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Abstract We present a detailed comparison of two approaches, the fusgie-
calculated database and simulated annealing (SA), fardittie continuum spectral
energy distribution (SED) of astrophysical objects whqgeearance is dominated by
surrounding dust. While pre-calculated databases are cotymised to model SED
data, only a few studies to date employed SA due to its uneleauracy and conver-
gence time for this specific problem. From a methodologicatiof view, different
approaches lead to different fitting quality, demand on catatjponal resources and
calculation time. We compare the fitting quality and comgateal costs of these two
approaches for the task of SED fitting to provide a guide topttaetitioner to find

a compromise between desired accuracy and available pEsoufo reduce uncer-
tainties inherent to real datasets, we introduce a referamarlel resembling a typical
circumstellar system with 10 free parameters. We deriveSEP of the reference
model with our cod®C3D at 78 logarithmically distributed wavelengths in the range
[0.3 um, 1.3 mm]| and use this setup to simulate SEDs for the database and SA. Ou
result directly demonstrates the applicability of SA in fieéd of SED modeling, since
the algorithm regularly finds better solutions to the optiation problem than a pre-
calculated database. As both methods have advantages artdoshings, a hybrid
approach is preferable. While the database provides arosippate fit and overall
probability distributions for all parameters deduced gstayesian analysis, SA can
be used to improve upon the results returned by the model grid

Key words: methods: numerical — radiative transfer — protoplanetésisl

1 INTRODUCTION

The continuum spectral energy distribution (SED) is an intgot observable of astrophysical
sources embedded in a dusty environment such as young sibjects (YSOs), active galactic
nuclei (AGNs), and post-AGB stars. It allows one to proberttass, composition, temperature, and
spatial distribution of the dust. The common method of asialis the comparison of available ob-
servations with predictions derived from self-considieslving the radiative transfer problem with
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a model describing the dust properties and their spati#ildligion. The task is to find a parameter
set that best reproduces the observations for a given méhisl.minimization of the discrepancy
between observation and prediction is an optimization lerakand is normally called fitting pro-
cedure

Various fitting algorithms have been proposed and impleatebéfore (e.g., Press et al. 1992).
From a methodological point of view, the fitting approachéedin the quality of the resulting fit
and demand on computational resources. The most commormdistibased on a pre-calculated
model database that is established on a huge grid in a higkrdiional parameter space (e.g.,
Robitaille et al. 2006; Woitke et al. 2010). Once the dateliaestablished, the optimum param-
eter set is readily identified by evaluating the merit fumictii.e. for our purpose the?-distribution.
However, as the number of grid points increases substhntigth the dimensionality of the pa-
rameter space, the model grid is always a compromise betfincomputational resources and
resolution.Simulated annealinSA) is a versatile optimization technique based on the dfxtlis-
Hastings algorithm that can be used to search for the optiwiuanmerit function in arbitrary di-
mensions (e.g., Kirkpatrick et al. 1983; Madlener et al.2Q1u et al. 2012). The main idea is to
construct a random walk through parameter space thereloyagltg improving the agreement be-
tween observation and prediction by following the localdlmgy of the merit function. A drawback
of this method is that no upper bound for the step count tohréae global optimum can be given.
Moreover, the sequential execution of the algorithm andsibdes slow convergence of the Markov
chain can make SA time consuming.

In the context of SED modeling, a pre-calculated databageite commonly invoked to per-
form the task because it can not only provide an approximateufi also enables evaluation of
the overall uncertainty of all parameters by Bayesian aiglfLay et al. 1997). On the contrary,
only a small sample of studies to date make use of SA in this dwe to its unclear accuracy and
typical convergence time. A main limitation is the signifit@omputing time per individual SED
model, especially when simulating the SEDs in an opticdilgk system. With the recent advance
in computing performance, the SA approach is now applicaliie motivation behind this study
is to evaluate advantages and shortcomings of these twmdeetihen applied to an astrophysical
optimization problem. We set up an unbiased benchmark hyidgrsynthetic observations from
a known reference model to exclude any influence due to mousrtainties on the optimization
process.

We will present fitting quality and computational cost foistldealized optimization task using
both approaches to provide a guide for practitioners to fiodrapromise between desired accuracy
and available resources.

The structure of this paper is as follows. We introduce aregfee model of a circumstellar disk
and the simulation techniques in the following section. Tbe of a large pre-calculated database
to fit the SED of the reference model is described in SectioA 8etailed description of SED
optimization with SA is presented in Section 4. We discussresults in Section 5, followed by a
brief summary in Section 6.

