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Abstract Two primary solar-activity indicators— sunspot numbers (SNs) and sunspot
areas (SAs) in the time interval from November 1874 to December 2012 — are used to
determine the chaotic and fractal properties of solar activity. The results show that (1)
the long-term solar activity is governed by a low-dimensional chaotic strange attractor,
and its fractal motion shows a long-term persistence on large scales; (2) both the fractal
dimension and maximal Lyapunov exponent of SAs are larger than those of SN,
implying that the dynamical system of SAs is more chaotic and complex than SNs; (3)
the predictions of solar activity should only be done for short- to mid-term behaviors
due to its intrinsic complexity; moreover, the predictability time of SAs is obviously
smaller than that of SNs and previous results.
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1 INTRODUCTION

It is well known that sunspot numbers (SNs) and sunspot areas (SAs) are two direct indicators of
solar activity that are widely and frequently used to describe long-term solar variability (Li et al.
2009; Feng et al. 2013; Deng et al. 2013a,b,c). These two time series are also used to deal with the
question of whether solar activity and the underlying dynamo mechanism have a periodic, chaotic
or stochastic nature (Hanslmeier 1997; Hanslmeier & Brajsa 2010; Hanslmeier et al. 2013; Usoskin
2013). Unfortunately, it has not been clear whether the solar dynamo behaves like a chaotic or a
stochastic system, although nonlinear effects in astrophysics and cosmology have been studied in
theoretical models and reviewed by several authors (Feynman & Gabriel 1990; Schmalz & Stix
1991; Mundt et al. 1991; Kremlyovskij et al. 1992; Rozelot 1995; Tobias 1996; Zhang 1998; Jevtié
et al. 2001; Li & Li 2007a,b; Greenkorn 2009). However, several authors found no evidence that
the sunspots are generated by a low-dimensional chaotic process (Price et al. 1992; Carbonell et al.
1994; Charbonneau & Dikpati 2000; Mininni et al. 2002). Actually, there are two possible reasons
that can cause different results. On one hand, the observational data used in different papers do not
have uniform quality; only longer, more reliable data sets with low noise can obtain more accurate
results. On the other hand, it is easy to obtain a spurious indication of low-dimensional dynamical
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chaos in solar activity if the analysis methods are not carried out properly (Panchev & Tsekov 2007).
Therefore, it is necessary and timely to re-analyze the chaotic and fractal properties of solar activity
with longer, higher quality data sets and proper analysis techniques.

The Lyapunov exponent may judge the degree of chaos inherent in a time series but does not
characterize its fractal properties; the Hurst exponent is not only used as a measure of long-term
memory but is also related to the fractal dimension of the time series, and it has been used in many
fields, such as geology (Carr 1997), geomagnetism (Wanliss & Reynolds 2003), solar activity (Oliver
& Ballester 1996) and so on. Furthermore, we will use rescaled range analysis which has good ro-
bustness to estimate the Hurst exponent. We will also use principal component analysis to distinguish
whether a time series is a chaotic signal or a noisy signal.

Following the rising interest in the study of nonlinear behavior associated with solar activity, the
objective of this work is to investigate the chaotic and fractal properties of both SNs and SAs. The
remainder of this paper is organized as follows. Section 2 contains a description of the data set and
analysis methods employed in this study. Analyses and results are presented in Section 3. Finally
Section 4 gives the conclusions and discussion.

2 DATA AND METHODOLOGY
2.1 Description of Data

Continuous time series of monthly-mean SNs and SAs, which have been widely and frequently
used to describe long-term solar activity, can be publicly downloaded from the Solar Influences
Data Analysis Center’s website! and the National Aeronautics and Space Administration’s website?.
These two data series should be smoothed before the phase space is reconstructed due to noise in
the time series (Kremliovsky 1994). To filter the noise but keep the essential dynamics contained in
the two data sets, we employ a 13-point smoothing method to smooth them (Deng et al. 2012a,b).
These two examples of data series cover the time interval from November 1874 to December 2012,
and both of them are shown in Figure 1.
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Fig.1 Plots of the smoothed monthly-mean SNs (left panel) and SAs (right panel) from November
1874 to December 2012.

U http://sidc.oma.be/sunspot-data/
2 hup://solarscience.msfe.nasa.gov/greenwch.shtml
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2.2 Methods of Analysis: Qualitative Methods
2.2.1 Principal Component Analysis

The method of principal component analysis, which was proposed by Karl Pearson, can be used
for distinguishing whether a time series is chaotic or not (Gong & Xu 1997). For a time series
x = {x1,22, -+ ,Zn}, the covariance matrix A of x is

A1 X X7, 1))
n—(m—1)x7

where 7 is the time delay, m is the embedding dimension, and X is the trajectory matrix of the time
series. Subsequently, we calculate the eigenvalues A = {A1, Aa, -+ , A} of A, and the sum of all
eigenvalues can be represented as A\gym = Z:’;l A;. Finally, we plot how the principal component
1n(%) varies with 7. This plot is called a principal component spectrogram, and if there exists a line
with negative slope in the principal component spectrogram, the time series is chaotic. Otherwise, it
is a noisy signal.

