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Abstract A model of a cloud formed by massive strings is used as a sourceof Bianchi
type II cases. We assume that the expansion(θ) in the model is proportional to the
shear(σ). To get an exact solution, we consider the equation of state of the fluid to
be in the stiff form. It is found that the bulk viscosity played a very important role
in the history of the universe. In the presence of bulk viscosity the particles dominate
over strings whereas in the absence of it, strings dominate over the particles, which is
not consistent with recent observations. Also we observe that the viscosity causes the
expansion of the universe to be accelerating. Our models areevolving from an early
decelerating phase to a late time accelerating phase. The physical and geometrical
behaviors of these models are discussed.
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1 INTRODUCTION

In recent years, there has been considerable interest in string cosmology. One of the proposals of the
Grand Unified Theories (GUTs) is that the universe underwenta phase transition as the temperature
fell below TGUT ∼ 1028 K when the age of the universe wastGUT ∼ 10−36 s (Zeldovich et al.
1975; Kibble 1980; Everett 1981; Vilenkin 1981). There was aloss of symmetry when the universe
underwent the GUT phase transition attGUT. At T < TGUT, the symmetry between the strong and
electro-weak forces spontaneously broke. The phase transitions associated with loss of symmetry led
to the formation of topological defects such as domain walls, cosmic strings, monopoles, etc. Cosmic
strings are the important topologically stable defects which might have been found during a phase
transition in the early universe (Kibble 1976). The existence of a large scale network of strings in the
early universe does not contradict the present-day observations. The vacuum strings may generate
density fluctuations sufficient to explain the formation of galaxies (Zeldovich 1980). The cosmic
strings coupled stress-energy to the gravitational field. Therefore, the study of gravitational effects
from such strings will be interesting. The general relativistic treatment of strings was initiated by
Letelier (1979, 1983). Here we have considered gravitational effects that arose from strings by the
coupling of stress-energy of strings to the gravitational field. Letelier (1979) defined the massive
strings as the geometric strings (massless) with particlesattached along their expansions.

The strings that form the cloud are the generalization of Takabayasi’s relativistic model of strings
(called p-strings). This is the simplest model wherein we have particles and strings together. In
principle, we can eliminate the strings and end up with a cloud of particles. This is a desirable
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property of a model of a string cloud that can be used in cosmology since strings are not observed
at the present time due to evolution of the universe (Banerjee et al. 1990; Yadav et al. 2007; Saha &
Visinescu 2008; Saha et al. 2010).

Most cosmological models assume that the matter in the universe can be described by ‘dust’ (a
pressureless distribution) or at best a perfect fluid. To have realistic cosmological models we should
consider the presence of a material distribution other thana perfect fluid. Cosmological models of
a fluid with viscosity play a significant role in the study of evolution of the universe. The viscosity
mechanism in cosmology can account for high entropy per baryon in the present universe (Weinberg
1972). It is well known that at an early stage of the universe when neutrino decoupling occurred, the
matter behaved like a viscous fluid (Kolb & Turner 1990). Weinberg (1971, 1972) derived general
formulae for bulk and shear viscosity and used these to evaluate the rate of cosmological entropy
production. He deduced that the most general form of the energy-momentum tensor, allowed by
rotational and space-inversion invariance, contains a bulk viscosity term proportional to the volume
expansion of the model. Padmanabhan & Chitre (1987) also noted that viscosity may be relevant for
the future evolution of the universe. If the coefficient of bulk viscosity decays sufficiently slowly,
i.e. ξ ∼ ρn, n < 1

2 , then the late epochs of the universe will be viscosity dominated, and the
universe will enter a final inflationary era which has a steady-state character. Cosmological models
with viscous fluid in the early universe have been widely discussed in the literature (for example see
Pradhan et al. 2012; Pradhan & Lata 2011; Pradhan 2009; Pradhan & Kumhar 2009; Pradhan et al.
2008; Pradhan et al. 2007; Pradhan et al. 2005; Yadav 2011, 2010; Yadav et al. 2012).

