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Abstract A model of a cloud formed by massive strings is used as a sofi@@nchi
type Il cases. We assume that the expansétyrin the model is proportional to the
shear(o). To get an exact solution, we consider the equation of statieeofluid to
be in the stiff form. It is found that the bulk viscosity playa very important role
in the history of the universe. In the presence of bulk viggdke particles dominate
over strings whereas in the absence of it, strings dominagetbe particles, which is
not consistent with recent observations. Also we obseraethie viscosity causes the
expansion of the universe to be accelerating. Our models\anlging from an early
decelerating phase to a late time accelerating phase. Tygcghand geometrical
behaviors of these models are discussed.
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1 INTRODUCTION

In recent years, there has been considerable interesirig sismology. One of the proposals of the
Grand Unified Theories (GUTS) is that the universe undenagaftase transition as the temperature
fell below Tqur ~ 10%% K when the age of the universe wasyr ~ 10735 s (Zeldovich et al.
1975; Kibble 1980; Everett 1981; Vilenkin 1981). There wdsss of symmetry when the universe
underwent the GUT phase transitiortgtyr. At 7' < Teur, the symmetry between the strong and
electro-weak forces spontaneously broke. The phaseti@rsassociated with loss of symmetry led
to the formation of topological defects such as domain watismic strings, monopoles, etc. Cosmic
strings are the important topologically stable defectsclwhmight have been found during a phase
transition in the early universe (Kibble 1976). The exisenf a large scale network of strings in the
early universe does not contradict the present-day ohsenga The vacuum strings may generate
density fluctuations sufficient to explain the formation aeflaxies (Zeldovich 1980). The cosmic
strings coupled stress-energy to the gravitational fieleer&fore, the study of gravitational effects
from such strings will be interesting. The general relatici treatment of strings was initiated by
Letelier (1979, 1983). Here we have considered gravitatieffects that arose from strings by the
coupling of stress-energy of strings to the gravitationeltfi Letelier (1979) defined the massive
strings as the geometric strings (massless) with partittashed along their expansions.

The strings that form the cloud are the generalization ofbalasi’s relativistic model of strings
(called p-strings). This is the simplest model wherein we have pagi@nd strings together. In
principle, we can eliminate the strings and end up with a @lotiparticles. This is a desirable
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property of a model of a string cloud that can be used in cosgyo$ince strings are not observed
at the present time due to evolution of the universe (Bae@jal. 1990; Yadav et al. 2007; Saha &
Visinescu 2008; Saha et al. 2010).

Most cosmological models assume that the matter in the ts@vean be described by ‘dust’ (a
pressureless distribution) or at best a perfect fluid. Teehmeaualistic cosmological models we should
consider the presence of a material distribution other thparfect fluid. Cosmological models of
a fluid with viscosity play a significant role in the study ofbéwtion of the universe. The viscosity
mechanism in cosmology can account for high entropy perdseirythe present universe (Weinberg
1972). It is well known that at an early stage of the univereemneutrino decoupling occurred, the
matter behaved like a viscous fluid (Kolb & Turner 1990). Vi&irg (1971, 1972) derived general
formulae for bulk and shear viscosity and used these to atalihe rate of cosmological entropy
production. He deduced that the most general form of thegga@momentum tensor, allowed by
rotational and space-inversion invariance, contains k\igtosity term proportional to the volume
expansion of the model. Padmanabhan & Chitre (1987) alssdribat viscosity may be relevant for
the future evolution of the universe. If the coefficient ofkbuiscosity decays sulfficiently slowly,
ie.& ~ phmn < % then the late epochs of the universe will be viscosity datad, and the
universe will enter a final inflationary era which has a stesidye character. Cosmological models
with viscous fluid in the early universe have been widely désed in the literature (for example see
Pradhan et al. 2012; Pradhan & Lata 2011; Pradhan 2009; &ma&iKumhar 2009; Pradhan et al.
2008; Pradhan et al. 2007; Pradhan et al. 2005; Yadav 2010; Xadav et al. 2012).

Stiff fluid cosmological models create more interest in tluelg because, for these models, the
speed of light is equal to the speed of sound and its goveatjngtions have the same characteristics
as those of a gravitational field (Zeldovich 1972). Barro®g@a) has discussed the relevance of a
stiff equation of state = p to the matter content of the universe in its early stage ofutiom.
Wesson (1978) investigated an exact solution of Einstdiald equation with the stiff equation
of state. Mohanty et al. (1982) investigated a cylindricaymmetric Zel'dovich fluid distribution
in general relativity. Gotz (1988) obtained a plane symriaeolution of Einstein’s field equation
for a stiff perfect fluid distribution. Pradhan & Kumhar (Zf)0nvestigated a locally rotationally
symmetric (LRS) Bianchi type Il (B-II) bulk viscous universiith decaying vacuum energy density
in general relativity. Recently Yadav et al. (2011) haveestigated a string LRS B-II universe in
general relativity.

