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Abstract A method of calculating the induced electric field is presented. The induced
electric field in the solar atmosphere is derived by the time variation of the magnetic
field when the accumulation of charged particles is neglected. In order to derive the
spatial distribution of the magnetic field, several extrapolation methods are introduced.
With observational data from the Helioseismic and MagneticImager aboard NASA’s
Solar Dynamics Observatory taken on 2010 May 20, we extrapolate the magnetic field
from the photosphere to the upper atmosphere. By calculating the time variation of the
magnetic field, we can get the induced electric field. The derived induced electric field
can reach a value of102 V cm−1 and the average electric field has a maximum point at
the layer 360 km above the photosphere. The Monte Carlo method is used to compute
the triple integration of the induced electric field.
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1 INTRODUCTION

The electric field in the solar atmosphere plays an importantrole in heating plasma, and acceler-
ating and transporting charged particles (Priest & Forbes 2000). At the same time, its distribution
provides rich information about solar flares, as well as other dynamic solar activities. The simulta-
neous determination of electric and magnetic field vectors enable an estimation of Poynting flux of
electromagnetic energy entering the corona and the flux of relative magnetic helicity. However, the
determination of the electric field is quite harder, with values smaller than the magnetic field in the
solar atmosphere.

Although the solar activities are dominated by the magneticfield, and much progress has been
made in this aspect in the past decades, there are still many points beyond our understanding, such
as the physical mechanisms of flares and filament eruptions. It is time to determine whether the elec-
tric field, its magnitude, geometry, time-dependence and especially spatial distribution, can provide
us with powerful tools to probe solar activities where particle acceleration and energy release are
believed to occur.

Wien (1916) is the first author who proposed measuring the electric field of solar plasma and
measured the motional electric field using the Stark effect.Around 1980, some attempts to measure
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the electric field with helium and silicon spectra had been made, which suggested an electric field
of 700 V cm−1 (Davis 1977) and 300 V cm−1 (Jordan et al. 1980) respectively. Even so, Moran &
Foukal (1991) pointed out that direct measurement of the electric field by the Stark effect is hard to
perform with low sensitivity.

Because there was not an efficient and reliable way to directly measure the electric field of
the solar atmosphere, researchers investigated many indirect methods, which either explicitly or
implicitly assume ideal magnetohydrodynamics (MHD),E = −v×B/c. The tracking method and
inductive method are two classes of such techniques.

According to the ideal MHD equation above, the magnetic fieldis known from the vector mag-
netogram, so both of the classes have focused on determiningthe velocity vector. The tracking
method, developed by November & Simon (1988), computes velocity through a cross-correlation
function that depends on the shift of feature points betweentwo images. Although tracking methods
are simple and robust, they also suffer from some shortcomings, for example, this technique is ac-
tually two-dimensional without a vertical component. Inductive methods, first developed by Kusano
et al. (2002), improve the result of tracking methods with a solution to the vertical component from
the magnetic induction equation and derive a three-component velocity vector from a sequence of
vector magnetograms. Since the seminal work of Kusano et al.(2002), several techniques have been
developed to determine velocity from vector magnetograms,and Welsch et al. (2007) provided de-
tailed tests and comparisons of these techniques.

Poletto & Kopp (1986) derived the maximum electric field of 2 Vcm−1 in a large two-ribbon
flare using the reconnection theory of Priest & Forbes (2000)where they used a very simple rela-
tionship between the electric field along the current sheet and the observable velocity and magnetic
field. With a similar theory, Wang et al. (2003) discovered two stages of electric evolution in another
two-ribbon flare: as a first stage, the electric field remains at the value 1 V cm−1, which represents
an average over 20 minutes, and is followed by a value of 0.1 V cm−1 over the next 2 hours. Qiu
et al. (2002) worked on an impulsive flare with high cadence Hα observations at Big Bear Solar
Observatory (BBSO) and estimated the maximum electric fieldto be 90 V cm−1.

Recently, Fisher et al. (2010) proposed a way to compute the electric field from a sequence of
vector magnetograms by using Faraday’s law and showed that it is possible to derive an electric field
whose curl is the time derivative of three components ofB. The main problem for these authors is
the non-unique solution of Faraday’s law.

