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Abstract We present a detailed comparison of two approaches, the use of a pre-
calculated database and simulated annealing (SA), for fitting the continuum spectral
energy distribution (SED) of astrophysical objects whose appearance is dominated by
surrounding dust. While pre-calculated databases are commonly used to model SED
data, only a few studies to date employed SA due to its unclearaccuracy and conver-
gence time for this specific problem. From a methodological point of view, different
approaches lead to different fitting quality, demand on computational resources and
calculation time. We compare the fitting quality and computational costs of these two
approaches for the task of SED fitting to provide a guide to thepractitioner to find
a compromise between desired accuracy and available resources. To reduce uncer-
tainties inherent to real datasets, we introduce a reference model resembling a typical
circumstellar system with 10 free parameters. We derive theSED of the reference
model with our codeMC3D at 78 logarithmically distributed wavelengths in the range
[0.3 µm, 1.3 mm] and use this setup to simulate SEDs for the database and SA. Our
result directly demonstrates the applicability of SA in thefield of SED modeling, since
the algorithm regularly finds better solutions to the optimization problem than a pre-
calculated database. As both methods have advantages and shortcomings, a hybrid
approach is preferable. While the database provides an approximate fit and overall
probability distributions for all parameters deduced using Bayesian analysis, SA can
be used to improve upon the results returned by the model grid.

Key words: methods: numerical — radiative transfer — protoplanetary disks

1 INTRODUCTION

The continuum spectral energy distribution (SED) is an important observable of astrophysical
sources embedded in a dusty environment such as young stellar objects (YSOs), active galactic
nuclei (AGNs), and post-AGB stars. It allows one to probe themass, composition, temperature, and
spatial distribution of the dust. The common method of analysis is the comparison of available ob-
servations with predictions derived from self-consistently solving the radiative transfer problem with
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a model describing the dust properties and their spatial distribution. The task is to find a parameter
set that best reproduces the observations for a given model.This minimization of the discrepancy
between observation and prediction is an optimization problem and is normally called afitting pro-
cedure.

Various fitting algorithms have been proposed and implemented before (e.g., Press et al. 1992).
From a methodological point of view, the fitting approaches differ in the quality of the resulting fit
and demand on computational resources. The most common method is based on a pre-calculated
model database that is established on a huge grid in a high-dimensional parameter space (e.g.,
Robitaille et al. 2006; Woitke et al. 2010). Once the database is established, the optimum param-
eter set is readily identified by evaluating the merit function, i.e. for our purpose theχ2-distribution.
However, as the number of grid points increases substantially with the dimensionality of the pa-
rameter space, the model grid is always a compromise betweenfinite computational resources and
resolution.Simulated annealing(SA) is a versatile optimization technique based on the Metropolis-
Hastings algorithm that can be used to search for the optimumof a merit function in arbitrary di-
mensions (e.g., Kirkpatrick et al. 1983; Madlener et al. 2012; Liu et al. 2012). The main idea is to
construct a random walk through parameter space thereby gradually improving the agreement be-
tween observation and prediction by following the local topology of the merit function. A drawback
of this method is that no upper bound for the step count to reach the global optimum can be given.
Moreover, the sequential execution of the algorithm and possible slow convergence of the Markov
chain can make SA time consuming.

In the context of SED modeling, a pre-calculated database isquite commonly invoked to per-
form the task because it can not only provide an approximate fit but also enables evaluation of
the overall uncertainty of all parameters by Bayesian analysis (Lay et al. 1997). On the contrary,
only a small sample of studies to date make use of SA in this area due to its unclear accuracy and
typical convergence time. A main limitation is the significant computing time per individual SED
model, especially when simulating the SEDs in an optically thick system. With the recent advance
in computing performance, the SA approach is now applicable. The motivation behind this study
is to evaluate advantages and shortcomings of these two methods when applied to an astrophysical
optimization problem. We set up an unbiased benchmark by deriving synthetic observations from
a known reference model to exclude any influence due to model uncertainties on the optimization
process.

We will present fitting quality and computational cost for this idealized optimization task using
both approaches to provide a guide for practitioners to find acompromise between desired accuracy
and available resources.

The structure of this paper is as follows. We introduce a reference model of a circumstellar disk
and the simulation techniques in the following section. Theuse of a large pre-calculated database
to fit the SED of the reference model is described in Section 3.A detailed description of SED
optimization with SA is presented in Section 4. We discuss our results in Section 5, followed by a
brief summary in Section 6.