B-1l space-time has a fundamental role in constructing @egical models suitable for describ-
ing the early stages of evolution of the universe. Asseo &($887) emphasized the importance of
a B-Il universe. In the present paper we have considered @ rhBdel of spatially homogeneous
B-Il cosmology. To obtain exact solutions, the field equasibave been solved for the case when
the equation of state of the fluid is in the stiff form. The paigeorganized as follows. The metric
and the field equations are presented in Section 2. In Setior deal with the solution of the field
equations with a cloud of strings. In Subsection 3.1 we diesssome physical and geometric prop-
erties of the model. In Subsection 3.2 we give the solutiothéabsence of bulk viscosity. A dark
energy interpretation of the derived models is given in i8aect. Finally, in Section 5, concluding
remarks are given.

2 THE METRIC AND FIELD EQUATIONS
We consider the B-Il metric in the form
ds® = —dt* + B*(dy + wdz)* + A?(dx? + dz?), (1)

where A and B are functions of only. The energy-momentum tensor for a cloud of strings in the
presence of bulk viscosity is taken as

Tij = (p+ pluivj + pgij — Avixy + £0(gi5 + uiug), (2
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whereu; andz; satisfy the condition
wut = —zty; = —1, ue;, =0, )

pis the isotropic pressurg;is the proper energy density for a cloud of strings with péest attached
to them,\ is the string tension density! the four-velocity of the particles, and is a unit space-like
vector representing the direction of the string. In a co-imgoordinate system, we have

u' =(0,0,0,1), ‘= (%,0,0,0). (4)
The particle density of the configuration is given by
pp = Riju't’ (5)

wherep, is the rest energy density of the particles attached to tivegst The string tension density,
A, can take positive or negative values. A negative valug ofpresents a universe filled with no
strings having only an anisotropic fluid, whereas its pesitialue represents strings loaded with
particles forming the surface of a world sheet (Berman 1290a

The Einstein’s field equations (withtG = 1 andc = 1)

1
R;j — §Rgij =T (6)

for the metric (1) lead to the following system of equations:

A A2 3B?
G22—2Z+E—ZF——Z)+§9+/\, (7)
A B AB 1B?
G11—Gs3—z+§+ﬁ+zﬁ——p+§9, (8)
AB A2 1B?
Goo =2—F5+ 5 — =p, 9)

AB T A2 4 A%
where an overdot stands for the first and a double overdobéosécond derivative with respecttto
The spatial volume for LRS B-Il is given by
V =A’B. (10)

We defineS = (AQB)% as the average scale factor of the LRS B-Il model (1) so tleatitbble’s
parameter is given by
S 1(24 B
H_§_§<7+§>' (11)

We define the generalized mean Hubble’s paramiétas
H, + Hy + H.), 12)

whereH, = % H, = % andH, = H, are the directional Hubble’s parameters in the directidns o
x, y andz respectively.
The deceleration parametgis conventionally defined by

SS9

% (13)

q:
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The scalar expansiah shear scalar? and the average anisotropy parametgr are defined by

2AB

=+ (14)
3
% (ZH - _92> (15)
=1
3

1 <AH1>2
=2 (16)
3=\ H
whereAH; = H, — H(i =1,2,3).
The Raychaudhuri equation reads as

S 3 1
Z - 9524 Zep—Z . 17
35 a+2§ 2(p+3p) a7)

3 SOLUTION OF THE FIELD EQUATIONS

The field Equations (11)—(13) are a system of three equatidtis five unknown parameters
A, B, p, p and\. Two additional constraints relating to these parametersequired to obtain ex-
plicit solutions of the system. Firstly, we assume that tkiga@sior? in the model is proportional to
the shear. This condition leads to

1 (A B A B
— 2= 2= 18
s(i-5) - (5s) "
which yields .
A B
A mg ) (19)
wherem = 211’%:’\;%1 andb are constants. Equation (19), after integration, reduxes t
A=DB". (20)

Secondly, we assume that the fluid obeys the stiff fluid equoatf state, i.e.

