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Abstract The two-stream instability is common, responsible for manyobserved phe-
nomena in nature, especially the interaction of jets of various origins with the back-
ground plasma (e.g. extragalactic jet interacting with thecosmic background). The
dispersion relation that does not consider magnetic fields is described by the well-
known Buneman relation. In 2011, Bohata, Břeň and Kulhánek derived the relation
for the two-stream instability without the cold limit, withthe general orientation of a
magnetic field, and arbitrary stream directions. The maximum value of the imaginary
part of the individual dispersion branchesωn(k) is of interest from a physical point
of view. It represents the instability growth rate which is responsible for the onset of
turbulence mode and subsequent reconnection on the scale ofthe ion radius accom-
panied by a strong plasma thermalization. The paper presented here is focused on the
non-relativistic instability growth rate and its dependence on various input parameters,
such as magnitude and direction of magnetic field, sound velocity, plasma frequency
of the jet and direction of the wave vector during the jet – intergalactic medium in-
teraction. The results are presented in plots and can be usedfor determination of the
plasma parameter values close to which the strong energy transfer and thermalization
between the jet and the background plasma occur.
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1 INTRODUCTION

The most common plasma instabilities are the two-stream instabilities, which can occur during a
plasma jet interaction with the plasma background. Such situations are observed in astrophysical
processes, e.g. interaction of galactic jets with the intergalactic medium (e.g. Silk et al. 2012, and
references therein) or interaction of star jets with the interstellar medium (Murphy et al. 2008). Oscar
Buneman derived the basic dispersion relation describing such instabilities in the late 1950s for cold
unmagnetized plasmas (Buneman 1959). The magnetohydrodynamic instabilities in an ideal plasma
are discussed in Bonanno & Urpin (2011). Magnetic fields are crucial for the phenomena taking
place in jets (Urpin 2006). In 2011, Bohata et al. published apaper containing the derivation of the
non-relativistic dispersion relation for magnetized plasmas without the cold limit restriction (Bohata
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et al. 2012). It is called the Generalized Buneman Dispersion Relation (GBDR) and is described by
the equation
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whereΩα = ω − k · u

(0)
α is the Doppler shifted frequency,ωcα is the cyclotron frequency,ωpα is

the plasma frequency,F
(0)
α is the Lorentz force,eB is the unit vector in the direction of the magnetic

field andcsα is the sound velocity. Indexα denotes the corresponding media (jet or background).
In the previous work of Bohata et al. (2012), the numerical solution for the case of two identical

plasma beams with the same velocities, but opposite directions, was found for various input parame-
ters. The situation of the plasma jet interaction with the plasma background was studied as well and
the numerical solution for this problem was found by Horký (2012, 2013).

The maximum of the imaginary part of the solution is denoted as the Plasma Instability Growth
Rate (PIGR). This paper is focused on finding the plasma parameters for which this maximum oc-
curs (the non-relativistic case and the plasma jet interaction with the plasma background are as-
sumed). The calculations are performed on a microscopic level using the linear approximation. For
the plasma parameters leading to the maximum of the imaginary part of the dispersion relation, the
instability arises and amplitudes of all variables grow exponentially. In such a situation, the linear
approximation is no longer valid, and other methods for modeling of the physical phenomena must
be introduced. One of the possibilities is the Particle in Cell (PIC) simulation (e.g. Stockem et al.
2008). The results of these calculations can therefore be applied to: 1) The search for the instability
regimes in which strong thermalization, turbulence, micro-reconnections on ion radius, non-thermal
radiation, shock onset and other interesting phenomena canoccur. The subsequent PIC simulations
of the plasma behavior leading to significant phenomena seemto be the most reasonable next step
for research in this regime. 2) The tests for the acceptance of the PIC codes (the PIC code must
lead to an onset of instability for the parameters calculated by the method proposed in the next para-
graph). Section 2 gives a short description of the algorithmused for calculation of complex roots of
the GBDR relation. Section 3 discusses PIGR value dependences on various input parameters and
geometrical situations.