2 REFERENCE MODEL AND MODELING

Circumstellar disks surrounding YSOs are considered to be an essential step in the star-forming
process. A lot of attention has been paid to these interesting objects, since they are most probably
the birthplace of planetary systems (e.g., Mundy et al. 2000; Meyer et al. 2007). The planet formation
mechanism in these disks and the properties of the resultingplanetary system depend on the structure
of the protoplanetary disks that can be constrained by SED modeling. In this section we introduce
a reference model (RM) to mimic a virtual object located in the Taurus star formation region at a
distance of140 pc and describe our simulation technique. By using a virtual object, all uncertainties
in regard to the model itself are eliminated.
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2.1 Disk Structure

We employ a parameterized flared disk in which dust and gas arewell mixed and homogeneous
throughout the system. This model has been successfully used to explain multi-wavelength obser-
vations of protoplanetary disks like the SED and high resolution images (e.g., Wolf et al. 2003;
Schegerer et al. 2008; Sauter et al. 2009). For the dust in thecircumstellar disk we assume a density
structure with a Gaussian vertical profile

ρdust ∼ R−α exp

[

−
z2

2h2

]

(1)

and a power-law distribution for the surface density

Σ(R) ∼ R−p , (2)

whereR is the distance from the central star measured in the disk midplane. The proportionality
factor is determined by normalizing the total dust mass in the disk. The disk scale heighth(R)
follows the power law

h(R) = h100

(

R

100 AU

)β

, (3)

with the flaring exponentβ describing the extent of flaring and the scale heighth100 at a distance of
100 AU from the central star.

Table 1 lists the parameters of the RM. We truncate the disk at300 AU, a typical size found
for T Tauri disks and fix the value ofh100 to 10 AU (e.g., Andrews & Williams 2007b). We con-
sider a total dust mass of5×10−5 M⊙, corresponding to the typical value found in T Tauri disks
(e.g., Beckwith et al. 1990; Andrews & Williams 2007a; Andrews et al. 2009). We make a stan-
dard assumption for the dust-to-gas mass ratio, i.e.,mdust/mgas = 1/100. For the flaring exponent,
we adopt the value of 1.25 (e.g., D’Alessio et al. 1999). The exponent of the dust density profile
α = 3(β − 1

2
) = 2.25 is derived from viscous accretion theory (Shakura & Sunyaev1973).

Table 1 Parameters of the RM and the Best-fit in
Our Pre-calculated Database

Parameter RM Best-fit model

T⋆ [K] 4000 4262
L⋆ [L⊙] 0.92 2.7
Rin [AU] 2.0 2.9
Rout [AU] 300 450
mdust [M⊙] 5× 10−5 3× 10−5

α 2.25 1.61
β 1.25 1.033
h100 [AU] 10 10.5
amax [µm] 2.5 25
i [◦] 60 75

2.2 Stellar Heating

There are several heating sources in the circumstellar disks, such as irradiation by the central star,
disk accretion and turbulent processes within the disks. Tokeep our model simple and decrease
the number of free parameters, we consider a passive disk in which only stellar irradiation is taken
into account (e.g., Chiang & Goldreich 1997). We assume parameters of a typical T Tauri star for
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the central source,R⋆ = 2 R⊙ andT⋆ = 4000 K, corresponding to a bolometric luminosity of
∼0.92 L⊙ (e.g., Gullbring et al. 1998).

2.3 Dust Properties

We consider the dust grains to be homogeneous spheres, sincethe assumption of a spherical grain is
a valid approximation to describe the scattering behavior compared with a more complex and fractal
grain structure. The dust grain ensemble incorporates bothsilicate and graphite material with relative
abundances of 62.5% astronomical silicate and 37.5% graphite. To calculate the optical properties
of the dust with the Mie scattering theory, we use the complexrefractive indices of “smoothed
astronomical silicate” and graphite published by Weingartner & Draine (2001). For graphite, we
adopt the common “1

3
: 2

3
” approximation (Draine & Malhotra 1993), which means the extinction

efficiency factor is computed by

Qext,graphite =
1

3
Qext(ǫ‖) +

2

3
Qext(ǫ⊥) , (4)

whereǫ‖ andǫ⊥ are the components of the graphite’s dielectric tensor for the electric field parallel
and orthogonal to the crystallographic axis, respectively.

We assume a power law grain size distributionn(a) ∝ a−3.5 with amin ≤ a ≤ amax, wherea
represents the grain radius andamin andamax are the minimum and the maximum grain radii respec-
tively. The size distribution withamin = 5 nm andamax = 0.25 µm is the well-known MRN dis-
tribution found for the interstellar medium (Mathis et al. 1977). For the RM, we keepamin = 5 nm
and increase the maximum grain size toamax = 2.5 µm to account for dust growth in circumstellar
disks (e.g., Sauter et al. 2009; Ricci et al. 2010).