p=p. (21)
Using Equations (8) and (9) in Equation (21) we obtain

A B _AB A2
A+B+3AB+A2—§9=0. (22)

In view of Equation (20), Equation (21) is taken as
52

. B X
28 + dm— = B
Ty T it 1)

(23)

where we have assumed that the coefficient of bulk viscosityiersely proportional to expansion,
i.e.£{0 = x (say) = constant.
Let B = f(B) which implies thatB = ff’, wheref’ = -j;. Hence Equation (23) can be
written as
d f? X

@(f )+4m§ = B, (24)
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which on integration gives

dB
dt = ———. (25)
VaB? +bB—4m
Here,a = Mw andb is a positive constant of integration. Hence the model (l§dwiced to
ds? = L + B2(dx + zdy)? + B*™(dy? + dz*%) (26)
aB? + bB—4m '
After using a suitable transformation of coordinates, tloelet (26) reduces to
ds® = R + T%(dx + zdy)? + T?™(dy? + dz?) (27)
aT? + bT—4m ' ’

3.1 The Geometric and Physical Significance of the Model

Here we discuss some physical and kinematic propertieedaftting model (27).
The pressurép), the energy densitp), the string tensioii\), and the particle density,,) for the
model (27) are given by

m(m + 2) X a1 11
—p= opT 20 +2m) 28
p=r 2 [(2m2+3m+1)+ 12 D) (28)

1/2m?—3m+1 1

A=3 <2m2 +3m + 1) X7 em-n) (29)

1/ m?—=5m+1 9 3 1
- (=T p—2+2m) L 2~ 30
N 2(2m2—|—3m—|—1)X+m(m+) =Y (30)

From Equations (28) and (30), we observe that the energyitsignand the particle density,
are decreasing functions of time. This behaviopaind p,, is shown in Figure 1. Also the energy
conditions > 0 andp, > 0, are satisfied under conditions

_ 2x 1
T4 4+ ———2———__72Cmil) > — 31
{ +(2m2+3m+1) “m(m+2)’ (31)
and )
m°—5bm+1 3
T4 |—4 2)b — T )\t s 32
[ m(m +2) +<2m2+3m+1)x -2’ (32)
respectively. Also\ > 0 under
1
2m24+3m+1\ 1]2@»D
T 2| ———m | — . 33
>[<m2—5m+1)x] (33)

From Equation (29), it is observed thats an increasing function of time which is always negative
and tends to zero at late time. It is pointed out by Leteli®7d) thath may be positive or negative.
When\ < 0, the string phase of the universe disappears, i.e. we haaeisatropic fluid of particles.
This behavior of tension densityis also depicted in Figure 1.

To study the behavior of strings and particles in the uneehere we define the following
parameter

1 2_5 1 —2(142 3 1
po _ =3 (B ) Xl 201200 4 iy

I\ 1(2m2=3m41) 1
12 (ZheTamat ) X — meeo |

(34)
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Fig.1 The plot of energy density, particle den- Fig.2 The plot of% versusT form = 2, x =
sity p, and tension density versusT’ for m = 2, 0.1 andb = 1.
x =0.1andb=1.

As mentioned before, since strings are not observed at the&ept time due to evolution of
the universe, in principle we can eliminate the strings amdig with a cloud of particles. In other
words, we can say the particles dominate over the strindgeairesent time because of the evolution
of the universe. Figure 2 clearly shows that in a universeciwig described by the model (27), the
strings dominate over the particles at the initial time vetaasrthe particles dominate over the strings
at late time. Also it is worth mentioning that from Figures i&da3, we observe that at the initial
time, when the universe is in the decelerating phase, timgistdominate over the particles,(< )
whereas when the universe is in the accelerating phasglpaidominate over the stringg,(> ).
This is in agreement with the results obtained in WeinbeB8y €) and Belinchon (2009) and also
agrees with astronomical observations which predict tiexietis no direct evidence of strings in the
present-day universe.

The expressions for the scalar of expangipthe average generalized Hubble’'s paraméter
magnitude of shear?, proper volumé/, deceleration parametgrand the average anisotropy pa-
rameterA,,, for the model (27) are given by

-

_ _ X —o42m) |’
0 =3H = (14 2m) 2(2m2+3m+1)+bT ( >} , (35)

o (m— D> [ X —2(1+42m)
=5 2w amen T ’ (36)

V=12t (37)

'2bT72(1+2m) _ X
3 2(2m>+3m+1) 1 7 (38)

T 2m 1| T 20 @ BT T)

1—m 2
A, =2 TXom . (39)
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Fig. 3 The plot of deceleration parametgversus Fig. 4 The plot of cosmological constantversus
T form =2,y = 0.1 andb = 1. T form=2,x=0.1andb = 1.