In this paper, our goal is to present a method to indirectly compute the three-components of the
induced electric field distribution in the solar atmospherethrough evolution of a vector magnetic
field. We first extrapolate the magnetic field from the photosphere to the corona, and then calculate
the induced electric field from the time variation of the magnetic field.

In solar plasma, there are three kinds of electric fields: a static electric field, induced electric
field and motional electric field. Here we only focus on the induced electric field, which is caused
by a change in the magnetic field. The static electric field, which is triggered by an accumulation of
charged particles, and the motion of plasma in the directionperpendicular to the magnetic field are
not considered due to the screening of plasma in the solar atmosphere.

The paper is structured as follows. In Section 2 we extrapolate the vector magnetic field distribu-
tion from a magnetogram; in Section 3 we compute the electricfield from the extrapolated magnetic
field; and in Section 4 we give an evaluation by use of the observational vector magnetograms from
Helioseismic and Magnetic Imager aboard NASA’sSolar Dynamics Observatory (HMI/SDO). The
conclusion and discussion are given in Section 5.

2 EXTRAPOLATION OF MAGNETIC FIELD

At present, although many attempts have been made to estimate the coronal magnetic field (House
1977; Arnaud & Newkirk 1987; Judge 1998; Judge et al. 2001), reliable information about the mag-
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netic field is only available for the photosphere. Similar tothe electric field, we currently, and in the
near future, have to face the fact that direct measurements of the magnetic field in the global solar
atmosphere are still unavailable.

There are many methods to extrapolate the magnetic field fromthe photospheric magnetic field
under the assumption that the magnetic field is nearly force-free. A force-free magnetic field of the
solar atmosphere must satisfy the following equations:

j × B = 0, (1)

∇× B = αB, (2)

∇ · B = 0, (3)

whereα is a scalar function of position and time. The above equations imply the Lorentz force is
absent andα is a constant along the magnetic field line. The equations represent a potential field
if α = 0, a current-carrying linear force-free (LFF) field ifα = constant, and a general nonlinear
force-free (NLFF) field ifα = f(r).

The extrapolations of potential and LFF fields are maturely developed. The potential and LFF
fields can be determined directly from the line-of-sight (LOS) component of the magnetic field (e.g.
MDI/SOHO) as an input, andα has to be computed in an LFF field from some additional data (Chiu
& Hilton 1977; Seehafer 1978; Alissandrakis 1981; Gary 1989).

For the NLFF field, several methods have already been proposed: the Grad-Rubin method
(Sakurai 1981), the MHD relaxation method (Chodura & Schlueter 1981; Roumeliotis 1996) and
the optimization method (Wheatland et al. 2000). The last one will be used in this paper.

In the optimization approach, Wheatland et al. (2000) defined a quantityL

L =

∫
V

[B−2|(∇× B) × B|2 + |∇ · B|2]dV, (4)

whereB is defined in a volumeV . If L is decreased to zero and Equations (1)–(3) are fulfilled, then
the field is force-free in the volumeV . In order to reduceL, B needs to evolve like

∂B

∂t
= µF . (5)

Wheatland et al. (2000) tested the optimization method. Inhester & Wiegelmann (2006) provided
a detailed comparison of the optimization and Grad-Rubin methods by implementing these two
algorithms and comparing their performance. In addition, Liu et al. (2011b) used two semi-analytical
solutions of force-free fields to test two other NLFF extrapolation methods: the boundary integral
equation (BIE) method developed by Yan & Sakurai (2000) and the approximate vertical integration
(AVI) method developed by Song et al. (2006).

Wiegelmann (2004) improved the optimization approach by showing how the magnetic field can
be reconstructed only from the bottom boundary and developed a code which will be used later.

Moreover, although the NLFF field model is widely-used (Régnier & Amari 2004; Wiegelmann
et al. 2005; Schrijver et al. 2008), a joint study by De Rosa etal. (2009) concluded that a successful
application of NLFF field extrapolation should satisfy several requirements. Recently Wiegelmann
et al. (2012) offered a detailed discussion of this problem and proved that their results fulfill these
requirements. The results of NLFF modeling should be used with some caution.