Stiff fluid cosmological models create more interest in the study because, for these models, the
speed of light is equal to the speed of sound and its governingequations have the same characteristics
as those of a gravitational field (Zeldovich 1972). Barrow (1986) has discussed the relevance of a
stiff equation of stateρ = p to the matter content of the universe in its early stage of evolution.
Wesson (1978) investigated an exact solution of Einstein’sfield equation with the stiff equation
of state. Mohanty et al. (1982) investigated a cylindrically symmetric Zel’dovich fluid distribution
in general relativity. Götz (1988) obtained a plane symmetric solution of Einstein’s field equation
for a stiff perfect fluid distribution. Pradhan & Kumhar (2009) investigated a locally rotationally
symmetric (LRS) Bianchi type II (B-II) bulk viscous universe with decaying vacuum energy density
in general relativity. Recently Yadav et al. (2011) have investigated a string LRS B-II universe in
general relativity.

B-II space-time has a fundamental role in constructing cosmological models suitable for describ-
ing the early stages of evolution of the universe. Asseo & Sol(1987) emphasized the importance of
a B-II universe. In the present paper we have considered an LRS model of spatially homogeneous
B-II cosmology. To obtain exact solutions, the field equations have been solved for the case when
the equation of state of the fluid is in the stiff form. The paper is organized as follows. The metric
and the field equations are presented in Section 2. In Section3, we deal with the solution of the field
equations with a cloud of strings. In Subsection 3.1 we describe some physical and geometric prop-
erties of the model. In Subsection 3.2 we give the solution inthe absence of bulk viscosity. A dark
energy interpretation of the derived models is given in Section 4. Finally, in Section 5, concluding
remarks are given.

2 THE METRIC AND FIELD EQUATIONS

We consider the B-II metric in the form

ds2 = −dt2 + B2(dy + xdz)2 + A2(dx2 + dz2) , (1)

whereA andB are functions of onlyt. The energy-momentum tensor for a cloud of strings in the
presence of bulk viscosity is taken as

Tij = (p + ρ)uiuj + pgij − λxixj + ξθ(gij + uiuj) , (2)
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whereui andxi satisfy the condition

uiu
i = −xixi = −1, uixi = 0 , (3)

p is the isotropic pressure,ρ is the proper energy density for a cloud of strings with particles attached
to them,λ is the string tension density,ui the four-velocity of the particles, andxi is a unit space-like
vector representing the direction of the string. In a co-moving coordinate system, we have

ui = (0, 0, 0, 1), xi = (
1

B
, 0, 0, 0) . (4)

The particle density of the configuration is given by

ρp = Riju
iuj , (5)

whereρp is the rest energy density of the particles attached to the strings. The string tension density,
λ, can take positive or negative values. A negative value ofλ represents a universe filled with no
strings having only an anisotropic fluid, whereas its positive value represents strings loaded with
particles forming the surface of a world sheet (Berman 1990a).

The Einstein’s field equations (with8πG = 1 andc = 1)

Rij −
1

2
Rgij = −Tij (6)

for the metric (1) lead to the following system of equations:

G22 = 2
Ä

A
+

Ȧ2

A2
− 3

4

B2

A4
= −p + ξθ + λ , (7)

G11 = G33 =
Ä

A
+

B̈

B
+

ȦḂ

AB
+

1

4

B2

A4
= −p + ξθ , (8)

G00 = 2
ȦḂ

AB
+

Ȧ2

A2
− 1

4

B2

A4
= ρ , (9)

where an overdot stands for the first and a double overdot for the second derivative with respect tot.
The spatial volume for LRS B-II is given by

V = A2B . (10)

We defineS = (A2B)
1
3 as the average scale factor of the LRS B-II model (1) so that the Hubble’s

parameter is given by

H =
Ṡ

S
=

1

3

(

2Ȧ

A
+

Ḃ

B

)

. (11)

We define the generalized mean Hubble’s parameterH as

H =
1

3
(Hx + Hy + Hz) , (12)

whereHx = Ȧ
A

, Hy = Ḃ
B

andHz = Hx are the directional Hubble’s parameters in the directions of
x, y andz respectively.