2 REFERENCE MODEL AND MODELING

Circumstellar disks surrounding YSOs are considered torbessential step in the star-forming
process. A lot of attention has been paid to these integestijects, since they are most probably
the birthplace of planetary systems (e.g., Mundy et al. 20@Yer et al. 2007). The planet formation
mechanism in these disks and the properties of the respliamgtary system depend on the structure
of the protoplanetary disks that can be constrained by SEBefir@. In this section we introduce
a reference model (RM) to mimic a virtual object located ia faurus star formation region at a
distance ofi40 pc and describe our simulation technique. By using a virtug@adball uncertainties

in regard to the model itself are eliminated.
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2.1 Disk Structure

We employ a parameterized flared disk in which dust and gasvallemixed and homogeneous

throughout the system. This model has been successfultytosexplain multi-wavelength obser-

vations of protoplanetary disks like the SED and high resmfuimages (e.g., Wolf et al. 2003;

Schegerer et al. 2008; Sauter et al. 2009). For the dust icittiemstellar disk we assume a density
structure with a Gaussian vertical profile

2

_a z
Pdust ™~ R exp [_W} (1)

and a power-law distribution for the surface density
S(R)~R7", )

where R is the distance from the central star measured in the dislplané. The proportionality
factor is determined by normalizing the total dust mass endisk. The disk scale height( R)

follows the power law
R B
h(R) = hioo <m) ; 3)

with the flaring exponent describing the extent of flaring and the scale heigl at a distance of
100 AU from the central star.

Table 1 lists the parameters of the RM. We truncate the disk@AU, a typical size found
for T Tauri disks and fix the value df;op to 10 AU (e.g., Andrews & Williams 2007b). We con-
sider a total dust mass 6fx10~° M, corresponding to the typical value found in T Tauri disks
(e.g., Beckwith et al. 1990; Andrews & Williams 2007a; Anagseet al. 2009). We make a stan-
dard assumption for the dust-to-gas mass ratio,mhgus/mgas = 1/100. For the flaring exponent,
we adopt the value of 1.25 (e.g., D’Alessio et al. 1999). Thgoaent of the dust density profile
a=3(8—- %) = 2.25 is derived from viscous accretion theory (Shakura & Sunyl8x3).

Table 1 Parameters of the RM and the Best-fit in
Our Pre-calculated Database

Parameter RM Best-fit model
T, [K] 4000 4262
Ly [Lo) 0.92 2.7
Riy [AU] 2.0 2.9
Rout [AU] 300 450
Myust [Me] 5% 107° 3x107°
«a 2.25 1.61
8 1.25 1.033
h100 [AU] 10 10.5
Gmax [Hm] 2.5 25

1 [°] 60 75

2.2 Stellar Heating

There are several heating sources in the circumstellasdssich as irradiation by the central star,
disk accretion and turbulent processes within the diskskelep our model simple and decrease
the number of free parameters, we consider a passive diskichwnly stellar irradiation is taken
into account (e.g., Chiang & Goldreich 1997). We assumematers of a typical T Tauri star for
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the central sourcel, = 2 Ry and7, = 4000 K, corresponding to a bolometric luminosity of
~0.92 L, (e.g., Gullbring et al. 1998).

2.3 Dust Properties

We consider the dust grains to be homogeneous spheresttsnassumption of a spherical grain is
a valid approximation to describe the scattering behaoargared with a more complex and fractal
grain structure. The dust grain ensemble incorporatesdilithte and graphite material with relative
abundances of 62.5% astronomical silicate and 37.5% graplo calculate the optical properties
of the dust with the Mie scattering theory, we use the compésactive indices of “smoothed
astronomical silicate” and graphite published by Weingart& Draine (2001). For graphite, we
adopt the common%‘ : % approximation (Draine & Malhotra 1993), which means théiretion
efficiency factor is computed by

1 2
Qext,graphite = ngxt (EH) + ngxt (EJ_) ) (4)

wheree| ande ;. are the components of the graphite’s dielectric tensortferedectric field parallel
and orthogonal to the crystallographic axis, respectively

We assume a power law grain size distributiqia) oc a =35 With @i < a < amax, Wherea
represents the grain radius ang;,, anda,,., are the minimum and the maximum grain radii respec-
tively. The size distribution withu,,;,, = 5nm anda,., = 0.25 pm is the well-known MRN dis-
tribution found for the interstellar medium (Mathis et 8.77). For the RM, we kee@y,i, = 5nm
and increase the maximum grain sizeit@,, = 2.5 wm to account for dust growth in circumstellar
disks (e.g., Sauter et al. 2009; Ricci et al. 2010).

2.4 Radiative Transfer Simulation Code

To derive the observables of the RM, we use the well-testéidtige transfer cod®C3D developed
by Wolf (2003). Based on the Monte-Carlo meth®3D solves the radiative transfer problem
self-consistently. It implements the immediate tempeetorrection technique as described by
Bjorkman & Wood (2001) and the continuous absorption cohespintroduced by Lucy (1999).
Multiple and anisotropic scattering is considered in timewations.

2.5 The SED of the RM

The radiative transfer problem is solved at 100 wavelendplyarithmically distributed in the wave-
length ranggd50 nm, 2.0 mm]. The squares in Figure 1 show the simulated SED of the RM at 78
wavelengths in the rand@.34 pm, 1.3 mm]. Since data points within this range can be obtained by
current telescopes, we therefore only reproduce fluxesaetivavelengths in the fitting procedure.

3 SED-FITTING WITH A PRE-CALCULATED DATABASE

A popular approach to analyze SEDs is to solve the radiatarster equation based on dust prop-
erties and a density distribution. Given a particular maael radiative transfer code, a database of
model SEDs can be established on a part of the model’s pagaspeice (Woitke et al. 2010).