From Equation (37) we observe that

1 1
1 2b\ 2a+2m) 1 2b\ 2(0+2m)
g>0ifm>—=and T < | — orm<——and T > — , (40)
2 a 2 a
and
1 1
1 2b\ 2a+2m) 1 2b\ 2a+zm)
q<01fm>—§ andT>(—> or m<—§ andT<(—> . (412)
a a

A positive sign ofg corresponds to the standard decelerating model whereasglagive sign-1 <
g < 0 indicates inflation. Recent observations show that theldeteon parameter of the universe
is in the range-1 < ¢ < 0 and the present day universe is undergoing an accelerapeth&rn.
From Figure 3 we observe that the model (27) successfullgribes the expansion of our universe
from the decelerating to accelerating phase.

Also we note that for

b(2m +7)(2m2 +3m + 1) ’

g = —1 as in the case of a de Sitter universe.

In the absence of any curvature, matter/energy denSity) @nd dark energy {,) are related
by the equation

Qo + Q4 =1, (42)
where(?,,, = # andQy = 3;}2. Thus Equation (42) reduces to
p A
1. 43
3H? + 3H? (43)

Using Equations (28) and (35), in Equation (43), the coswiokd constant is obtained as
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A= (m — 1)2 x| + (m — 1)2 p—201+2m) | l 1 '
2(2m2 +3m+1) 3 4 72@2m-1)
From Equation (44) we observe thatis a decreasing function of time and is always positive for
m > —0.5 andm < —1. This behavior of cosmological constahts clearly depicted in Figure 4.
Recent cosmological observations suggest the existeree@aditive cosmological constafitwith
the magnitude\ (Gh/c?) ~ 10123, These observations on magnitude and redshift of type lersup
novae suggest that our universe may be accelerating witlteétticosmological density through the
cosmologicalA-term. Thus, our model is consistent with the results of meobservations.
It is worth mentioning that forn = 1, from Equation (44) we find

11
472

(44)

(45)

This supports the views in favor of the dependefice T2 first expressed by Bertolami (1986a,b)
which was later observed by several authors (Abdel-Rahn®@0;1Chen & Wu 1990; Berman
1990a,b; Berman & Som 1990; Pradhan & Kumar 2001). A relalilan Equation (45) can also
be found in Brans-Dicke theories when one supposes vamghlétational and cosmological “con-
stant” (Peebles & Ratra 2003; Carmeli & Kuzmenko 2001; Gasp&987). We have derived the
same variation ofA with time in string viscous cosmology in this paper.

From the above results, it can be seen that the spatial vakizexo atl’ = 0 and it increases
with the increase of". This shows that the universe starts evolving with zerovm@wat7’ = 0 and
expands with cosmic timé'. In the derived model, the energy densityarticle density,,, tension
density A and the cosmological constafitbecome zero @& — oo and tend to infinity af” = 0.
The model has a point-type singularitylat= 0 (MacCallum 1971). The expansion scalar and shear
scalar both tend to zero @&5— oo. The mean anisotropy parameter is uniform throughout theevh
expansion of the universe whem £ —%, but form = —% it tends to infinity. This shows that the
universe is expanding with the increase of cosmic time batrétte of expansion and shear scalar
decrease to zero and tend to be isotropic. Stheeconstant providedh # —%, the model does not
approach isotropy at any time. But for = 1 our solution provides a totally isotropic universe.

3.2 Solutions in the Absence of Bulk Viscosity
In the absence of bulk viscosity, i.e.— 0 ora — 0, the metric (26) reduces to

dT?
bT—4m

The pressurép), the energy densitp), the string tensioii\), and the particle density,,) for the
model (46) are given by

ds® =

+ T%(dx + zdy)* + T*™(dy* + dz?). (46)

1

_ my 1
p=p=m(m+2)bT20+2m) _ 172@m-1) (47)
— 1 8
A=~ ) (48)
_ m) 3 1

From Equations (47)—(49) we observe thah andp, are decreasing functions of time ahds
always negative. The energy conditiops> 0 andp, > 0, are satisfied under

Sl

T > (4bm(m +2))7 | (50)
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Fig.5 The plot of energy density, particle den- Fig.6 The plot of% versusT for m = 2 and

sity pp, and tension density versusT for m = 2 b=1.
andb = 1.
and
m >0andm > —2orm < 0andm < —2. (51)

respectively. The behaviors pf A andp,, are clearly depicted in Figure 5 as a representative case
with appropriate choice of constants of integration aneéothysical parameters using reasonably
well-known situations.

