the disk to the environment andallow it to spiral towards the central
object. In magnetohydrodynamic (MHD) simulations, it has been shown that a weak field is able to
remove all of the angular momentum from the accretion flow (e.g. Price & Bate 2007; Mellon & Li
2008).

In a reasonable model of astrophysical disks, the turbulence required should be sufficiently
strong to enhance the efficiency of angular momentum transport. At present, there are no gener-
ally accepted models that show how the flow in the disks is disrupted and turbulence is generated.
Turbulence may be generated due to various magnetohydrodynamical instabilities which will be
dominant in differentially rotating and non-uniform gaseous disks, but there are some uncertainties
regarding the exact origin of turbulence and the possible roles of the magnetic field, so the problem
is still controversial. Magnetorotational instability (MRI) is responsible for generating turbulence in
the disk which is related to the magnetic field and the rotation of the disk (Balbus & Hawley 1991).
We know that MRI can only arise if the field is not too strong, because this would suppress the insta-
bility (Urpin 1996; Kitchatinov & Rudiger 1997). Simulations of the magnetorotational instability
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in disks (Hawley et al. 1995; Matsumoto & Tajima 1995; Brandenburg et al. 1995; Torkelsson et al.
1996; Arlt & Rüdiger 2001) have shown that the turbulence generated from MRI is responsible for
an enhancement in the transport of angular momentum.

In a weakly ionized gas, non-ideal MHDs should be taken into account. In such a gas, the
charged particles have a drift velocity with respect to neutral particles. The Lorentz force only acts
on the charges and would be transmitted to the neutral particles (dusty particles) through the drag
forces caused by collisions between the neutral and chargedparticles (e.g. Königl et al. 2010). The
relative drifts of charged particles with respect to the neutral particles delineate three kinds of mag-
netic diffusivity: ambipolar, Hall and Ohmic. Ohmic and ambipolar diffusion dominate in regions
of relatively high and low density, respectively, while Hall diffusion dominates in the intermedi-
ate regimes between ambipolar and Ohmic diffusion. We expect that Hall diffusion dominates in
many regions that have molecular clouds (Wardle 2004), and in protoplanetary disks (Sano & Stone
2002a,b). The importance and type of diffusion in disks are uncertain because it is too difficult to ob-
tain detailed observations from protoplanetary disks, particularly measurements of magnetic fields.
Several investigations have been done in order to make reasonable models of the non-ideal MHD
effects in protoplanetary accretion disks, in particular the Hall diffusion effect (Braiding & Wardle
2012a,b; Wardle 1999; Balbus & Terquem 2001; Liverts et al. 2007; Shadmehri 2012).

When the field is moderately strong, the Hall component represents the main contribution to the
electric resistivity tensor and will produce an electric field perpendicular to both the magnetic field
and the electric current. This component is non-dissipative but it can change the geometry of the
magnetic field. Since performing numerical simulations of the Hall effect is difficult, the role of Hall
diffusion in protoplanetary disks is neither fully understood nor explored.

In this paper, the role of Hall diffusion in the structure of protoplanetary disks and the evolu-
tion of a magnetic field are simulated using 2.5D numerical MHD simulation with the PLUTO code
(Mignone et al. 2007) based on a mean field approximation (Murphy et al. 2010). We have con-
structed a resistive viscous accretion disk threaded by a weak magnetic field. We have adopted an
initial magnetic field distribution in which the disk magnetizationµ = B2z/P decreases radially
from the central object. As our study is based on a standard disk model, due to its thickness, the
disk can be divided into small thin disks and in those ranges the magnetic field lines are almost
perpendicular into the plane of the disk.

We expect that the structure of the disk, the components of current density and their properties
are affected by the magnetic field configuration and Hall diffusion. In this paper we demonstrate a set
of time-dependent numerical MHD simulations to analyze in detail the effect of Hall diffusion on the
dynamics of accretion flow and on the components of current density. The physical structure of ac-
cretion disks and their observational properties involve various factors such as fluid viscosity, central
star mass, rotation speed of materials, etc. The standard accretion disk (SAD) model shows a good
agreement between obtained data and observations (Shakura& Sunyaev 1973; Frank et al. 2002), so
in this study the SAD model has been adopted. Turbulence is assumed to arise from the development
of magnetic instabilities that are triggered in the disk whenever a magnetic field is present (Balbus
& Hawley 1991). In a special case, and not far from reality, webenefit from the azimuthal symmetry
of the disk and simulate the radius and elevation in a cylindrical coordinate system. Considering
heating and cooling, the accretion disk is defined by the 3D models ofα Keplerian accretion disks
originally developed in Kluzniak & Kita (2000) and further discussed by Regev & Gitelman (2002)
and Umurhan et al. (2006).