2.4 Radiative Transfer Simulation Code

To derive the observables of the RM, we use the well-tested radiative transfer codeMC3D developed
by Wolf (2003). Based on the Monte-Carlo method,MC3D solves the radiative transfer problem
self-consistently. It implements the immediate temperature correction technique as described by
Bjorkman & Wood (2001) and the continuous absorption concept as introduced by Lucy (1999).
Multiple and anisotropic scattering is considered in the simulations.

2.5 The SED of the RM

The radiative transfer problem is solved at 100 wavelengths, logarithmically distributed in the wave-
length range[50 nm, 2.0 mm]. The squares in Figure 1 show the simulated SED of the RM at 78
wavelengths in the range[0.34 µm, 1.3 mm]. Since data points within this range can be obtained by
current telescopes, we therefore only reproduce fluxes at these wavelengths in the fitting procedure.

3 SED-FITTING WITH A PRE-CALCULATED DATABASE

A popular approach to analyze SEDs is to solve the radiation transfer equation based on dust prop-
erties and a density distribution. Given a particular modeland radiative transfer code, a database of
model SEDs can be established on a part of the model’s parameter space (Woitke et al. 2010).

The main advantage of this approach is that it allows exploration of how specific data points in-
fluence parameters in the fit. As an example, given a particular dust model, one (sub)millimeter data
point can constrain the total dust mass. An additional data point can help to constrain the maximum
dust radius in protoplanetary disks. Moreover, observations of a large sample of objects can be fitted
very fast to a pre-calculated database.
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Fig. 1 Left panel: the top two model fits in the database. The best-fit model is indicated as a solid
line and the squares represent the SED of the RM.Right panel: the moduli of flux discrepancies
between the models and the RM.

In order to examine the fitting accuracy of a pre-calculated database, we adapted theMC3D code
to the cluster at Purple Mountain Observatory and built a database of 70 000 model SEDs using the
same dust density profile and grain composition as describedin Section 2. We used a similar strat-
egy as implemented by Robitaille et al. (2006) to sample the parameter values over a wide space
to avoid focusing on one particular model, especially the RM. Generally, the model SEDs span
a reasonable range of parameters constrained by theory and observations of protoplanetary disks.
The effective temperatureT⋆ and radius of the central star were derived by interpolatingpre-main-
sequence evolutionary tracks given by Siess et al. (2000) with the mass and age randomly sampled
and logarithmically spaced in the ranges of[0.5 M⊙, 1.5 M⊙] and[0.1 Myr, 20 Myr] respectively.
The dust mass was sampled from a wide range of[10−9, 10−3]M⊙, but values between10−7 M⊙

and10−4 M⊙ were randomly selected more frequently. The model grid contains a majority of sam-
ples with disk outer radius between100 AU and400 AU. Other reasonable values consistent with
observations are also considered. For one half of our models, we set the disk inner radius to the dust
sublimation radiusRsub = R⋆(Tsub/T⋆)

−2.085, where we takeTsub = 1500 K to be the dust subli-
mation temperature (Whitney et al. 2004). The flaring exponent for these models is set to a smaller
value than that found for T Tauri disks, i.e.,β < 1.25. This was done in order to interpret the obser-
vations of homologously depleted disks in which material dissipation is thought to occur throughout
the disk simultaneously (e.g., Currie & Kenyon 2009). In theremaining half of the models, the inner
radius of the disk was increased to account for canonical transition disks that are expected to have
large inner holes due to the mechanism of inside-out disk dissipation (e.g., Muzerolle et al. 2010).
Values for the flaring exponentβ in these models are uniformly sampled between 1.10 and 1.30.The
exponent of the density distributionα is calculated using the relationshipα = 3(β − 1

2
) derived for

a steady-state disk in which the temperature and surface density profile are coupled byp + q = 3/2,
whereq is the exponent of the temperature profileT∼r−q. The models with scale height parameter
h100 between8 AU and15 AU occupy a large portion of the search space, and other reasonable
values outside this range are also contained in our database. The entire model grid was established
in approximately 30 days using 32 CPUs in the computer cluster.

The RM and the grid in parameter space of the database are set up independently. We fit the
SED of the RM to this database and examine whether the database returns a model with parameter
values close to the reference. Additionally, the distance is fixed at140 pc and no extinction is used
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to avoid any uncertainties from the employed extinction law. In short, we are only interested in the
fitting quality of this approach.