From Equations (48) and (49) we obtain

(’Tp' = bm(m +2)T~4 +3/4. (52)

From Figure 6 and Equation (52) we observe tﬁ?tis a decreasing function of time, i.e. as
time goes on, the strings dominate over the particles, wbdattiradicts the result obtained in the
first case in the presence of bulk viscosity. This result isafrse not consistent with astronomical
observations, which predict that there is no direct evidewfcstrings in the present-day universe.
Therefore, we conclude that the bulk viscosity may play godrtant role in the creation of particles
from strings.

The expressions for the scalar of expandipthe average generalized Hubble’'s paraméter
magnitude of shear?, proper volumé/, deceleration parametgrand the average anisotropy pa-
rameterA,,, for the model (46) are given by

0 =3H = (14 2m)VoT—(+2m) (53)
—1)2
o2 = (m . ) bT72(1+2m)7 (54)
V = 72m+l ’ (55)
6
9= 57 (56)

Am=2<1_m>2. (57)
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From Equation (56) we observe that- 0 if m > —% andg < 0if m < —%. But from Equation (55)
we observe thatn < —% represents an accelerating collapsing universe with hiigéshift. Since
the recent observations (Riess et al. 2001) indicate théivevan an accelerating expanding universe
with redshift, we conclude that in the absence of bulk viggpa universe with a decreasing rate of
expansion is the only possible scenario.

4 DARK ENERGY INTERPRETATION OF THE MODELS

Figure 3 clearly shows that the presence of bulk viscositjécosmic fluid causes a decelerating

to accelerating expansion of the universe. Also from Raydhari’s Equation (17), we observe that

that bulk viscosity can play the role of an agent that drifesgresent acceleration of the universe.
In Eckart’s theory (Eckart 1940) a viscous pressure is $igeldby

P =p+10. (58)
Herell = —£6 is the viscous pressure. Therefore in our models the effegtiessure (stiff fluid
plus viscous fluid) can be written as
off m(m + 2) X —2(142m) 1 1
po=reX 2 CmZ 1 3m Ll 172 X (89

Using Equations (28) and (59), the effective equation destéthe net fluid is obtained as

. eff
= - . —. (0
P 2 [(2m2+x3m+1) + 2bT—2(1+2m)} — I TEEe=D

The behavior of effective equation of staté'f, in terms of cosmic timé  is shown in Figure 7.
It is observed that the*® parameter is a decreasing functionfofind the rapidity of its decrease
depends on the value gf We see that in the absence of bulk viscosity the models dexiabit
accelerating expansion (solid line), whereas in the piesei viscosity our models exhibit a de-
celerating to an accelerating expansion. From both Equ460) and Figure 7 we observe that at
the later stage of evolution, the effective equation ofestahds to the same constant value, i.e.

wef =1 — % independent of the value gf
! \ Stiff Fluid
\_ til ui
\\.\
0 |\ B
\\\ S—
A — =05
\\\ — =1
\,
g -2 \\l
8 \
-3 \ — e e ==
\\,/’/,’/-";/”
) e g
-4 \-\‘/' /
| //
-5 \/
1 2 3 4 5 6 7 8 9 10
T

Fig. 7 The plot of effective equation of state versusI” for m = 1 andb = 1.
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5 CONCLUDING REMARKS

In this paper we have presented a new exact solution of Hirstield equations for LRS B-II
space-time with a cloud of strings which is different frontutimns presented by other authors. In
general the models are expanding, shearing and non-m@tétia found that in the presence of bulk
viscosity, particles dominate over the strings at late tivhereas in the absence of viscosity strings
dominate over the particles, which is a contradictory rte€ the other hand, from Raychaudhuri’s
Equation (17) we observe that bulk viscosity can play the aflan agent that drives the present
acceleration of the universe. Hence we conclude that thewistosity plays an important role in
the evolution of the universe. For a universe which was @gaghg in the past and is accelerating
at the present time, the deceleration parameter must slymatsre flipping (see Padmanabhan &
Choudhury 2003; Amendola 2003; Caldwell et al. 2006). Oudel® are evolving from an early
decelerating phase to a late time accelerating phase (ge&)Rvhich is in good agreement with
recent observations (Riess et al. 2001).
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