The deceleration parameterq is conventionally defined by

q = −SS̈

Ṡ2
. (13)
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The scalar expansionθ, shear scalarσ2 and the average anisotropy parameterAm are defined by

θ =
2Ȧ

A
+

Ḃ

B
, (14)

σ2 =
1

2

(

3
∑

i=1

H2
i − 1

3
θ2

)

, (15)

Am =
1

3

3
∑

i=1

(

∆Hi

H

)2

, (16)

where∆Hi = Hi − H(i = 1, 2, 3).
The Raychaudhuri equation reads as

3
S̈

S
= −2σ2 +

3

2
ξθ − 1

2
(ρ + 3p) . (17)

3 SOLUTION OF THE FIELD EQUATIONS

The field Equations (11)–(13) are a system of three equationswith five unknown parameters
A, B, p, ρ andλ. Two additional constraints relating to these parameters are required to obtain ex-
plicit solutions of the system. Firstly, we assume that the expansionθ in the model is proportional to
the shearσ. This condition leads to

1√
3

(

Ȧ

A
− Ḃ

B

)

= b

(

Ȧ

A
+ 2

Ḃ

B

)

, (18)

which yields
Ȧ

A
= m

Ḃ

B
, (19)

wherem = 2b
√

3+1
1−b

√
3

andb are constants. Equation (19), after integration, reduces to

A = Bm . (20)

Secondly, we assume that the fluid obeys the stiff fluid equation of state, i.e.

p = ρ . (21)

Using Equations (8) and (9) in Equation (21) we obtain

Ä

A
+

B̈

B
+ 3

ȦḂ

AB
+

Ȧ2

A2
− ξθ = 0 . (22)

In view of Equation (20), Equation (21) is taken as

2B̈ + 4m
Ḃ2

B
=

χ

(m + 1)
B (23)

where we have assumed that the coefficient of bulk viscosity is inversely proportional to expansion,
i.e. ξθ = χ (say) = constant.

Let Ḃ = f(B) which implies thatB̈ = ff ′, wheref ′ = df
dB

. Hence Equation (23) can be
written as

d

dB
(f2) + 4m

f2

B
=

χ

(m + 1)
B , (24)
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which on integration gives

dt =
dB√

aB2 + bB−4m
. (25)

Here,a = χ
(2m2+3m+1) andb is a positive constant of integration. Hence the model (1) isreduced to

ds2 = − dB2

aB2 + bB−4m
+ B2(dx + zdy)2 + B2m(dy2 + dz2) . (26)

After using a suitable transformation of coordinates, the model (26) reduces to

ds2 = − dT 2

aT 2 + bT−4m
+ T 2(dx + zdy)2 + T 2m(dy2 + dz2) . (27)

3.1 The Geometric and Physical Significance of the Model

Here we discuss some physical and kinematic properties of the string model (27).
The pressure(p), the energy density(ρ), the string tension(λ), and the particle density(ρp) for the
model (27) are given by

p = ρ =
m(m + 2)

2

[

χ

(2m2 + 3m + 1)
+ 2bT−2(1+2m)

]

− 1

4

1

T 2(2m−1)
, (28)

λ =
1

2

(

2m2 − 3m + 1

2m2 + 3m + 1

)

χ − 1

T 2(2m−1)
, (29)

ρp = −1

2

(

m2 − 5m + 1

2m2 + 3m + 1

)

χ + m(m + 2)bT−2(1+2m) +
3

4

1

T 2(2m−1)
. (30)

From Equations (28) and (30), we observe that the energy density ρ and the particle densityρp

are decreasing functions of time. This behavior ofρ andρp is shown in Figure 1. Also the energy
conditions,ρ ≥ 0 andρp ≥ 0, are satisfied under conditions

T−4

[

4b +
2χ

(2m2 + 3m + 1)
T 2(2m+1)

]

≥ 1

m(m + 2)
, (31)

and

T−4

[

−4m(m + 2)b +

(

m2 − 5m + 1

2m2 + 3m + 1

)

χT 2(2m+1)

]

≥ 3

2
, (32)

respectively. Alsoλ > 0 under

T >

[

2

(

2m2 + 3m + 1

m2 − 5m + 1

)

1

χ

]
1

2(2m−1)

. (33)

From Equation (29), it is observed thatλ is an increasing function of time which is always negative
and tends to zero at late time. It is pointed out by Letelier (1979) thatλ may be positive or negative.
Whenλ < 0, the string phase of the universe disappears, i.e. we have ananisotropic fluid of particles.
This behavior of tension densityλ is also depicted in Figure 1.