Figure 1 shows the top two SED models in the database and the flux discrepancies between
these models and the RM as well. The solid line represents thebest-fit with a minimumχ2 = 179.5
calculated from

χ2 =

Ndata
∑

i=1

[Fi − Fi(RM)]2

∆F 2
i (RM)

. (5)

whereNdata is the number of data points,Fi is the simulated flux, andFi(RM) is the “observed
flux.” The photometric uncertainty,∆Fi(RM), was assumed to be comparable to typical observation
errors of real instruments working in different wavelengthregimes,10% and15% of the flux at
shorter and longer wavelengths respectively. This assumption has little impact on our study as long
as the observation errors are not changed. Obviously, the best-fit SED is in good agreement with the
SED of the RM. The corresponding parameter values of the bestmodel are listed in Table 1. It is
particularly noteworthy that the fitting results constrainthe inner radius and dust mass quite well.
The central star of the best-fit model is much brighter than the RM. However, the fluxes at short
wavelengths are close to the RM. This can be explained by higher disk inclinations (e.g., the best fit
i = 75◦) for which the outer disk occults the central star and even the inner disk regions, leading to
a significant extinction for short-wavelength emission (Chiang & Goldreich 1999). The slight flux
deficit in the far-infrared domain (∼100 µm) can be explained by a smaller flaring exponent (β =
1.033) of the best-fit model as compared to the RM. Disks with a larger flaring exponent intercept
a larger portion of the central star’s radiation due to a larger flaring angle and consequently re-emit
more infrared flux. The maximum dust grain radiusamax = 25 µm is one order of magnitude larger
than the reference value. This decreases the spectral indexof the best-fit model at (sub)millimeter
wavelengths and weakens the10 µm silicate band. However, the database contains only four values
for amax, namely0.25, 2.5, 25, and250 µm, hence the difference inamax between the best-fit model
and the RM is only one grid interval.

In order to estimate the confidence range for each parameter,we performed a Bayesian analysis
using the reducedχ2 defined by

χ2
red =

χ2

Ndata − n − 1
, (6)

whereNdata = 78 andn = 10 are the number of data points and degrees of freedom respectively
(e.g., Pinte et al. 2007, 2008; Bouy et al. 2008). The relative probabilityexp

[

−χ2
red/2

]

of each
parameter set is used as a statistical weight to calculate the relative likelihood for every parameter
by summing over all models with a common value and normalizing with the total sum. Non-uniform
distributions of models in parameter space due to differentsampling density are considered as the
prior probabilities and have to be taken into account. Quantitative error bars for every parameter can
then be deduced from the resulting probability distributions.

Figure 2 presents the probability distribution for some selected disk parameters. The results show
that SED analysis places constraints on the parameters differently, e.g. only high inclinations (edge-
on) can be excluded, while all other configurations appear tobe equally likely. The scale heighth100

and the flaring exponentβ, characterizing the vertical geometry of the disk and henceits capacity
to absorb stellar energy, are constrained to some extent. Our Bayesian analysis clearly supports the
notion that SEDs mainly contain information on the inner radius and dust mass of circumstellar disks
as we get the best constraints on these two parameters. Moreover, we noticed that the best-fit model
implies a parameter value (e.g.,β) is offset from the peak of its probability distribution. This is an
indicator of model degeneracy often encountered in pure SEDfitting.
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Fig. 2 Bayesian probability distribution of selected disk parameters. The triangles mark the proba-
bility bins containing the best-fit parameters. The vertical dashed lines denote the reference values.

4 OPTIMIZATION WITH SIMULATED ANNEALING

SA is a variation of the Metropolis-Hastings algorithm thatapplies methods of statistical physics to
optimization problems like the traveling salesman problemand has been used for many optimiza-
tion challenges (e.g., Metropolis et al. 1953; Hastings 1970; Kirkpatrick et al. 1983). The physical
analogy of quenching a hot melt has given this extremely useful method its name, as the main fea-
ture of SA is the gradual reduction in temperature during optimization. Basically, the distribution
under scrutiny can be interpreted as the inner energy of a system in a thermal bath. By starting at
a high temperature and subsequently cooling the bath while allowing the system to evolve through
phase space, the system trajectory intrinsically leads to regions of lower inner energy and thus to
the global optimum in the underlying problem. One of the major advantages of this Monte Carlo
method is the independence in terms of dimensionality. Local extrema are overcome intrinsically, no
gradients have to be evaluated and the parameter space can bediscrete or continuous. We adapted
this technique to search the optimal disk model for the synthetic SED derived from the RM.