3 CALCULATING INDUCED ELECTRIC FIELD DISTRIBUTION

In the solar atmosphere, the static electric field is neglected due to plasma screening. We consider
the case where there is no accumulation of charged particlesin the solar atmosphere, and the electric
field is mainly generated from the time variation of the magnetic field. That is,

∇ · E = 0, (6)
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and
∇× E = Ω, (7)

where

Ω = −
∂B

∂t
. (8)

We could derive the electric field directly from the time variation of the magnetic field (Batchelor
2000)

E =
1

4π

∫∫∫
D

Ω(ξ, η, ζ) × R

R3
dξdηdζ. (9)

In order to deriveE from Equation (9), we introduce the Monte Carlo method whichis a numer-
ical simulation method to solve the triple integral problem. This method can be used to approximate
the integral if a precise value of the integral is not important and estimating its value is enough, or if
it is not possible to calculate a precise value.

If f(x, y, z) is a continuous function on domainD, andg(x, y, z) is a probability density func-
tion such that ∫∫∫

D

g(x, y, z)dxdydz = 1, (10)

(xi, yi, zi)(i = 1, 2, ...N) are a sequence of random numbers that fall in domainD, and according
to the basic theorem of the Monte Carlo method, whenN is large enough, we have

∫∫∫
D

f(x, y, z)dxdydz ≈
1

N

N∑
i=1

f(xi, yi, zi)

g(xi, yi, zi)
. (11)

If g(x, y, z) is constant, Equation (10) becomes

g(x, y, z)

∫∫∫
D

dxdydz =
1

D
, (12)

and ∫∫∫
D

f(x, y, z)dxdydz ≈
D

N

N∑
i=1

f(xi, yi, zi). (13)

By applying the Monte Carlo method to Equation (9), we get thefinal equation ofE as

E ≈
D

N · 4π

N∑
i=1

Ω(ξi, ηi, ζi) × R

R3
. (14)

4 THE INDUCED ELECTRIC FIELD IN NOAA AR 11072

To implement the method we described in the previous sections, we provide an example here. First
we extrapolate the magnetic field of the photosphere from magnetograms, then we compute the time
difference of two magnetic field distributionsΩ = −∂B/∂t, and finally we use the Monte Carlo
method to calculate the electric field distribution.

In this example, we use observational data from HMI/SDO which provides high spatial and tem-
poral resolution vector magnetograms (Schou et al. 2012). HMI provides continuous vector magne-
tograms at a 12-minute cadence and has released several dataseries of cutouts of the original full
disk images over the past two years. The full released data summary can be found at theSDO Joint
Science Operations Center webpage (http://jsoc.stanford.edu). From the available data releases, we
chose the 6-day cutouts of 512×512 pixels for NOAA AR 11072 from 2010 May 20 to 2010 May
26.
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z=360km z=720km z=1080km

z=1440km z=1800km z=2160km

Fig. 1 Extrapolated results of a magnetogram for AR 11072 observedfrom HMI/SDO at 12:12 on
2010 May 20. The size of every image is 10.8× 10.8 Mm2, and the value ofz means the distance
from the photosphere in units of km. Arrows show directions and amplitudes ofBx andBy , while
the background image shows the amplitude ofBz .

We run the code developed by Wiegelmann (2004) (optimization method) to extrapolate the
magnetic field from vector magnetograms, and both potentialand the NLFF fields are generated.
Liu et al. (2011a) provided a detailed comparison of the NLFFand potential fields. We extrapolate
the magnetic field to a volume of 512× 512× 9 pixels and the distance between two adjacent pixels
is 0.5 arcsec. Figure 1 shows the extrapolated NLFF field of one magnetogram.

The horizontal cuts of the lower six layers consisting of 30× 30 pixels are shown in Figure 1.
The value ofz indicates height from the photosphere in units of kilometers, arrows show directions
and amplitudes ofBx andBy, while the background image shows the amplitude ofBz.

Table 1 shows the maximum and average value of the three components of the extrapolated
magnetic field, and Figure 2 shows the average of the absolutevalue of the magnetic field at six
layers. In Figure 3, we show the difference between two extrapolated results, that is,B2 - B1 where
B1 is the magnetic field in Figure 1.