When the disk is divided into smaller meshes, the Hall effectand the generated transverse current
are calculated separately for each and an interpolating function that approximates the current can be
obtained inside the disk and its atmosphere. Shakoura & Sunyaev standard accretion disks dissipate
the energy used in the model because a standard disk effectively radiates, and for that reason they are
thin; therefore we considerh = ǫr andǫ = cs/VK in whichVK is the Keplerian velocity at radiusr
andcs is isothermal sound speed. Anα-prescription is adopted for the viscosity of an accretion disk,
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which has been used in hydrostatic models and its evolution is controlled by a stress tensor. With
respect to viscosity, because of the slowing angular momentum of the fluid layers, we must anticipate
fluid collapse toward the central core and velocity emergingin the direction perpendicular to the disk
plane at the center of the disk. For magnetization of the disk, we assume the initial magnetic field
and atmosphere of the disk to be functions of magnetic fluxB = ∇ψ ×

eφ

r
.

2 NUMERICAL METHODS

In order to perform a numerical simulation, we use PLUTO (Mignone et al. 2007). A set of axially
symmetric full viscous-resistive MHD equations in protoplanetary disks was adopted to perform
2.5D numerical simulations. In this manuscript we use the framework presented by Murphy et al.
(2010), so the main equations are as follows.

The continuity equation
∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

the conservation of momentum equation

∂v

∂t
+ v · ∇v +

1

ρ
B × (∇× B) +

1

ρ
∇P = −∇ΦG , (2)

and the conservation of energy equation

∂E

∂t
+ ∇ ·

[

(E + Pt)v + (v · B)B + ηmJ × B − v ·
¯̄
T

]

= S . (3)

By adding Hall diffusivity, the induction equation becomes

∂B

∂t
+ ∇× (−v × B) = −∇×

(

ηmJ + ηHallJ × B̂

)

, (4)

whereρ is the mass density,v stands for the velocity vector andPt = P + 1

2
B2 shows total pressure,

in whichP andB represent pressure and magnetic field, respectively.J = ∇×B is current density,
ηm defines the magnetic diffusivity,ΦG = −

GM√
r2+z2

represents the gravitational potential of the
central mass andS = −ρv∇ΦG +Lc represents a source function whereLc is a cooling term. Hall
diffusion is represented byηHall, which was adopted as follows

ηHall =
B

ene
, (5)

wheree is electron charge andne is the number density of charge carriers (electrons). This coefficient
corresponds to the properties of conductive materials and its value depends on the type, number and
characteristics of charge carriers in the flow. The value of this coefficient represents the transverse
Hall resistance; a greater number of charge carriers makes the fluid be more conductive and so in
this case the Hall effect does not have a significant role. To understand the effect of Hall diffusion
on the structure of the accretion disk we adopt three values for 1

ene
that are equal to0, 5.0 and

10.0. Bigger values of this parameter correspond to a lower number density for the charge carrier
and consequently more influence from the Hall effect. The viscous stress tensor is defined by the
following relation

¯̄
T = ην

[

(∇v) + (∇v)T −
2

3
(∇ · v)I

]

, (6)



96 M. Nakhei, G. Safaei & S. Abbassi

whereην is the dynamical viscosity and kinematic viscosity is defined asνν = ην

ρ
. Following

Murphy et al. (2010), in order to define the initial magnetic field, we use the magnetic flux function
ψ instead of the magnetic field,B, whereB =

∇ψ×eφ

r
. We have assumed magnetic flux to be

ψ(r, z) = 4B0r0
2

(

r

r0

)

1

4

m
7

4

(

m2 +
(

z
r

)2
)

7

8

, (7)

so thatB0 =
√

µ0µ (r0)Pd0
andPd0

is the thermal pressure of the disk. The parameterm is the
initial bending of the magnetic field lines which is set to0.935 in the simulation, as was adopted by
Murphy et al. (2010).µ is the disk magnetization atz = 0 which changes as2 × 10−3 r0

r
.

In order to perform the simulation we need initial conditions, which were taken from the pertur-
bative solution of the steady-state MHD equations. For the initial structure of the disk, density and
pressure are assumed as the following, as adopted by Murphy et al. (2010)

ρd = ρd0

{

2

5ǫ2

[

r0
R

−

(

1 −
5ǫ2

2

)

r0
r

]}

3

2

, (8)

pd = pd0

(

ρd

ρd0

)
5

3

, (9)

in which pd0
= ǫ2ρd0

V 2
K0

whereǫ = cs
VK

is the aspect ratio of the disk and is given by the ratio
between the isothermal sound speed and the Keplerian speed calculated in the disk mid-plane.

