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Abstract Accurate fitting formulae to the synchrotron functidn(x), and its com-
plementary functionZ(z), are performed and presented. The corresponding relative
errors are less tham26% and0.035% for F'(x) andG(z), respectively. To this end
we have, first, fitted the modified Bessel functioA$,;(z) and K,/3(x). For all the
fitted functions, the general fit expression is the same, abhdsed on the well known
asymptotic forms for low and large valuesxofor each function. It consists of multi-
plying each asymptotic form by a function that tends to uaitgero for low and large
values ofx. Simple formulae are suggested in this paper, dependinglustable
parameters. The latter have been determined by adoptingetrenberg-Marquardt
algorithm. The proposed formulae should be of great utditgl simplicity for com-
puting spectral powers and the degree of polarization foclsyotron radiation, both
for laboratory and astrophysical applications.
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1 INTRODUCTION

Approximate analytical formulae are often very useful arayoe indispensable in order to avoid the
computation of complicated transcendental functionss T$ithe case of the modified Bessel func-
tions and their integrals, especially those of the second kith a fractional order, e.df; /3(x) and

K5 /3(x), on which we focus our attention in this contribution. Wersky presenting, in Section 2,
results of fits to these two functions. Then, in Section 3, wéute the expression of the comple-
mentary synchrotron functioidy(z) = xK,/3(x), directly from functionk, 5(x), and report the
corresponding fit to the synchrotron functidri(x), before concluding with Section 4.

2 MODIFIED BESSEL FUNCTIONS K5/3 AND Ky /3
2.1 Definitions

The modified Bessel functions,., () and K, (z), of the first and second kind, respectively, are
particular solutions of Bessel'’s cylindrical differedtemuation, i.e. (Abramowitz & Stegun 1965)
d*w dw
2
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FunctionK, (z) is expressed as (Abramowitz & Stegun 1965)
mly(z) — 1, (z)

Ko (@) = 2 sin(vr) @
in terms of function/,, (x) that is written as (Abramowitz & Stegun 1965)
_ (=Y 2
L) = (2) kZ:Ok!F(V+k+1)’ ®)

in the form of an ascending series involving thefunction. In addition, functioni, (z) can be
written as (Abramowitz & Stegun 1965)

K, (r) = —2=+ /100 e (% — 1)”_%dt7 (4)

in integral representation.
Finally, this function admits the following simplified asytotic forms (Abramowitz & Stegun
1965)

A(z) = %r(y) (5) " forz<1

Ko (@) ~ _ . ©)
Ay (z) = \/;x_m_”” forez > 1

2.2 Fitting Formulae

In fitting a function, f(z) (here, the modified Bessel functions and the synchrotroatioms), the
main idea consists of expressing it in terms of its known g#piic forms, sayA; (z) for small
values ofr and A, (z) for largex values, and to put it in the form

f(z) = Ai(z)01(7) + Az(x)d2(2), (6)

whered; () andd,(z) are the functions one is looking for, which must respecyivdley the limits

{ 0(x)~1 for z <1 @

01(x) =0 for z>1

and

{ do(z) =0 for z <1 ®)

Sa(x)~1 for 2>1°

For this purpose, we propose the following expressions:

61(z) = e (@
Hy(x) = i: ag)xl/k ©)
k=1
and
52(17) =1—eH2®@
Hy(z) = Z af):cl/k ' (10)
k=1
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Fig. 1 Modified Bessel function<s ,5(x), together with its corresponding fit according to Eq. (6).

Table 1 CoefficientSaS) andaf) for FunctionKs 5 (x)

(1) (2)
k a, a,
1 —1.0194198041210243 —15.761577796582387
2 +0.28011396300530672
3 —7.71058491739234908 x 10~2

Notes: with this set of coefficients, the relative erroxi®.48%.

Table 2 Coefficientsa” anda\”’ for Functionks s (z)

(1) (2)
k a, a,;
1 —1.3746667760953621 —0.33550751062084
2 +0.44040512552162292
3 —0.15527012012316799

Notes: with this set of coefficients, the relative erroki®).54%.