4.1 Algorithm

SA creates a Markov chain of points in parameter space by starting from an arbitrarily chosen set
of parameters within the constrained range, see Table 2. Theparameter intervals considered here
are consistent with those for establishing the pre-calculated database. The Markov chain progresses
from the starting point by generating new parameter sets depending on the current position until
ideally the global optimum is reached. The parameter valuesof each step are recorded and can
be used for subsequent analysis. We list eight starting models in Table 3 with parameter values
that deviate from the RM to varying degrees. After sampling auniformly distributed number in the
range [0, 1] using therandomu function in the IDL programming language, we scale it to the
corresponding parameter range to obtain the starting pointin every dimension. The argumentseed
of the randomu function used to initialize the random sequence is chosen tobe identical to the
chain number. Moreover, the random sampling procedure is implemented in logarithmical space for
parameters with a large dynamical range, such as the inner radius, dust mass and maximum grain
size. We define the starting points in this way to ensure independence from the RM and reproducible
results. The applicability of SA to the optimization of SEDsof circumstellar disks can be validated
by comparing the disk models generated by the algorithm withthe RM. Moreover, we are interested
in the number of Markov chains and steps per chain needed to find a good fit. The displacement∆a

in parameter space is sampled from a Gaussian distribution using varying step sizesβk

Prob(∆a) ∼
∏

k

exp

[

−
∆a2

k

2β2
k

]

, (7)
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Table 2 Initial Step Widths and Boundary of the Parameter Space

Parameter βk Min Max

T⋆ [K] 0.2 T⋆0 2500 7000
L⋆ [L⊙] 0.2 L⋆0 0.2 8.0
RIN [AU] 0.2 Rin0 0.1 20.0
Rout [AU] 0.2Rout0 50 1000
α 0.005 1.5 3.0
β 0.005 1.0 1.3
h100AU [AU] 0.25 5.0 20.0
mdust [M⊙] 0.5 Mdust0 10−9 10−3

amax [µm] 0.2 amax0 0.25 1000
i [◦] 2.0 15 85

Notes:T⋆0, L⋆0, Rin0, Rout0, Mdust0 andamax0 are the starting points.

Table 3 Starting Points of the Markov Chains

Parameter I II III IV V VI VII VIII

T⋆ [K] 4372 4040 6540 2984 3277 3781 3052 2806
L⋆ [L⊙] 0.93 0.71 5.48 0.29 0.38 0.57 0.32 0.25
RIN [AU] 0.906 0.613 11.64 0.17 0.24 0.45 0.19 0.14
Rout [AU] 173.8 139.4 736.5 69.0 83.9 117.3 72.2 61.3
α 2.124 2.013 2.846 1.661 1.759 1.927 1.684 1.602
β 1.124 1.102 1.269 1.032 1.051 1.085 1.036 1.021
h100AU [AU] 11.24 10.13 18.46 6.61 7.59 9.27 6.84 6.02
mdust [10−5M⊙] 0.32 0.88 0.00041 22.0 9.2 1.9 18 39
amax [µm] 7.8 4.3 428.8 0.6 1.0 2.6 0.69 0.43
i [◦] 44 38 77 22 27 35 24 19

where the indexk ∈ {1, ..., D} enumerates the parameter dimensions. To ensure randomnessof the
sampling processes in our study, four different seeds are used to initialize the pseudorandom number
sequence for each of the eight starting points, resulting ina total number of8 × 4 = 32 different
Markov chains.

After sampling a new step∆a, we accept or reject it by evaluating the acceptance probability
using the difference inχ2 between the last accepted step and the new position

A = min

{

1, exp

[

−
∆χ2

τ

]}

. (8)

We immediately accept a new step if theχ2 at the new position is lower than at the actual position.
If we only accept choices withA = 1, the Markov chain converges to the next local minimum that is
not necessarily identical with the global optimum. Instead, a uniformly distributed numberu ∈ [0, 1]
is sampled and compared withA. The new proposed position is accepted ifu < A and the chain
has a chance to escape a local minimum depending on the actualtemperature. The crucial role of the
temperatureτ is discussed in the next section.

4.2 Annealing Schedule

The random walk through parameter space not only moves to better models with smallerχ2 but also
to worse models with a probability∼ exp[−∆χ2/τ ]. The system temperatureτ is hence the major
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control parameter of the random walk and is gradually reduced to steer the Markov chain to the
vicinity of the global optimum. It can be shown in the case of logarithmic cooling that the Markov
chain will reach the global optimum asymptotically (Geman &Geman 1984). Unfortunately, no
upper bound for the time to reach the optimum with this strategy can be given and a variety of
cooling schedules have been proposed to achieve faster convergence (Nourani & Andresen 1998).
Monotonic cooling, like in exponential and linear schedules, is used in most applications of SA.
The chain starts at a high temperature, runs through amelting phaseto reduce any bias from the
chosen starting point, and is then successively cooled to reduce the probability of moving to worse
parameter sets until it freezes at a location in parameter space.