Table 2 shows the maximum and average value for the difference from the extrapolated magnetic
field, and Figure 4 shows the average of the absolute value of∆B at six layers. The Monte Carlo
method requires thatΩ = −∂B

∂t
is a continuous function in Equations (9) and (14), but our observed

Table 1 Maximum and Average Value ofB at Different Layers

Z max(|Bx|) max(|By |) max(|Bz |) mean(Bx) mean(By) mean(Bz)
(km) (G)

360 1 × 103 8.4 × 102 8.3 × 102 4 × 10−1 −1.1 × 10−1 –3.2
720 1.1 × 103 7.8 × 102 1.1 × 103 7.6 × 10−1 −1.2 × 10−1 –3.4
1080 7.2 × 102 1.1 × 103 2.7 × 103 6.4 × 10−1 −9.6 × 10−2 –3.2
1440 8.2 × 102 1 × 103 4.5 × 102 4.5 × 10−1 −3.3 × 10−2 –3.3
1800 1.9 × 102 4.2 × 102 8.6 × 102 3.9 × 10−1 −4.4 × 10−2 –3
2160 2.7 × 102 2.7 × 102 8.1 × 10 3.2 × 10−1 −3.3 × 10−2 –3
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Fig. 2 The average of absolute intensity ofB at six layers.

z=360km z=720km z=1080km

z=1440km z=1800km z=2160km

Fig. 3 Time variation of the magnetic field extrapolated from two continuous vector magnetograms.
The first one is observed at 12:12 on 2010 May 20 by HMI/SDO, and the other is observed 12
minutes later.

and extrapolatedΩ is discrete with a spatial distance of 0.5 arcsec. Thus, we linearizeΩ in units of
0.5 arcsec to reconstruct a continuous function.

We use the linear algorithm below to computeΩ(x, y, zup) of the upper projection in Figure 5:

Ω(x, yback, zup) = Ω(xleft, yback, zup) × (xright − x)/0.5 + Ω(xright, yback, zup) × (x − xleft)/0.5,

Ω(x, yforth, zup) = Ω(xleft, yforth, zup) × (xright − x)/0.5 + Ω(xright, yforth, zup) × (x − xleft)/0.5,

Ω(x, y, zup) = Ω(x, yback, zup) × (yforth − y)/0.5 + Ω(x, yforth, zup) × (y − yback)/0.5,
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Table 2 Maximum and Average Value of∆B at Different Layers

Z max(|∆Bx|) max(|∆By|) max(|∆Bz |) mean(∆Bx) mean(∆By) mean(∆Bz)
(km) (G)

360 1.2 × 103 1.4 × 103 1.2 × 103 1.5 × 10−1 1.7 × 10−1 4.3 × 10−2

720 1.1 × 103 1 × 103 1.3 × 103 2.2 × 10−1 2.7 × 10−3 4.1 × 10−2

1080 7.4 × 102 1.1 × 103 2.7 × 103 −1.7 × 10−1 1.6 × 10−1 4.2 × 10−2

1440 8.1 × 102 1 × 103 4.8 × 102 −8.9 × 10−2 −6.4 × 10−3 3.9 × 10−2

1800 1.9 × 102 4.2 × 102 8.7 × 102 −8.8 × 10−2 6.8 × 10−2 3.7 × 10−2

2160 2.7 × 102 2.6 × 102 8.9 × 10 −9 × 10−2 3.7 × 10−2 3.6 × 10−2

mean(|ΔB|)

ΔBz

ΔBy

ΔBx

0 500 1000 1500 2000 2500
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80
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Fig. 4 The average of absolute intensity of∆B at six layers.