To study the behavior of strings and particles in the universe, here we define the following
parameter

ρp

|λ| =
− 1

2

(

m2−5m+1
2m2+3m+1

)

χ + m(m + 2)bT−2(1+2m) + 3
4

1
T 2(2m−1)

|12
(

2m2−3m+1
2m2+3m+1

)

χ − 1
T 2(2m−1) |

. (34)
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Fig. 1 The plot of energy densityρ, particle den-
sity ρp and tension densityλ versusT for m = 2,
χ = 0.1 andb = 1.

Fig. 2 The plot of ρp

|λ|
versusT for m = 2, χ =

0.1 andb = 1.

As mentioned before, since strings are not observed at the present time due to evolution of
the universe, in principle we can eliminate the strings and end up with a cloud of particles. In other
words, we can say the particles dominate over the strings at the present time because of the evolution
of the universe. Figure 2 clearly shows that in a universe which is described by the model (27), the
strings dominate over the particles at the initial time whereas the particles dominate over the strings
at late time. Also it is worth mentioning that from Figures 2 and 3, we observe that at the initial
time, when the universe is in the decelerating phase, the strings dominate over the particles (ρp < λ)
whereas when the universe is in the accelerating phase, particles dominate over the strings (ρp > λ).
This is in agreement with the results obtained in Weinberg (1976) and Belinchón (2009) and also
agrees with astronomical observations which predict that there is no direct evidence of strings in the
present-day universe.

The expressions for the scalar of expansionθ, the average generalized Hubble’s parameterH ,
magnitude of shearσ2, proper volumeV , deceleration parameterq and the average anisotropy pa-
rameterAm for the model (27) are given by

θ = 3H = (1 + 2m)

[

χ

2(2m2 + 3m + 1)
+ bT−2(1+2m)

]
1
2

, (35)

σ2 =
(m − 1)2

3

[

χ

2(2m2 + 3m + 1)
+ bT−2(1+2m)

]

, (36)

V = T 2m+1 , (37)

q =
3

2m + 1

[

2bT−2(1+2m) − χ
2(2m2+3m+1)

bT−2(1+2m) + χ
2(2m2+3m+1)

]

, (38)

Am = 2

(

1 − m

1 + 2m

)2

. (39)
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Fig. 3 The plot of deceleration parameterq versus
T for m = 2, χ = 0.1 andb = 1.

Fig. 4 The plot of cosmological constantΛ versus
T for m = 2, χ = 0.1 andb = 1.

From Equation (37) we observe that

q > 0 if m > −1

2
and T <

(

2b

a

)
1

2(1+2m)

or m < −1

2
and T >

(

2b

a

)
1

2(1+2m)

, (40)

and

q < 0 if m > −1

2
and T >

(

2b

a

)
1

2(1+2m)

or m < −1

2
and T <

(

2b

a

)
1

2(1+2m)

. (41)

A positive sign ofq corresponds to the standard decelerating model whereas thenegative sign−1 ≤
q < 0 indicates inflation. Recent observations show that the deceleration parameter of the universe
is in the range−1 ≤ q < 0 and the present day universe is undergoing an accelerated expansion.
From Figure 3 we observe that the model (27) successfully describes the expansion of our universe
from the decelerating to accelerating phase.

Also we note that for

T =

[

(1 − m)χ

b(2m + 7)(2m2 + 3m + 1)

]− 1
2(1+2m)

,

q = −1 as in the case of a de Sitter universe.