However, monotonic cooling schedules always contain several free parameters that must be
adjusted empirically to control the duration of the optimization. For this study we implemented a
non-monotonic schedule by setting the chain temperatureτ after each accepted step to

τ = γ · χ2
last . (9)

Here,γ ∼ 0.25 is a fixed parameter controlling the probability of taking anuphill step (e.g., Locatelli
2000). Without any user interaction during the optimization procedure, our approach enables a chain
to escape a local minimum.

4.3 Adaptive Step Sizes

The step sizeβk controls the displacement between the two adjacent positions in parameter space.
Optimal step sizes cannot be defined at the beginning due to the lack of any information on the
distribution under investigation. Fixed step width is not an appropriate solution because this approach
can waste computation time if the chosen values are too largecompared to the local shape of the merit
function, leading to a low efficiency of the algorithm. If theincrements are too small, the Markov
chain converges slowly and the escape from a local valley becomes unlikely as too many steps are
needed. The step sizes for each of the parameters hence have to be adapted along the run. For this
purpose, reasonable initial values are listed in Table 2.

We define a local acceptance ratio of the chain using the sequenceηn ∈ {0, 1} of rejected and
accepted steps by calculating

ξn =
1

l

n
∑

m=n−l+1

ηm (10)

for the constant lookback lengthl < n, wheren refers to the step count. In order to maintain the
optimal acceptance ratio in the vicinity ofξ0 = 0.234 (Roberts et al. 1997), we implement a control
loop that adjusts the step widthsβk by analyzing the lastl = 25 positions of the chain. The algorithm
calculates the moduli of relative changes between the proposed parameteran,k and the previously
accepted parameteran−1,k

cn,k =

∣

∣

∣

∣

an,k − an−1,k

an−1,k

∣

∣

∣

∣

. (11)

By separately summing up the relative changescn,k for every parameter in accepted and rejected
proposals, two vectorsgn,k andbn,k can be derived to describe the impact of good and bad decisions

gn,k =

n
∑

m=n−l+1

ηmcm,k, bn,k =

n
∑

m=n−l+1

(1 − ηm)cm,k . (12)

If ξn > ξ0, the step size of the parameter with the smallest component in gn,k is increased to
encourage riskier proposals. On the contrary, ifξn < ξ0 the step size of the parameter with the
largest component inbn,k is decreased to induce more conservative proposals. In either case the step
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size of the selected parameter is adjusted by multiplying bythe factor of(1−ξ0)+ξn. Moreover, for
parameters spanning several orders of magnitude, likemdust andamax, we adapt their step widths
using a logarithmical scale.

Additionally, the step sizes are controlled to be< 50% and> 1% of the current parameter
values in order to avoid large fluctuations and extremely slow convergence of the Markov chain
respectively.

4.4 Chain Abortion

Since no upper bound for the step count to reach the global optimum in SA can be given, we must
define a reasonable criterion to stop an optimization run. When the system temperatureτ drops, the
Markov chain can get trapped at a location in parameter spaceif surrounded by sufficiently steep
gradients as any deviation from the local minimum will yieldlarge∆χ2, see Equation (8).

The system temperature is coupled to theχ2 of the current position, see Equation (9). Hence, the
probability to escape a local minimum does not converge monotonically to zero as the probability to
climb uphill remains constant. Hence, it is not straightforward to decide when to abort the chain using
a temperature threshold in the normal implementation (e.g., Nourani & Andresen 1998). Instead,
we analyze the quality of the fit step by step for every accepted model of an individual Markov
chain. The variation of the fitting quality is evaluated by calculating the modulus of the difference
∆χ2 between two adjacent accepted steps. A particular Markov chain is aborted if the box average
〈∆χ2〉 remains below a variation threshold for a certain consecutive number of stepsNabort. We
used∆χ2

abort = 67 andN∼100 steps and averaged with a box of 10 samples, see Figure 3(a) for

examples of chainIIb andIVd. The value for the threshold is derived from〈χ2
red〉 = 〈∆χ2〉

Ndata−n−1
= 1,

asNdata = 78 andn = 10 correspond to the number of data points we fit and the degrees of freedom
of our model respectively. Here, we emphasize that our criterion of chain abortion, especially the
defined threshold∆χ2

abort, is not universal. One should choose an appropriate solution depending
on theχ2-distribution of the problem at hand and the required accuracy.

