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Abstract It is widely believed that the evolution of solar active m@gs leads to
solar flares. However, information about the evolution dasactive regions is not
employed in most existing solar flare forecasting modelghécurrent work, a short-
term solar flare forecasting model is proposed, in which eetjal sunspot data, in-
cluding three days of information about evolution from @aetregions, are taken as
one of the basic predictors. The sunspot area, the Mclntiasisification, the mag-
netic classification and the radio flux are extracted and exded to a numerical for-
mat that is suitable for the current forecasting model. Basethese parameters, the
sliding-window method is used to form the sequential datadlging three days of
information about evolution. Then, multi-layer perceptemd learning vector quanti-
zation are employed to predict the flare level within 48 h. &ipental results indicate
that the performance of the proposed flare forecasting medes better than previ-
ous models.
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1 INTRODUCTION

As one kind of solar electromagnetic storm (Wang et al. 204 8plar flare is an intense and sudden
release of energy which can have a significant impact on tlebilgy of space-borne and ground-
based technological systems. In order to protect theseragsirom disturbances in the space envi-
ronment, probabilitic forecasting flare models are st#l thain tools employed in space environment
services.

Up to now, a number of flare forecasting approaches and sgstaue been developed in which
sunspot-group characteristics are considered. Basedeok¢ntosh (1990) classification system,
an expert system was developed by the Space Weather PoadBzinter of the National Oceanic
and Atmospheric Administration (NOAA). Using historicalemiages of flare numbers for McIntosh
classifications, Gallagher et al. (2002) developed a flagdiption system to evaluate the probability
for each active region to produce C-, M- or X-class flares. &faed (2005) proposed a Bayesian
approach for flare prediction, in which flaring records of ative region together with phenomeno-
logical rules of flare statistics refine an initial predictifor the occurrence of a subsequent big
flare. Qahwaji & Colak (2007) proposed a short-term solaeffaediction model using a machine
learning method. Wang & Zhang (1994) developed a multi+iisoation method for flare forecast
with observational data on sunspots, 10 cm radio flux anditedigal magnetic fields, and Zhu &
Wang (2003) presented a verification of Wang & Zhang’s methtzoh et al. (2001) predicted solar
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flares using a fuzzy clustering method, which builds a reteéimong several parameters describing
sunspot regions. Li et al. (2007) designed a forecastingeinaging a support vector machine and
the k nearest neighbor method, in which the sunspot area, th@sunmsgnetic classification, and
the Mclntosh class of sunspot group and 10 cm solar radio flesewhosen. Wang et al. (2009)
studied the free energy storage process in solar activerredy using a logistic model.

Previous works demonstrate that there is a clear corraldi&ween the characteristics of
sunspots and flaring occurrences. These methods are basdesl@nrent information about sunspot
properties. The influence of previous parameters desgrifiare occurrence is not considered.
However, previous information is also very important folagdlare forecasting. In solar flare fore-
casting models based on the characteristics of photogpheagnetic parameters, information about
evolution of predictors has been added, which has improee@pnance (Yu et al. 2009; Li 2011).
In this work, we aim to design a forecasting model that usgsiesgtial sunspot parameters as pre-
dictors. In this system, the time series data are appendidswhspot parameters using a sliding
window technique, and neural network methods are emplogddracasting methods. To estimate
the performance of information about evolution, the moséliilt on a large-scale data set spanning
all of Solar Cycle 23.

The rest of the paper is organized as follows: the data arnidtatal method are described in
Section 2. The sliding window technique is introduced int®&c3. The neural network methods are
discussed in Section 4. Experimental results are repont&gction 5. Finally, concluding remarks
are given in Section 6.