In order to extract coeﬁicient@gl) anda,(f) for a given couple of orderg:;, ny), we proceed
by chi-squared minimization with the adoption of the LevergpMarquardt algorithm (Levenberg
1944; Marquardt 1963), in log-log scale. The obtained fititssn functionsis /5(x) and Ky 3(z),

which are presented in Tables 1 and 2, respectively, in teﬁtrmefficientsng) anda,(f), withn; =3
andny = 1 and relative respective errors, 0.48% and< 0.54%. These fits to function&’s /5 (x)
andK,,3(x) are plotted in Figures 1 and 3, respectively, while the spoading relative errors are
reported in Figures 2 and 4.

For high accuracy, we give, in Table 3, fit results for funotig, /5(z), with n; = ny = 4 and
with a relative errok 0.035%.
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Fig. 2 Relative error for the modified Bessel functidid; 3 (x), corresponding to the set of coeffi-
cients reported by Table 1.
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Fig. 3 Modified Bessel function<, /5 (x), together with its corresponding fit, according to Eq. (6).

Table 3 Coefficientsa\" anda!> for Functionks s (z) (High Accuracy)

(1) (2)
k ag Ay
1 —1.0010216415582440 —0.2493940736333195
2 4-0.88350305221249859 +0.9122693061687756
3 —3.6240174463901829 +1.2051408667145216
4 40.57393980442916881 —5.5227048291651126

Notes: With this set of coefficients, the relative erroki€).035%.
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Fig. 4 Relative error for the modified Bessel functidiis 3 (x), corresponding to the set of coeffi-
cients reported by Table 2.

3 SYNCHROTRON FUNCTIONS
3.1 Definitions

The synchrotron functiond; () andG(z), are defined by (Westfold 1959; Jackson 1962; Rybicki
& Lightman 1979; Fouka & Ouichaoui 2009)

F(x) = :C/OO K5 5(a”)da! .
G(x) = xKz3(x)

(11)

FunctionG(z) is called the complementary synchrotron function and isetones denoted
F,(z) (Westfold 1959). The simplest corresponding asymptotimiof these functions have the
following expressions (Westfold 1959; Rybicki & LightmaB79):

Fiz'/? for z< 1
F(x) ~ 12
(@) { Foe “21/2 for x> 1 (12)
and
GizV? for < 1
G(z) ~ , 13
(@) { Goe %22 for 2> 1 (13)

whereF, = 725/3 /\/31(1/3), Fy = \/7/2, G1 = F1 /2 andGy = F.

3.2 Fitting Formulae

FunctionG(z) can be easily derived directly from the fit to functiéfy 3 (). One has just to mul-
tiply the latter by variabler. For fitting function F'(x), we proceed in the same way as for the
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Fig. 5 Synchrotron functionf'(x), together with its corresponding fit according to Eq. (6).
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Fig.6 Relative error for the synchrotron functiof;(z), corresponding to the set of coefficients
reported by Table 4.

modified Bessel functions, i.e. putting it in the form givgniquation (6). We have just to consider
the corresponding asymptotic forms given by Equation (12).

The corresponding fit coefficients are reported in Table 4hWiese coefficients, the relative
erroris< 0.26%. FunctionF'(z) is plotted in Figure 5, together with the corresponding fitlevthe
relative error is reported in Figure 6, as a function of Valga:.
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Table 4 Coefficientsa|") anda > for the Synchrotron Functiof ()

(1) (2)
k ag ay,
1 —0.97947838884478688 —4.69247165562628882 x 102
—0.83333239129525072 —0.70055018056462881
3 40.15541796026816246 1.03876297841949544 x 10—2

Notes: with this set of coefficients, the relative erroki®).26%.

4 CONCLUSIONS

We have presented analytical fitting formulae with good eacies for the synchrotron function,
F(z), and its complementary functiot(z), based on their known asymptotic forms for low and
large values of:. We propose these formulae with the aim of directly and sjngpimputing these
transcendental functions and avoiding fastidious catimria. The derived general fitting formulae
can thus be used to evaluate the modified Bessel functionsyoba@ler: integer or non integer.
Finally, these fitting formulae should be of great help fomputing quantities of interest to syn-

chrotron radiation such as, e.g., the spectral power andetfpeee of polarization, both for laboratory
and astrophysical applications.
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