2.2.2 Phase space portrait

To better understand the underlying dynamics of a scalar time series, we need to reconstruct an m-
dimensional phase space (Deng et al. 2013d). Fortunately, Packard et al. (1980) and Takens (1981)
provide us with a mathematical way to compose the reconstructed phase space y of a given time
series {z(t),t =1,2,--- ,n}

x(1) x(2) cexn—(m—1) x 7]
b=y D SRR et Ak S
z[l+(m-1)x7] 224+m-1)x71] - x(n)

where 7 is the time delay and m is the embedding dimension. These two parameters need to be
calculated before reconstructing the phase space. Here we use the mean mutual information, which
was first proposed by Fraser & Swinney (1986), and the Cao method given by Cao (1997) to calculate
reasonable values for these two important parameters, respectively.

The idea of the Cao method is to increase the dimension of the phase space up to the point
where there are no longer any self-intersections in the trajectory. To avoid the choice of a threshold
to decide whether a neighbor is false or not, Cao defined a quantity E;(d) — the relative change
in the average distance between two neighboring points — when the dimension is increased from d
to d 4+ 1. The embedding dimension is minimized when the relative change in the average distance
saturates around 1. Cao also defined another quantity E5(d) to distinguish deterministic signals from
stochastic signals. The future values are independent of the past values for a random data series, so
the value of F5(d) will be equal to 1 for any dimension. However, E»(d) cannot be constant for all
dimensions in a deterministic data set, because it is certainly related to the dimension of the phase
space.

2.3 Methods of Analysis: Quantitative Methods
2.3.1 Rescaled range analysis

The Hurst exponent (H) was originally proposed by Hurst (1951) for analyzing stochastic time
series. For a discrete time series x(t), the classical method for calculating the value of H is widely
known as the rescaled range analysis, which can be described as

R()/S()=cx1, 0<H<1 3)
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and

t t
R(l) = lrrgl?%(l Lz::l (ac(u) xl)] lrgrgll Lzzjl (m(u) xl)] , )
where S(1) is the standard deviation, ¢ is a constant and [ is the length of the segment used in our
analysis. The value of H can be estimated by the slope of R(1)/S(l) versus [ on a double logarithmic
plot.

The Hurst exponent is a measure of the secular memory of a time series. A value of H > 0.5
indicates that the time series exhibits a persistence behavior, namely its trend, whether increasing or
decreasing, will remain for a long period of time. A value of I = (.5 implies that the behavior of
the time series is a true random walk, where it is equally likely that a decrease or an increase will
follow from any particular value. The value of H < 0.5 means that the time series exhibits an anti-
persistence behavior, namely its trend will likely reverse in the future. More importantly, the Hurst
exponent H is directly related to the fractal dimension D of the time series, and the relationship
between these two parameters is D = 2 — H (Panchev & Tsekov 2007).

2.3.2 Maximal Lyapunov exponent

A chaotic system is a nonlinear, deterministic system which is usually characterized by fractal struc-
ture and sensitivity to small changes in initial conditions. The chaotic properties of an attractor can
be quantitatively described by chaotic variables, such as the Lyapunov exponents, the correlation
dimension, the Kolmogorov entropy, and so on. The Lyapunov exponent characterizes the rate of
separation for two infinite closed trajectories. The divergence of two trajectories with an initial sep-
aration 07 in the phase space after time ¢ is

16Z(t)| = e |6 Zo), )

where A is the Lyapunov exponent. In principle, the number of Lyapunov exponents is equal to the
dimensionality of the phase space. In practice, however, it is often useful to consider the maximal
Lyapunov exponent (MLE), because a positive MLE is taken as an indicator of chaos (Wolf et al.
1985). The method for estimating the MLE is defined as (Rosenstein et al. 1993)

10Z(1))|

A= tlirglo In 70 (6)

3 RESULTS

Figure 2 shows the principal component spectrogram for the smoothed monthly-mean of SNs and
SAs. From the figure one can see that the plotted line has a negative slope in these two subgraphs,
so it is safe to say that these two time series are chaotic signals, not stochastic, noisy signals.

Figure 3 shows the mean mutual information as a function of time delay. The graphs are given
for smoothed monthly-mean SNs and SAs. As pointed out by Fraser & Swinney (1986), a reason-
able value of the time delay is the value when the mean mutual information exhibits a marked first
minimum. From Figure 3 one can see that reasonable values of time delay are 38 for SNs and 39 for
SAs. For estimating the embedding dimension of these two indicators, we use the algorithm based on
the false nearest neighbor method. From Figure 4 one can see that the curves of E3(d) for both data
sets are not straight lines, implying that these two solar-activity indicators are deterministic signals
but not stochastic signals. Moreover, the embedding dimension of both time series is three, sug-
gesting that the long-term solar activity should exhibit the dynamical properties of low-dimensional
deterministic chaos.