4.5 Fitting Results

Thirty-two CPUs were used to perform the optimization and each Markov chain was propagated
on a single CPU. The typical number of steps for a chain beforeabortion was∼1200. Because
the calculation time per iteration highly depends on the optical depth of the proposed model, the
total run-time of an individual chain can vary significantly. On average, it took about 25 days to
complete one chain, comparable to the time to establish the database. Theχ2, 〈∆χ2〉 and some
model parameters of the Markov chainsIIb/IVd are plotted in Figure 3 versus the accepted step
count. It is clear from this plot that the merit function decreases quickly during the optimization run
and then remains in the vicinity of∼50. BothRin andMdust gradually converge to the value of the
RM. This behavior is the basis for the criterion described inSect. 4.4 for chain abortion. Parameters
like Rout, that are difficult to constrain by the observations, do not converge in an obvious pattern
but instead cover an extended interval.

The minimumχ2 values for the best fit of each Markov chain are listed in Table4. By comparing
these values to the minimumχ2 of ∼179.5 obtained from fitting the SED to the database we can
evaluate the quality of fit. Most Markov chains found parameter sets with significantly lowerχ2,
as compared to the result from the database, demonstrating the applicability of SA in the field of
circumstellar disk SED modeling.

More quantitatively,75% of the Markov chains found “improved” models compared to thebest
fit in our pre-computed database. Here, we use quotation marks to caution the reader that betterχ2

does not necessarily translate into disk parameters closerto the RM as the model is degenerate.
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Fig. 3 χ
2 and selected model parameters plotted against the number ofaccepted steps for the Markov

chainsIId andIVd. The horizontal dashed lines in the upper and lower panel of diagram (a) depict
the best-fitχ2 from the database and the level of〈∆χ

2〉 = 67 respectively. Diagram (b) depicts the
inner radius (upper panel) and the dust mass (lower panel) of the accepted models. The dashed lines
in diagram (b) denote the reference values.

Table 4 Comparison of the Bestχ2 Obtained with Optimization Starting with
Four Different Seeds from Eight Locations Given in Table 3

Chain a b c d

I 45 72 56 89
II 82 39 12 68
III 504 236 293 693
IV 39 127 375 11
V 34 262 165 31
VI 85 52 127 64
VII 106 31 527 22
VIII 351 95 71 166

Notes: (1)χ2 from SED-Fitting on the basis of the database is 179.5. (2) The subscript letters
from a to d represent different seeds used to initialize the pseudorandom number sequence.

4.6 Estimation ofLocalError Intervals with SA

Estimation of the uncertainties for the best-fit parametersusing SA is quite different from the previ-
ously described Bayesian analysis. First, a confidence interval χ2

conf has to be defined from already
calculated models. The deduction of this bound relies on thepractitioner’s experience as no analytic
solution can be given. Secondly, the vicinity of the best-fitin parameter space is probed by starting
one or several Markov chains from this location. After collecting sufficient parameter sets below the
confidence threshold, this normally asymmetric domain can be characterized by taking the minimum
and maximum value of each degree of freedom.
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Table 5 Best-fit Disk Parameters for the RM
Found by SA and the Derived Error Intervals

Parameter Best-fit

T⋆ [K] 4010+38
−25

L⋆ [L⊙] 0.93+0.09
−0.06

Rin [AU] 1.95+0.35
−0.14

Rout [AU] 480+52
−28

α 2.34+0.091
−0.141

β 1.24+0.069
−0.089

h100 [AU] 11.58+0.174
−1.715

mdust [10−5M⊙] 4.57+1.701
−0.250

amax [µm] 3.5+0.639
−0.134

i [◦] 60.9+3.9
−2.2

We started a new Markov chain from the best-fit model of chainIVd to sample theχ2-
distribution. The low starting temperature ofτ∼3 (see Eq. (9)) restrained the random walk to the
vicinity for sufficient steps to examine the local optimum. We gathered∼500 samples with this new
chain below the confidence thresholdχ2

conf defined by

χ2
conf − χ2

∗ < 3(Ndata − n − 1) , (13)

whereχ2
∗ is the new overall minimumχ2 found during the restart run (Robitaille et al. 2007). Again,

Ndata = 78 andn = 10 denote the number of data points and dimensionality of the model.
Table 5 summarizes the best-fit model of chainIVd; the error bounds are deduced from the

minimal and maximal components of all sampled parameter sets.
We would like to emphasize that the error bounds deduced withthis method have to be inter-

preted as alocal confidence interval as it is only based on a Markov chain probing the direct envi-
ronment of the best fit, while the Bayesian analysis is more appropriate for aglobalerror estimation
by taking the whole database into account.