2 DATA DESCRIPTION

In this work, the data are sourced from the publicly ava#ablnspot group and the solar
flare catalog. Data on solar flares are from BOES satellites, which are provided by the
National Geophysical Data Center (NGDC) and can be doweldaat http://www.ngdc.noaa.
gov/stp/SOLAR/ftpsolarflares.htriiilhe importance of flares is conventionally described with i
dexes of C, M or X. Considering the selected active regiondyeing at least one C1.0 flare, C1.0
is taken as the unit for measuring total X-ray importancethiftia certain time interval, the total
importance/, is defined as

Lot =1.0% Y C+10% Y M+100% Y X. (1)

Here, the threshold of;,; is supposed to be 10, i.e. M1.0 equivalent. The forward logkieriod
is taken to be 48 h, which is long enough for the evolution ofiaspot active region (Wang et al.
2008).

Solar sunspot data are derived from the daily active regiomsary report of NOAA and down-
loaded fromhttp://www.swpc.noaa.gov/ftpmenu/forecasts/SRS.hirtthis report, the solar obser-
vation of a sunspot active region is recorded, including bemlocation, area and classification.
There are two main classification systems for sunspots: Mélison and McIntosh. Mount Wilson
classification is based on the distribution of magnetic pids within spot groups, while Mclntosh
classification depends on the size, shape and spot densitymspots. The data selected in our work
are sunspot area, Mount Wilson classification and Mcintta$sdication. In addition, the f10.7 flux
is included, because it has a close relation with solar i¢tiVhe flux data can be downloaded at
ftp://ftp.ngdc.noaa.gov/STP/SOLARTA/

The initial values of predictors are unfit for direct inputsférecasting models, so we calculate
a statistic on the correlation of these predictors with arsitdre by calculating their flare productiv-
ities.

The flare productivities of the magnetic class and the Madntdass of a sunspot group can
be estimated by the ratio between the number of flare burstgteat of the total samples in a
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corresponding class. The shape of data points is sigmoidhemefore we fit them with a Gaussian
function, which is given in Equation (2). The parametersdscribed in Li (2011).

Ag (X — X0)2
Y=A - . 2
1+ oIl exp YE 2)

3 SLIDING WINDOW TECHNIQUE

In most forecast methods, the prediction of a solar flare s2than the current information about
characteristics of the sunspot group or magnetic progediean active region. The influence of
previous parameters is not considered. Some works showpthaious information is also very
important for short-term solar flare prediction (Yu et al020Li 2011). It can help improve the
performance of a forecasting system. In order to add thermditon about evolution, the sliding
window method is used in our study to convert the originahdata sequence of data.

The sliding-window method can translate values of a prediat timer to a data sequence of
time, which is represented as

(1), z(1 — Al), ..., x(T — WAT), Liot (T + F) . 3)

wherex(7) is the vector of predictors at time, andx is the predictor§Area, Mcintosh class,
Magnetic class, fluk They are used to forecast whether or not flares will happémimwi + F. F
is the forecasting timel;.. (7 + F) is the total importance of flares within the interval The span
betweenr — wA7 andr is called the sliding window, where is the window size and\r is the
interval between two observations. A parameter is extetaled+- 1 dimensions by using the sliding
window.

Because sunspot data are chosen for each day, the timeainteris 24 h.w is set to 2 for each
measure. Generally speaking, the evolution of a sunspiekaetion lasts for about ~ 5d, so it
is reasonable to use data observed over 3d to forecast thdelal. There are not enough data for
the sliding window at the beginning of the observation of ativa region, so the first observational
value is repeated times to provide the initial values.

4 NEURAL NETWORK METHODS

The machine learning method has been used in solar actorigégésting (Huang et al. 2010, 2012,
2013; Huang & Wang 2013). In our work, two neural network noethwere used to build the
forecasting model. One is a multilayer perceptron (MLPWuek, and the other is a learning vector
guantization (LVQ) network. They are described as follows.

4.1 Multilayer Perceptron Network

An MLP is a type of feed-forward network based on the backppgation learning rule (Witten et al.
2011). The feed-forward network consists of three layesui layer, hidden layer and output layer.
The hidden layer is between the input and the output layeesgMs are connected from an input
unit to a hidden unit and from the hidden unit to the output.uFtie topology of an MLP network
is shown in Figure 1.