In the absence of any curvature, matter/energy density (Ωm) and dark energy (ΩΛ) are related
by the equation

Ωm + ΩΛ = 1 , (42)

whereΩm = ρ
3H2 andΩΛ = Λ

3H2 . Thus Equation (42) reduces to

ρ

3H2
+

Λ

3H2
= 1 . (43)

Using Equations (28) and (35), in Equation (43), the cosmological constant is obtained as
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Λ =

[

(m − 1)2

2(2m2 + 3m + 1)
χ

]

+
(m − 1)2

3
bT−2(1+2m) +

1

4

1

T 2(2m−1)
. (44)

From Equation (44) we observe thatΛ is a decreasing function of time and is always positive for
m > −0.5 andm < −1. This behavior of cosmological constantΛ is clearly depicted in Figure 4.
Recent cosmological observations suggest the existence ofa positive cosmological constantΛ with
the magnitudeΛ(G~/c3) ≈ 10−123. These observations on magnitude and redshift of type Ia super-
novae suggest that our universe may be accelerating with induced cosmological density through the
cosmologicalΛ-term. Thus, our model is consistent with the results of recent observations.

It is worth mentioning that form = 1, from Equation (44) we find

Λ =
1

4

1

T 2
. (45)

This supports the views in favor of the dependenceΛ ∝ T−2 first expressed by Bertolami (1986a,b)
which was later observed by several authors (Abdel-Rahman 1990; Chen & Wu 1990; Berman
1990a,b; Berman & Som 1990; Pradhan & Kumar 2001). A relationlike Equation (45) can also
be found in Brans-Dicke theories when one supposes variablegravitational and cosmological “con-
stant” (Peebles & Ratra 2003; Carmeli & Kuzmenko 2001; Gasperini 1987). We have derived the
same variation ofΛ with time in string viscous cosmology in this paper.

From the above results, it can be seen that the spatial volumeis zero atT = 0 and it increases
with the increase ofT . This shows that the universe starts evolving with zero volume atT = 0 and
expands with cosmic timeT . In the derived model, the energy densityρ, particle densityρp, tension
densityλ and the cosmological constantΛ become zero asT → ∞ and tend to infinity atT = 0.
The model has a point-type singularity atT = 0 (MacCallum 1971). The expansion scalar and shear
scalar both tend to zero asT → ∞. The mean anisotropy parameter is uniform throughout the whole
expansion of the universe whenm 6= − 1

2 , but form = − 1
2 it tends to infinity. This shows that the

universe is expanding with the increase of cosmic time but the rate of expansion and shear scalar
decrease to zero and tend to be isotropic. Sinceσ

θ
=constant providedm 6= − 1

2 , the model does not
approach isotropy at any time. But form = 1 our solution provides a totally isotropic universe.

3.2 Solutions in the Absence of Bulk Viscosity

In the absence of bulk viscosity, i.e.χ → 0 or a → 0, the metric (26) reduces to

ds2 = − dT 2

bT−4m
+ T 2(dx + zdy)2 + T 2m(dy2 + dz2) . (46)

The pressure(p), the energy density(ρ), the string tension(λ), and the particle density(ρp) for the
model (46) are given by

p = ρ = m(m + 2)bT−2(1+2m) − 1

4

1

T 2(2m−1)
, (47)

λ = − 1

T 2(2m−1)
, (48)

ρp = m(m + 2)bT−2(1+2m) +
3

4

1

T 2(2m−1)
. (49)

From Equations (47)–(49) we observe thatρ, λ andρp are decreasing functions of time andλ is
always negative. The energy conditions,ρ ≥ 0 andρp ≥ 0, are satisfied under

T ≥ (4bm(m + 2))
1
4 , (50)
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Fig. 5 The plot of energy densityρ, particle den-
sity ρp and tension densityλ versusT for m = 2

andb = 1.

Fig. 6 The plot of ρp

|λ|
versusT for m = 2 and

b = 1.

and
m > 0 and m > −2 or m < 0 and m < −2 . (51)

respectively. The behaviors ofρ, λ andρp are clearly depicted in Figure 5 as a representative case
with appropriate choice of constants of integration and other physical parameters using reasonably
well-known situations.