The three components of the speed are employed as

vrd = −αvǫ
2

[

10 −
32

3
Λα2

v − Λ

(

5 −
z2

ǫ2r2

)]

√

GM
r

, (10)

vφd =

[
√

1 −
5ǫ2

2
−

2

15
ǫ2α2

vΛ

(

1 −
6z2

5ǫ2r2

)

]

√

GM
r

, (11)

vzd = vrd
z

r
, (12)

whereΛ = 11

5
/

(

1 + 64

25
αv

2
)

and for the atmosphere above the disk we have set the values ofall
velocity components to zero. Furthermore, we set the pressure and density of the atmosphere as

ρa = ρa0

(r0
R

)

1

γ−1 , (13)

pa = ρa0

γ − 1

γ

GM

r0

(r0
R

)

1

γ−1 . (14)

In order to have a reasonable density contrast in all the simulations we usedρa0
/ρd0

= 10−4.
We will apply theα prescription for the disk’s viscosity. So, following Zanni& Ferreira (2009) we
use the viscous expression as

νv =
2

3
αv

[

c2s (r, z = 0) +
2

5

(

GM

R
−
GM

r

)]

√

r3

GM
. (15)

In order to have faster simulations and follow the evolutionof the disk under the Hall effect we
adopt a large value for the viscosity parameter,αv = 0.9. The mesh grid which we have used for
this simulation consists of 256 homogeneous cells in the radial direction (128 r0) and 720 cells in
thez direction (375 r0), wherer0 is the inner radius of the disk.
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Fig. 1 Log of Intensity of an angular magnetic field overplotted with magnetic field lines forηHall =

0.0. Upper panel is at timet = 0τK0
and lower panel is at timet = 250 τK0

.

3 RESULTS

In this section, we present the simulations of the a thin magnetized disk under effects of viscosity, a
magnetic field and Hall resistivity. All of the presented results are 2.5D numerical MHD simulations
based on a mean field approximation using the PLUTO code. To perform the simulations we need to
normalize all the quantities. All the parameters have been normalized withr0, the inner radius of the
disk and its corresponding quantities. Density, pressure and magnetic field strength are normalized
byρd0

, ρd0
V 2

K0
and

√

µ0µ (r0)Pd0
, respectively. As we stated in the last section, the velocities have

been normalized by the Keplerian velocity,
√

GM
r0

, so for the time steps we will use Keplerian orbital

periodτK0
= 2πr0/VK0

.

After running the program, which takes a relatively long time, we have set a new output file in
a prescribed format for the PLUTO code to see the influence of the Hall transverse resistance. We
run the program with 250 Keplerian rounds in the internal radius of the disk and plot output values
for the coefficients. As is clear from the induction equation, the Hall transverse resistance mainly
affects the magnetic field, so, as a consequence, current density will be affected by changes in the
magnetic field, through the MHD equations. We perform the simulations forηHall = 0, 1.0 and10.0.
In Figure 1 we have demonstrated the initial conditions of the system (upper panel) and its structure
in t = 250 τK0

.
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Fig. 2 The radial current density in the middle of the disk forηHall = 0.0, ηHall = 1.0 andηHall =
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Fig. 3 Theẑ component of the current density in the middle of the disk forηHall = 0.0, ηHall = 1.0

andηHall = 10.0 at timet = 250 τK0
.

As shown in Figures 2 and 3 for the caseηHall = 0.0, when the Hall effect does not have a
significant role, current density in directions ofr̂ andẑ is zero after70 τ . In these cases, the number
of charge carriers is large and conductivity of the fluid is quite high, so Hall diffusion does not have
an important role. However, by addingηHall, which means adding the Hall diffusion, a transverse
current will penetrate with its amplitude increasing with an increasing Hall coefficient. This induced
current will be dampened far from the inner boundary of the disk, because the role of the magnetic
field is dominant in the inner part of the disk.

Figure 4 shows the toroidal component of current density at different radii. AddingηHall causes
the toroidal current to shift to the inner part of the disk. This decrement in current density emerges
in other directions and produces current density in theẑ andr̂ directions. However, Figure 4 shows
a small change whenηHall = 1.0, but forηHall = 10 the change is considerable.