5 DISCUSSION

There are generally two explanations for discrepancies between SEDs derived from the best-fit
model and the RM. First, the SED is a spatially integrated observable but high-dimensional disk
models are often degenerate. Hence, the fitting process of such models can only provide weak con-
straints on the disk structure (e.g., Robitaille et al. 2007). Experience from previous modeling cam-
paigns unambigously indicates that additional observations, especially multi-wavelength, high reso-
lution images, are crucial to overcome model degeneracy (e.g., Pinte et al. 2008; Sauter et al. 2009).
Secondly, it is impractical to search on a sufficiently fine grid in parameter space as realistic models
usually contain too many dimensions. The SED fitting problemis therefore an excellent showcase to
assess optimization methods for astrophysical modeling. We will discuss in the following paragraphs
the highlights of our study on fitting with a pre-calculated database and SA.

Database vs. SA: We implemented two different approaches to fit SED data of theRM: the use
of a pre-calculated model database and SA, and extensively compared these two methods.

After construction of the database, a single set of observations can be fitted very quickly by
calculating theχ2 of every model in the database. The result may be only an approximation but the
database enables us to deduce global error intervals for allparameters with the Bayesian inference
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Fig. 4 An illustration of the hybrid approach to model SEDs of two transition disks identified by
Cieza et al. (2010), in their nomenclature TRAN 14 (left plot) and TRAN 15 (right plot). The best-
fit model in the pre-calculated database is indicated as a dashed line. The solid line represents a
highly improved model found by SA based on the results derived from the database. Observations
are overplotted with black squares.

method. It evaluates the probability for each parameter by weighing all models in the database. The
fitting accuracy highly depends on the grid resolution of themodels. Unfortunately, the number
of grid points increases exponentially with the dimensionality of the parameter space. It is hence
necessary to make a compromise between grid resolution and available computational resources.

Our results show that in most cases, SA finds parameter sets with aχ2 approximately half the
size of the solution from the pre-calculated database, indicating a higher fitting quality on average.
However, some Markov chains are unable to reproduce the SED quite as well during the allocated
timeframe as their siblings. This is caused by the stochastic nature of Monte Carlo methods and
should be taken into account by using sufficient Markov chains in parallel to perform the optimiza-
tion. The increasing computational speed of multicore CPUsameliorates this embarrassing/parallel
problem, but the user will also have to find a compromise to restrain the calculation time in a tol-
erable range. SA is a sequential process and the Markov chainmay converge slowly. The fitting of
SED data for a sample of objects can therefore be a very time consuming task, even for a medium
computer cluster with hundreds of CPUs.

Hence, both using SA and a pre-calculated model database have their individual merits for solv-
ing astrophysical fitting problems. SA is often better suited for individual cases whereas a database
is preferable in a sample study, and the practitioner has to choose by weighing the computational
constraints against the required accuracy. One can of course use a hybrid approach by taking the
best-fit model from the database as the starting point for SA.Moreover, the most probable value for
each parameter, indicated by the peak of a Bayesian probability distribution, is also a good starting
choice for SA. An illustration of this idea is given in Figure4 for fitting SEDs of two “transition
disks” in the Ophiuchus molecular cloud identified by Cieza et al. (2010), in their nomenclature
TRAN 14 and TRAN 15. The quotation mark here is used as a reminder that the selection criterion
for transition disks used by Cieza et al. (2010) is broad. Sixdifferent Markov chains starting from the
best-fit, the most probable parameter set in our database or their surroundings were used to optimize
the fit. After we performed∼150 accepted steps for each Markov chain, the quality of the fits for
both objects was highly improved.
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Starting point for SA: The influence of the starting point on the probability of encountering
the vicinity of the global optimum is obvious. In our study, the starting location III features the
largest distance in parameter space to the RM, see Table 3. Consequently, more steps are required
to reach the RM. The corresponding chains therefore have more difficulty in finding better solutions
than the best fit from the database compared with other optimization runs. As some parameters of
astrophysical models can be constrained by observations, we suggest choosing the starting values
accordingly.

6 SUMMARY

We have compared in detail the fitting of continuum SED using apre-calculated database and SA,
a Markov chain Monte Carlo method that has been successfullyemployed to solve many optimiza-
tion problems outside the field of astrophysics. All the simulations are performed with the radiative
transfer codeMC3D. Our study shows the practical application of SA in the context of circumstel-
lar disk SED modeling and compares fitting quality and efficiency of both approaches. Because the
same radiative transfer code, disk structure and dust composition are used to calculate the database
and the Markov chain, the comparison of fitting quality reduces to a comparison of resultingχ2. We
show that SA typically finds better solutions than the database, directly demonstrating the applica-
bility of this algorithm to the modeling of SED data. However, a database can quickly evaluate the
overall uncertainty of all parameters and provides a good starting point for SA. A hybrid approach
to combine both methods leads to more accurate solutions.
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