From Equations (48) and (49) we obtain

ρp

|λ| = bm(m + 2)T−4 + 3/4 . (52)

From Figure 6 and Equation (52) we observe thatρp

|λ| is a decreasing function of time, i.e. as
time goes on, the strings dominate over the particles, whichcontradicts the result obtained in the
first case in the presence of bulk viscosity. This result is ofcourse not consistent with astronomical
observations, which predict that there is no direct evidence of strings in the present-day universe.
Therefore, we conclude that the bulk viscosity may play an important role in the creation of particles
from strings.

The expressions for the scalar of expansionθ, the average generalized Hubble’s parameterH ,
magnitude of shearσ2, proper volumeV , deceleration parameterq and the average anisotropy pa-
rameterAm for the model (46) are given by

θ = 3H = (1 + 2m)
√

bT−(1+2m) , (53)

σ2 =
(m − 1)2

3
bT−2(1+2m) , (54)

V = T 2m+1 , (55)

q =
6

2m + 1
, (56)

Am = 2

(

1 − m

1 + 2m

)2

. (57)
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From Equation (56) we observe thatq > 0 if m > − 1
2 andq < 0 if m < − 1

2 . But from Equation (55)
we observe thatm < − 1

2 represents an accelerating collapsing universe with high blueshift. Since
the recent observations (Riess et al. 2001) indicate that welive in an accelerating expanding universe
with redshift, we conclude that in the absence of bulk viscosity, a universe with a decreasing rate of
expansion is the only possible scenario.

4 DARK ENERGY INTERPRETATION OF THE MODELS

Figure 3 clearly shows that the presence of bulk viscosity inthe cosmic fluid causes a decelerating
to accelerating expansion of the universe. Also from Raychaudhuri’s Equation (17), we observe that
that bulk viscosity can play the role of an agent that drives the present acceleration of the universe.

In Eckart’s theory (Eckart 1940) a viscous pressure is specified by

peff = p + Π . (58)

HereΠ = −ξθ is the viscous pressure. Therefore in our models the effective pressure (stiff fluid
plus viscous fluid) can be written as

peff = p − χ =
m(m + 2)

2

[

χ

(2m2 + 3m + 1)
+ 2bT−2(1+2m)

]

− 1

4

1

T 2(2m−1)
− χ . (59)

Using Equations (28) and (59), the effective equation of state of the net fluid is obtained as

ωeff =
peff

ρ
= 1 − χ

m(m+2)
2

[

χ
(2m2+3m+1) + 2bT−2(1+2m)

]

− 1
4

1
T 2(2m−1)

. (60)

The behavior of effective equation of state,ωeff , in terms of cosmic timeT is shown in Figure 7.
It is observed that theωeff parameter is a decreasing function ofT and the rapidity of its decrease
depends on the value ofχ. We see that in the absence of bulk viscosity the models do notexhibit
accelerating expansion (solid line), whereas in the presence of viscosity our models exhibit a de-
celerating to an accelerating expansion. From both Equation (60) and Figure 7 we observe that at
the later stage of evolution, the effective equation of state tends to the same constant value, i.e.

ωeff = 1 − 2(2m2+3m+1)
m(m+2) , independent of the value ofχ.

Fig. 7 The plot of effective equation of stateωeff versusT for m = 1 andb = 1.
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5 CONCLUDING REMARKS

In this paper we have presented a new exact solution of Einstein’s field equations for LRS B-II
space-time with a cloud of strings which is different from solutions presented by other authors. In
general the models are expanding, shearing and non-rotating. It is found that in the presence of bulk
viscosity, particles dominate over the strings at late timewhereas in the absence of viscosity strings
dominate over the particles, which is a contradictory result. On the other hand, from Raychaudhuri’s
Equation (17) we observe that bulk viscosity can play the role of an agent that drives the present
acceleration of the universe. Hence we conclude that the bulk viscosity plays an important role in
the evolution of the universe. For a universe which was decelerating in the past and is accelerating
at the present time, the deceleration parameter must show signature flipping (see Padmanabhan &
Choudhury 2003; Amendola 2003; Caldwell et al. 2006). Our models are evolving from an early
decelerating phase to a late time accelerating phase (see Fig. 3) which is in good agreement with
recent observations (Riess et al. 2001).
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