Table 3 Maximum and Average Value ofE at Different Layers

Z max(|Ex|) max(|Ey|) max(|Ez|) mean(Ex) mean(Ey) mean(Ez )
(km) (V cm−1)

360 5.5 × 102 3.9 × 102 2.5 × 102 3.5 × 10−3 1.6 × 10−3 1.1 × 10−3

720 3.6 × 102 1.7 × 102 4.4 × 102 9 × 10−4 2.3 × 10−4 −1.4 × 10−3

1080 4.6 × 102 2.3 × 102 1.6 × 102 2.1 × 10−3 1.2 × 10−3 7.9 × 10−4

1440 8.1 × 10 2 × 102 1.1 × 102 −2.1 × 10−4 −7.5 × 10−5 −3.5 × 10−5

1800 1.2 × 10 1.1 × 10 1.8 × 10 −2.7 × 10−4 −4.3 × 10−4 −1.6 × 10−4

2160 2.2 × 10 1.2 × 10 9.3 −2.2 × 10−5 −4.1 × 10−4 −1.2 × 10−4

where

xleft = x1 = x4 = x5 = x8, xright = x2 = x3 = x6 = x7,

yback = y1 = y2 = y5 = y6, yforth = y3 = y4 = y7 = y8,

zdown = z5 = z6 = z7 = z8, zup = z1 = z2 = z3 = z4.

Similarly, we can getΩ(x, y, zdown), together withΩ(x, y, zup), and we compute the linearized
Ω(x, y, z) from

Ω(x, y, z) = Ω(x, y, zdown) × (zup − z)/0.5 + Ω(x, y, zup) × (z − zdown)/0.5.

To save time, we only generate 10 000 random points in a cube of512× 512× 7, and calculate
the distribution of the induced electric field following Equation (14). One of our results is shown in
Figure 6.
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Fig. 5 TheΩ at the pointA(x, y, z) is linearized from the eight points adjacent to it. The position of
these adjacent points is (xi, yi, zi, i = 1...8), and every edge of the cube represents 0.5 arcsec. Point
A has two projections in the upper and lower surfaces where the value ofΩ should be computed
first.

z=360km z=720km z=1080km

z=1440km z=1800km z=2160km

Fig. 6 Computed “vector electrograms” (10.8× 10.8 Mm2) of different depths. Arrows show direc-
tions and amplitudes ofEx andEy, while the background image shows the amplitude ofEz.

Table 3 shows the maximum and average value of the three calculated components of the electric
field and Figure 7 shows the average of the absolute value of electric field at six layers. The average
of the absolute electric field reaches a maximum at the layer 360 km above the photosphere.

5 SUMMARY AND DISCUSSION

In this paper, we describe and implement a new method to calculate the distribution of the induced
electric field in the solar atmosphere using a sequence of vector magnetograms as an input.

We first introduce several extrapolation methods for the magnetic field and make a simple com-
parison of these methods, then we choose the optimization method in our example to extrapolate the
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Fig. 7 The average of absolute intensity ofE at six layers.

magnetograms observed by HMI/SDO from the photosphere to the corona. We also derive a special
solution of the electric field in the form of a triple integral.

To solve the triple integral problem, we utilize the Monte Carlo method to obtain a new equation
describing the electric field. As this method requires a continuous function, we linearizeΩ which is
originally a discrete function in the spatial domain. A similar linearization has been used to compute
the time variation of the magnetic field from the magnetograms with a 12-minute time resolution,
that is, we assume thatB goes through a linear change in this 12-minute interval.

Through the derivation, it is proved that as long as the boundary condition (Batchelor 2000) is
fulfilled, we can obtain the three-component electric field of the solar atmosphere from only vector
magnetograms. In our example for NOAA AR 11072, the result shows that the intensity distribution
of the induced electric field varies at different layers: it reaches a value of102 V cm−1 and the aver-
age electric field has a maximum point at the layer 360 km abovethe photosphere. However, there
are several shortcomings with this method that need to be resolved. First, the boundary condition
(Batchelor 2000) is not strictly satisfied, because in the quiet area, time variation of the magnetic
field is small but not zero. Secondly, the temporal and spatial resolution of the HMI/SDO vector
magnetogram is still not high enough to provide continuous time and spatial sequences, so lineariza-
tion methods have to be used twice in our calculation: one is to compute∂B/∂t which assumes the
magnetic field changes linearly over this 720s interval, andthe other is to satisfy the requirement of
the Monte Carlo method which needs a continuous function in the spatial domain as input. Thus our
calculation process might not fully reflect the real situation of the Sun. Finally, we use the Monte
Carlo method to compute the triple integration of a large volume, which is a time-consuming job,
and we have to adopt a small sample of only 10 000 random numbers, but a larger sample could give
more accurate results.
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