Supposinge; is the input nodew;; is the weight connecting thi&h input node with thejth
hidden nodeyw; is the weight connecting thgh hidden node with the output node and O is the
output value, the learning algorithm is divided into twopsteThe first step is to calculate the value
of nodes in the hidden layer and output layer using the faligvformulas:

k
hj=f (wa%> ; 4)
=1
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Input Layer Hidden Layer Output Layer

Fig. 1 Structure of an MLP network.

y=f wih;| . (5)
j=1
The sigmoid function is taken as an activation function,chis defined as
1
f@) = = (6)

The second step is to conduct the back-propagation traihinthis process, the weights are
calculated by decreasing the mean square error (MSE). Feea ipput in the training set, the MSE
between the actual output and the desired output needs torbputed. The error functio®’ is

represented as
1

E=g(T-Y), ()
whereT is the value of the desired target. To reduce the mean squargieis necessary to calculate
the gradient of the error function with respect to each weighen each weight is moved in the
opposite direction to the gradient. The gradient functmrtffie weights in the output layer is shown
below,

5 — OE 0T —-Y)?
7 8wj o 8wj

: (8)

Wiyl = Wy — 77/5j . (9)

From Equation (9), the network weights are updated by myitig the negative gradient with a
step size of the learning rate parameijeiThe weights in the hidden layer are calculated with the
same procedure. This process repeats the steps usingdtau@t) to (9) until the error functiof is
sufficiently small. In this way, the correct weights are afeal, and the neural network is completely
constructed.

In our application, the inputs of the MLP network are the jctmts, and the output is the asso-
ciated flare. If the output value is larger than the thresBdig the output class is a flare and labeled
+1; otherwise, the output class is no flare and labeléd
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4.2 Learning Vector Quantization Network

An LVQ (Kohonen 2001) is one type of neural network, which @&sé&d on a competitive learning
criterion. The network consists of two layers: an input laged an output layer. Input units fully
connect to output units by weight values. The weight vectéspaiated with each output unit is also
called a codebook vector. Similar to other neural networkhods, the most important work done
by an LVQ is to calculate these weight values. As a competitigtwork, only the weight vector
connected with the winning unit is modified. The winning usitlefined as the closest output unit
to the input vector.

Usually several codebook vectors are assigned to eachaflasgalues and is then assigned
to the same class to which the nearesbelongs. Define

¢ = argmin{|| @ — w, ||} (10)

as a label which has the nearest weight talenoted byw,. Letz(¢) be an input sample and lef;
represent théth weight vector. The LVQ algorithm then checks the inpussts against the weight
classes and moves; appropriately:

(1) Ifinputz and the associatad. have the same class label, then move them closer together by

Awe(t) = n(t)[z(t) — we(t)]- (11)
(2) Ifinputz and the associataed. have different class labels, then move them apart by
Awe(t) = —n(t)[x(t) — we(t)] . (12)

(3) Weightsw; corresponding to other input regions are left unchangell wit
Aw; (t) =0, (13)

wheren(t) is the learning rate which satisfi@és< n(¢) < 1. It may be constant or decrease
monotonically with time.

The structure of an LVQ network in the proposed model is shiowFigure 2. The input vector
of the network is the values of predictors and the output efrtbtwork is the possible class label of
samples. Once all the weight values are given, the modehistaacted.