Figure 5 displays the reconstructed phase spaces with the estimated parameters for SNs and
SAs. The phase spaces have been totally unfolded (not like a “ball of wool”) and there seem to
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Fig.2 Plots of the principal component spectrogram for smoothed monthly-mean SNs (left panel)

and SAs (right panel).
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Fig.3 Plots of mean mutual information as a function of time delay for smoothed monthly-mean
SN (left panel) and SAs (right panel).
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Fig.4 Plots of the quantities F1(d) and F2(d) versus the dimension for smoothed monthly-mean
SN (left panel) and SAs (right panel).
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Fig.5 Plots of reconstructed phase spaces with the estimated parameters for smoothed monthly-
mean SNs (left panel) and SAs (right panel).
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Fig. 6 Rescaled range analysis for smoothed monthly-mean SNs (left panel) and SAs (right panel).

be some structure underlying these two data sets. The strange attractor characterized by its infinite
self-similarity structure is clearly shown in this figure, which is a typical characteristic of a chaotic
system. This confirms that the solar activity is governed by low-dimensional dynamics. It should
be pointed out that smoothing high-frequency fluctuations helps to recover the dynamic structure
of data sets, but this processes cannot inject nonlinear dynamics into the smoothed data (Letellier
et al. 2006). Furthermore, comparing the reconstructed phase spaces of SNs and SAs, we see that the
dynamics of SAs are more complex than those of SNs. As demonstrated by Carbonell et al. (1994),
the larger the fractal dimension, the more chaotic the dynamics of the system. Thus, we infer that
the fractal dimension of SAs is larger than that of SNs.

The rescaled range analysis is applied to the smoothed monthly-mean of SNs and SAs, and
the results are shown in Figure 6. We can see that the Hurst exponent H is 0.8033 for SNs and
0.7834 for SAs. As the H values of these two time series are in the interval between 0.5 and 1, the
fractal motion of solar activity could show long-term persistence on large scales. Subsequently, we
calculate the fractal dimension of these two indicators based on the relationship between H and D
(D =2 — H), and obtain that the value of fractal dimension is 1.1967 for SNs and 1.2166 for SAs.

Figures 7 and 8 show the divergence and the slope as a function of time for SNs and SAs. The
slope of the curves shown as dashed lines in Figure 7 correspond to the theoretical value of MLE. By
choosing a reliable range of nonzero values for the slope of the curve to perform straight line fitting,
reasonable values of MLE that can be computed are 0.0235 (mon~!) for SNs and 0.0333 (mon—1)
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Fig.7 Plots of divergence as a function of time for smoothed monthly-mean SNs (left panel) and
SAs (right panel).
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Fig.8 Plots of the slope curve for smoothed monthly-mean SNs (left panel) and SAs (right panel).

for SAs. These results suggest that the dynamics underlying the long-term solar activity should be
chaotic, and the chaos of SAs is stronger than that of SNs, because of the larger MLE of SAs. The
predictability time, defined as (1}, = 1/MLE), is used to describe the length of the strange attractor.
In this case, it is about 3.5 years for SNs and about 2.5 years for SAs.

4 CONCLUSIONS AND DISCUSSION

Using the observational data of smoothed monthly-mean SNs and SAs during the time interval of
November 1874 to December 2012, we investigate the nonlinear dynamical properties of long-term
solar activity. We first filter the time series of SNs and SAs in order to reduce noise and preserve
the long-term dynamics of the system. Subsequently, we construct the phase space and calculate the
Hurst exponent, maximal Lyapunov exponent, fractal dimension and predictability time. We find that
the dynamical behavior of solar activity is governed by a low-dimensional chaotic attractor, whose
embedding dimension is three for both data sets. The Hurst exponent indicates that the solar activity
has a persistent fractal motion trend, which is consistent with previous studies (Oliver & Ballester



Low-dimensional Chaos and Fractal Property of Long-term Sunspot Activity 111

1996; Suyal et al. 2009). Moreover, both the fractal dimension and maximal Lyapunov exponent
of SAs are larger than those of SNs, implying that the dynamical system of SAs is more chaotic
and complex than SNs. The obtained MLEs and predictions of SNs and SAs indicate that forecasts
of solar activity should only be accurate for short- to mid-term behaviors due to complexity that is
intrinsic to the system.

Although both SNs and SAs indicate that solar activity is a deterministic chaotic signal with
long-term memory, both the fractal dimension and MLE of SAs are larger than those of SNs. Our
result seems to support the idea that the dynamical behavior of SAs is more chaotic and complex than
SNs. In fact, the SAs have more important physical significance than SNs. Monthly SN indicate the
daily number of sunspots (or sunspot groups) averaged over a month, which is an indication of how
frequently the solar dynamo produces solar activities in terms of sunspots. However, the monthly SA
gives the daily total area of concentrated magnetic flux of sunspots averaged over a month, which
can be viewed as a measure of how powerfully the solar dynamo produces magnetic flux (Li et al.
2005). Therefore, SAs are more complex and realistic for indicating the secular variation of solar
activity. In other words, compared to the predictability time that is calculated from SN, the effective
time used for prediction that is obtained from SAs should be more realistic.
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