The behavior of the magnetic field for all considered values of ηHall is investigated. Figure 5
shows the vertical profiles of the toroidal component of the magnetic field for different radii when
ηHall = 0, 1.0 and10. The symmetry of the original poloidal magnetic configuration implies that the
toroidal field generated due to the Hall effect is anti-symmetric with respect to the equatorial plane.
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Fig. 4 The component of the toroidal current density in the middle of the disk forηHall = 0.0,
ηHall = 1.0, andηHall = 10.0 at timet = 250 τK0
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Fig. 5 The toroidal component of the magnetic field in the middle of the disk forηHall = 0.0,
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Fig. 10 The temperature in the middle of the disk forηHall = 0.0, ηHall = 1.0 andηHall = 10.0 at
time t = 250 τK0
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The oscillating behavior of the induced toroidal magnetic field due to the Hall effect was previously
reported by Shalybkov & Urpin (1997).

As is clear in Figure 5, the structure of the poloidal component of the magnetic field does not
change significantly due to the Hall effect. The toroidal component of current density directly de-
pends on variations in the poloidal component of the magnetic field with respect to radial distance.
Hence, we expect that the toroidal current has larger valueswhere the poloidal components of the
B-field vary rapidly with respect tor.

In Figures 6 and 7 ther- andz- components of the field with respect tor are presented. They
clearly show that these components are not significantly affected by the Hall parameter. As is clear
from Figure 8, for different values of Hall coefficients, there is no change in the density of the
accretion flow, but a high value of the Hall coefficient,ηHall = 10.0, will significantly change the
pressure of the disk, see Figure 9. Knowing the pressure and the density of the disk allows us to
calculate the disk temperature at every point of a mesh grid,where the value of temperature as an
output of the program is calculated.

Figure 10 shows the variation of temperature along the radius of the disk for the time when the
Hall coefficient changes. For higher values of the Hall coefficient,ηHall = 10.0, the temperature of
the disk will decrease in the inner part of the disk as compared to the case where the Hall effect
does not have any role, but for lower values ofηHall there is no considerable change. Since Hall
diffusion occurs when the magnetic field is strong, we expectto see its footprints in the inner part of
the disk. In Figure 11 we have illustrated the vector plot andformation of current density inside the
disk (lower panel) forηHall = 10.0. It is clear that the Hall coefficient has a greater effect inside the
disk as compared to the outside and the surrounding atmosphere. Magnetic field lines, as shown in
Figure 11 (upper panel) after time passes250 τ for different coefficients, are illustrated. When Hall
diffusion becomes more important by addingηHall, the magnetic field lines are curved toward the
disk plane. For the magnetic field lines, which are at a lower angle with respect to the disk plane,
changes due to Hall diffusion are not remarkable. This meansthat Hall diffusion mainly affects the
outer magnetic field lines.

4 CONCLUSIONS

In the accreting gas which is partially ionized, the magnetic field will freeze in an electron fluid due
to resistivity. In this case non-ideal MHD should be taken into account. The difference in the mean
electron velocity and the center-of-mass fluid velocity gives rise to a Hall effect in the accreting
gas. It has been shown that in protoplanetary disks around young stars, the Hall diffusion can be
important, and therefore must be taken into account in realistic models of such systems. In previous
investigations, researchers usually ignored the Hall diffusion in the simulation of the protostellar
disk because of its difficulty.

In this paper, we perform a 2.5D numerical simulation of a resistive accretion disk treated by
a weak magnetized field by adding the Hall effect using the PLUTO code. In the formation and
evolution of the protostellar disk, its size and rotationalbehavior, and the components of current
density, magnetic diffusion, and in particular Hall diffusion, are clearly important. This simulation
has been used to show that Hall diffusion can effectively change the dynamics of accretion flow in a
protostellar disk.

In this simulation we take into account both the Hall diffusion and magnetic resistivity in an
induction equation. We have shown that this relatively simple model can be used to explain the
importance of Hall diffusion on the structure of a magnetized protostellar disk. The structure of the
poloidal component of a magnetic field does not significantlychange due the Hall effect.

We have shown that by addingηHall, the toroidal component of current density will shift to the
inner part of the disk, but, when adding the Hall diffusion, atransverse current will penetrate with its
amplitude increasing with an increasing Hall coefficient. The results show that the induced current
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will be dampened far from the inner boundary of the disk, since the role of the magnetic field is
dominant in the inner part of the disk.

It would be interesting to study the influence of Hall transverse resistance on outflow and wind
in a future investigation to find out how this would change thesolutions.
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