Input Layer Output Layer

Fig. 2 Structure of an LVQ network.
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5 IMPLEMENTATION AND RESULTS
5.1 Implementation

The data set includes 21655 samples spanning the time fr@@ Afril 15 to 2008 December
12. The initial sunspot data from the observatory are ndablé to be taken directly as inputs of
the forecasting model. There are two steps that need to be ithoour work. Firstly, the initial
variables are computed on a normalized map by applying thatem describing flare productivity
in Section 2, given by Equation (2). Secondly, the normadlidata are added to the sequence data by
using the sliding window technique described in Sectiont flnal sequence of data forms the input
of the dataset. The output refers to a classification divijetthe importance of solar flares occurring
within the coming 48 h, which can yield two cases: greaten tiaequal to M corresponding to the
label of +1, and less than M corresponding to the label bf

The input and output data constitute the data set. The daiacdedes 1252 flaring samples
and 20404 non-flaring samples. It can be found that the nuofhemn-flaring samples is obviously
higher than that of flaring samples in the dataset. This issa o&the class imbalance problem that
arises in the field of data mining. To solve this problem, asupervised clustering method is used
in our work. By clustering the sample that does not contaimedlavith the same number of clusters
as the sample with flares, a balanced data set can be obthirf2@11) gives a detailed description
about applying the clustering algorithm. Finally, the Inaled data set is put into the MLP and LVQ
algorithms to build the forecasting model. A general schiemaew of the system’s structure is
shown in Figure 3.

ﬁ Area’(t)

Area’ B Area’(t-w/\t)
B —

twAt tAt
Wils(t)
Area N Level
Wils N 1 of
— Wils(t-w/\t) eura flare
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- PCz(lilcutl.at.et Meln’(t) for
cIn | Productivity W " |classification
- Meln’ 1
1 |
T 1 2
Flux WAL ALt Mecln’(t-w/\t)
—_—
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Fig.3 The workflow of the flare forecasting system. Here Area, Wis)n, Flux are the initial
values of predictors, and Area’, Wils’, McIn’, Flux’ are noalized values using the productivity
calculation.
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Table 1 Different Outcomes for the Prediction of the Two Classes

Forecasting Positive  Forecasting Negative

Observation Positive TP FN
Observation Negative FP TN

5.2 Performance Evaluation

To evaluate the performances of the proposed method, thoexés are used: TP rate, TN rate
and Correctness. In solar flare prediction, the samplesflaitbs are labeled as the positive class.
Otherwise, they are labeled as the negative class. The @@mdtTN rate are used to evaluate the ac-
curacy of “flaring” and “non-flaring,” and Correctness reftethe total accuracy of both. Parameters
can be derived from the outcome table for the experimenhitndase, the prediction model has four
different possible outcomes, as shown in Table 1. The asstinteclasses of samples are denoted as
“positive” and “negative,” respectively. Samples corhgclassified as positive are defined as True
Positive (TP); samples correctly classified as negativelafimed as True Negative (TN). Samples
wrongly predicted as positive are defined as False PosHiR¢ and samples wrongly predicted as
negative are defined as False Negative (FN).

The TP rate is defined as the ratio of the number of positivesdamples predicted as positive
to the number of actual positive class samples

TP
TP =
rate TP T N (14)

The TN rate is defined as the ratio of the number of negatissdamples predicted as negative
to the number of actual negative class samples

TN
TN rate = m . (15)

The Correctness is defined as the ratio of the number of pesitass samples predicted as
positive to the number of actual positive class samplesfamnuegative samples as well

TP +TN
tness = . 16
Correctness TP + FP £ TN + FN (16)

5.3 Experimental Results and Analyses

The data set is divided into 10 folds. Therein nine folds aedufor training and the remaining
one fold for testing. The training set is applied in the aidpons described in Section 4 to build
the forecasting model. When the testing set is input intortfeglels, the forecasting results are
obtained. This process is repeated 10 times, and the aveahgeof test accuracy is considered as
an estimation of the prediction performance.

The proposed flare forecasting algorithms are implementatié Waikato Environment for
Knowledge Analysis (WEKA), which is data mining softwareittan in Java (Witten et al. 2011).
WEKA can be freely downloaded frointtp://www.cs.waikato.ac.nz/ml/wek&h the MLP algo-
rithm, the number of hidden layer nodes and the learning @péedt the default settings. In the LVQ
algorithm, the number of codebook vectors is set to 150 aachtimber of total training iterations
is set to 50.