2 METHOD

The following indices were designated in our analysis: “j” for parameters of the jet and “b” for pa-
rameters of the background. It is beneficial to transform thevariables and the whole GBDR relation
to a dimensionless form. After this step the relation is simply scalable and the equations are covari-
ant in this transformation, which implies that the results can be used for both space and laboratory
plasmas, such as thermalization in astrophysical jets or infusion experiments. The relations for the
dimensionless form were chosen with regard to the zero background velocity as in Horký (2012,
2013):
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Ωj = ω − k cosϕ sin θk , Ωb = ω − ku2 cosϕ sin θk .
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Fig. 1 The system of coordinates used in calculations.

The reference system was set according to Figure 1, in which the directions of the respective
vectorsuα, B andk are drawn. The wave vector can point in any direction, the magnetic field
vector lies in the (x-z) plane and the jet is directed along thex-axis. The vector coordinates are

uα = (uα, 0, 0) ,

B = (B sin θB, 0, B cos θB) , (3)

k = (k cosϕ sin θk, k sin ϕ sin θk, k cos θk) .

After simple manipulation, the dimensionless form of the dispersion relation becomes (Horký 2012,
2013)
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where the geometrical terms are denoted as

G1 = (cos θB sin ϕ sin θk) ,

G2 = (cosϕ sin θk sin θB + cos θk cos θB) , (5)

G3 = (cos2 θB cosϕ sin θk − cos θB cos θk sin θB) .

This dimensionless relation is a polynomial equation with complex roots of the8th order. The
algorithm developed by Hubbard, Shleicher and Sutherland (Hubbard et al. 2001) was used to
find the solution. The algorithm was implemented in the Wolfram commercial software package
Mathematica 8.0.1. Unlike the Newton-Raphson method, thisalgorithm can select seed values that
later converge to solutions. The results are arranged into plots in which the real branches of the so-
lution have a different style than the imaginary branches, and the maximum imaginary value that
determines the PIGR value is highlighted. An example of the program’s output is shown in Figure 2.
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Fig. 2 Real (solid) and imaginary (dashed) branches of the GBDR dispersion relation and PIGR
value (denoted as Max) forωcj = ωcb = 0.5, csj = csb = 0.1, ωpj = 1, θk = π/2, ϕ = 0 and
θB = π/4. These values were used as initial values for the calculations, see Table 1 for details.

In the next step, the dependence of the PIGR value on various parameters of the dimensionless
GBDR (such as cyclotron frequencies of the jet and the background, the sound velocities of the jet
and the background, the plasma frequency of the jet and the directions of the magnetic field and of
the wave vector) is found.

3 RESULTS

The PIGR value was calculated during the program cycle running from the minimum to the maxi-
mum value of the tracked parameter while other parameters were fixed at their initial values. Intervals
of these parameters are shown in Table 1. It was not necessaryto change the jet velocity, because its
dimensionless value was fixed at 1.

Table 1 Parameters used for the numerical solution. The disper-
sion relation for the initial values is depicted in Fig. 1.

Parameter Initial value Minimum value Maximum value

ωcj , ωcb 0.5 0.1 3.0
csj , csb 0.1 0.1 1.5
ωpj 1 1 5

θk π/2 0 π/2

ϕ 0 0 π/2

θB π/4 0 π/2

3.1 The Dependence of the PIGR Value on the Cyclotron Frequencies

The cyclotron frequency of the jet and the cyclotron frequency of the background were increased
from the minimum value of0.1 to the final value of3.0 with a step size of0.1. The cyclotron
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Fig. 3 The dependence of the PIGR value on the jet cyclotron frequency.

Fig. 4 The dependence of the PIGR value on the background cyclotronfrequency.

frequency is proportional to the magnetic field intensity influencing the charged particles. The de-
pendence of the PIGR value on the cyclotron frequency of the jet is depicted in Figure 3, where
the almost linear increase of this relation forωcj > 0.6 is noticeable. The change of the slope at
this point (ωcj = 0.6) corresponds to the location of the minimum for the two different imaginary
branches of the dispersion relation. The dependence of the PIGR value on the cyclotron frequency
of the background is more complicated than the case of jet cyclotron frequency. In Figure 4, the
decrease of lower frequency values is visible. The curve reaches a minimum and then it rises to
an asymptote. The minimum is numerically determined to beωcb = 1.313 and the corresponding
PIGR value is equal to0.39795. This effect is caused by the fact that the solution has two imaginary
branches in this area and while the value ofωcb is increasing, the first branch is descending and the
second is rising. At the minimum both branches have equal PIGR values.