To validate the availability of the sliding window techni&window sizew is set to two values:

0 and 2 for the two algorithms. The value of 0 means that thasgatkeeps its original type and
no sequential data are added; 1 means that three days ofnseqdata are introduced into the
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Table 2 Comparison of Sliding window Size Using the MLP Method

w=20 w=2

Experimentrp e (%) TNrate (%) CORR (%) TP rate (%) TN rate (%) CORR (%)
1 76 82.5 78.93 66.4 88.4 87.1
2 77.6 77.9 77.92 72.8 83 82.4
3 78.4 79 78.94 66.4 86.1 84.92
4 53.6 94 91.6 56 91.7 92.75
5 41.6 95 91.92 51.2 93.4 90.95
6 68 82.5 81.71 68 79.5 78.85
7 76 78.8 78.67 70.4 79.1 78.56
8 58.4 86.7 85.03 60.8 86.8 85.27
9 89.6 77 77.7 86.4 81.1 81.43
10 78.4 78.2 78.25 80.8 80.2 80.28
Average 69.76 83.16 82.39 67.92 84.93 84.25

Table 3 Comparison of Sliding window Size Using the LVQ Method

) w=0 w=2
EXpermentrp ate (%) TNrate (%) CORR (%) TP rate (%) TN rate (%) CORR (%)
1 74.4 81.97 81.48 71.2 83.33 82.63
2 72 77.75 77.41 72 80.15 79.68
3 66.4 86.67 85.5 64.8 87.4 86.1
4 52.8 93.48 91.13 56.8 93.87 91.73
5 62.4 84.8 83.51 56 90.59 88.59
6 76.8 72.71 72.47 63.2 81.3 80
7 79.2 71.32 71.78 65.6 80.05 79.21
8 69.6 77.06 76.63 62.4 84.07 82.82
9 88 70.25 71.27 86.4 80.15 81.51
10 86.4 65.34 66.56 80 76.52 76.72
Average 72.8 78.13 77.77 67.84 83.74 82.80

dataset. Ten experiments are carried out and results for &tidR VQ are shown in Tables 2 and 3
respectively.

From Tables 2 and 3, we can see that the total prediction acg€ORR) has improved with
predictors related to evolution in contrast to the origimas (MLP: from 82.39% to 84.25%, LVQ:
from 77.77% to 82.80%). This is mainly reflected in the TN ratiee TN rate for MLP is 83.16%
with a window size of 0 and 84.93% with a window size of 2. Thef@@nance of the LVQ algo-
rithm has improved more obviously. The TN rate of LVQ has g®thfrom 78.13% to 83.74% (an
increase of 5.61%) with increasing widow size. This meaastte information about evolution of
the predictors introduced by the sliding window is effeetigspecially for forecasting the case of no
flare occurring, and the MLP and LVQ can extract this inforiorat

6 CONCLUSIONS

Studies have found that not only does flare occurrence deprentaracteristics of the current mor-
phological and photospheric magnetic field, but it is al§luanced by previous properties. To verify
the effectiveness of information about evolution in thespot data of an active region, a short-term
solar flare prediction model is established using sequesuiaspot data. The prediction model is
established on data spanning the time from January 1996derbiger 2008. The information about
sunspot evolution covering three days or 12 dimensionsepiiut vector is introduced into neural

network algorithms by using a sliding window method, and MariRl LVQ are employed to learn

prediction models from this information. The experimensiults show that short-term prediction of
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solar flares within the sequential data describing evatutibsunspots is effective. Compared with
the model with sequential data describing the magnetic fiedgposed by Li (2011), the prediction
accuracy is 8.2% (82.80%: 74.58%) higher than in the LVQ wethased on data describing the
magnetic field.

Some improvements can be made in future work. The experahergults show that predictors
describing the evolution of sunspots are not enough to &stetlare” events. In order to improve
the accuracy of forecasting both “flare” and “non flare” egetite predictors for sunspots can be
connected with those describing magnetic fields to builchéegirated flare forecasting model in the
future.
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