3.2 The Dependence of PIGR Value on the Sound Velocities

Sound velocity is proportional to(Tα/mα)1/2, whereTα is the plasma temperature, andmα is the
mass of the jet or of the background particles (electrons or ions). The indexα labels the correspond-
ing media (jet or background). Modification of the original Buneman dispersion relation by addition
of the sound velocities of both media is a result of the calculation with non-zero pressure gradi-
ent, i.e. without the cold limit. The dimensionless parametercs involves the plasma jet velocity, see
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Fig. 5 The dependence of the PIGR value on the sound velocities.

Fig. 6 The dependence of the imaginary branches oncsb.

Equation (2), andcsj > 1 indicates a subsonic jet whilecsj < 1 denotes a supersonic one. Both the
sound velocity of the jet and the sound velocity of the background were increased from the initial
value0.1 to the final value1.5 with a step size of0.1. The dependence of the PIGR value on the
sound velocities of both jet and background is depicted in Figure 5. The jet dependence (unfilled
circles) shows a decreasing trend and the PIGR value is zero,while csj ≥ 1. This implies that for a
subsonic jet (in dimensionless form the sound velocity equals 1) the GBDR relation has no imagi-
nary branch and therefore the PIGR value is zero and no instabilities occur. The dependence of the
PIGR value on the sound velocity of the background (filled circles) is more complicated. An inter-
esting peak is located at the valuecsb

.
= 0.9. We made a three-dimensional plot of the imaginary
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Fig. 7 The dependence of the PIGR value onωpj.

Fig. 8 The dependence of the PIGR value on the magnetic field direction (filled circles) and on the
wave vector direction (unfilled circles).

branches of the GBDR solution to uncover the origin of this local maximum. The result can be seen
in Figure 6. The first axis corresponds tocsb, the second tok, and the vertical axis to the value of
the imaginary branch of the PIGR coefficient. This clearly shows that the peak originates from the
ridge present in the solution of the dispersion relation.

3.3 The Dependence of the PIGR Value on the Plasma Frequency of the Jet

All dimensionless frequencies in the system are related to the background plasma frequency, see
Equation (2). This means that the dimensionless plasma frequency of the backgroundωpb is al-
ways equal to 1, see Equation (2). The dimensionless plasma frequency of the jetωpj is in fact the
ratio of the jet to the background plasma frequencies. This parameter is therefore proportional to
(nej/neb)

1/2. During the numerical calculation it was increased from theinitial value1 to the final
value5 with a step size of0.5. It is a rather big step, but as can be seen in Figure 7, the dependence
is very simple and does not have any discontinuities or localmaxima or minima.
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3.4 The Dependencies of the Directional PIGR Value

The dependence of the PIGR value on the magnetic field direction is simply predictable from the
Lorentz equation of motion. A longitudinal magnetic field will evoke less disturbances than a per-
pendicular one. As can be seen in Figure 8, the PIGR value has amaximum atθB = 0 (perpendicular
direction) and decreases for increasingθB. The dependence of PIGR value on the direction of the
wave vector is also predictable due to the dot product between k anduα in the GBDR relation, so if
the angle between the wave vector and the velocity equals90◦, the PIGR value should be zero.

In Figure 8, the dependence shows a decreasing trend and it iszero at the angle90◦. Because of
the cylindrical symmetry, both anglesϕk andθB were only varied from0◦ to 90◦ with a step size of
10◦.

4 CONCLUSIONS

Plasma jets from black holes and other types of astronomicalobjects are driven by magnetic fields,
and classical Buneman instability analysis (without magnetic fields) is inapplicable. All calculations
must be performed using the GBDR with nonzero pressure gradient and nonzero magnetic fields. The
PIGR as the maximum of the imaginary parts of the GBDR relation was numerically calculated in
this paper. The PIGR value is responsible for a strong thermalization during the jet-background inter-
action and these calculations can be useful for understanding the underlying processes. Furthermore,
the known PIGR value can be used as a simple test of PIC numerical methods frequently used for
plasma jet simulations. It is an interesting but still an open question as to whether the PIGR value
could be analytically directly calculated from the dimensionless GBDR relation. The dispersion re-
lation is not anisotropic in velocity space. This possibility can cause other phenomena, e.g. particle
acceleration, shock origin, etc. (Nishikawa et al. 2005; Mizuno et al. 2009, and references therein),
which will be the topic of detailed PIC simulations.
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