The main advantage of this approach is that it allows exptomaf how specific data points in-
fluence parameters in the fit. As an example, given a partiduist model, one (sub)millimeter data
point can constrain the total dust mass. An additional daiatgan help to constrain the maximum
dust radius in protoplanetary disks. Moreover, obseruataf a large sample of objects can be fitted
very fast to a pre-calculated database.
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Fig. 1 Left panel the top two model fits in the database. The best-fit modeldEated as a solid
line and the squares represent the SED of the Riht panel the moduli of flux discrepancies
between the models and the RM.

In order to examine the fitting accuracy of a pre-calculattdidase, we adapted tRE3D code
to the cluster at Purple Mountain Observatory and built aloiée of 70 000 model SEDs using the
same dust density profile and grain composition as desciib8dction 2. We used a similar strat-
egy as implemented by Robitaille et al. (2006) to sample #rameter values over a wide space
to avoid focusing on one particular model, especially the. R¢é¢nerally, the model SEDs span
a reasonable range of parameters constrained by theorytesedvations of protoplanetary disks.
The effective temperaturE, and radius of the central star were derived by interpolgpirggmain-
sequence evolutionary tracks given by Siess et al. (2000)twé mass and age randomly sampled
and logarithmically spaced in the ranges|@b My, 1.5 Mg] and[0.1 Myr, 20 Myr| respectively.
The dust mass was sampled from a wide rangg @f®, 10~3] M, but values between0~" M,
and10~* M., were randomly selected more frequently. The model gridainsta majority of sam-
ples with disk outer radius betwedf0 AU and400 AU. Other reasonable values consistent with
observations are also considered. For one half of our mpdelset the disk inner radius to the dust
sublimation radius,, = Ry (Tyun/Ty) ~2:0%°, where we takd,;, = 1500 K to be the dust subli-
mation temperature (Whitney et al. 2004). The flaring expofe these models is set to a smaller
value than that found for T Tauri disks, i.@.,< 1.25. This was done in order to interpret the obser-
vations of homologously depleted disks in which materiasitiation is thought to occur throughout
the disk simultaneously (e.g., Currie & Kenyon 2009). Intimaining half of the models, the inner
radius of the disk was increased to account for canonicasitian disks that are expected to have
large inner holes due to the mechanism of inside-out diskighsion (e.g., Muzerolle et al. 2010).
Values for the flaring exponeptin these models are uniformly sampled between 1.10 and THz0.
exponent of the density distributienis calculated using the relationship= 3(5 — %) derived for
a steady-state disk in which the temperature and surfacgtgdemofile are coupled by + ¢ = 3/2,
whereq is the exponent of the temperature profiler—9. The models with scale height parameter
h1po between8 AU and 15 AU occupy a large portion of the search space, and other relalgona
values outside this range are also contained in our databhsesntire model grid was established
in approximately 30 days using 32 CPUs in the computer aluste

The RM and the grid in parameter space of the database ar setlependently. We fit the
SED of the RM to this database and examine whether the databasns a model with parameter
values close to the reference. Additionally, the distasdé&xed at140 pc and no extinction is used
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to avoid any uncertainties from the employed extinction leshort, we are only interested in the
fitting quality of this approach.

Figure 1 shows the top two SED models in the database and thelilarepancies between
these models and the RM as well. The solid line representsasefit with a minimumy? = 179.5
calculated from

Naata

2 [F; — Fi(RM))?
X Z; AF?(RM) ®)
where Ngata is the number of data point;; is the simulated flux, and;(RM) is the “observed
flux.” The photometric uncertaint F; (RM), was assumed to be comparable to typical observation
errors of real instruments working in different wavelengtigimes,10% and 15% of the flux at
shorter and longer wavelengths respectively. This assompas little impact on our study as long
as the observation errors are not changed. Obviously, $tefilb&ED is in good agreement with the
SED of the RM. The corresponding parameter values of therhedel are listed in Table 1. It is
particularly noteworthy that the fitting results constréie inner radius and dust mass quite well.
The central star of the best-fit model is much brighter thanRIM. However, the fluxes at short
wavelengths are close to the RM. This can be explained byehidisk inclinations (e.g., the best fit
1 = 75°) for which the outer disk occults the central star and everirther disk regions, leading to
a significant extinction for short-wavelength emission i@lg & Goldreich 1999). The slight flux
deficit in the far-infrared domain100 um) can be explained by a smaller flaring exponght{
1.033) of the best-fit model as compared to the RM. Disks with a lafigeing exponent intercept
a larger portion of the central star’s radiation due to adaftaring angle and consequently re-emit
more infrared flux. The maximum dust grain radiys... = 25 wm is one order of magnitude larger
than the reference value. This decreases the spectral aidbg best-fit model at (sub)millimeter
wavelengths and weakens théum silicate band. However, the database contains only fouregal
for amax, Namely0.25, 2.5, 25, and250 um, hence the difference im,,., between the best-fit model
and the RM is only one grid interval.

In order to estimate the confidence range for each parametgrerformed a Bayesian analysis
using the reduceg? defined by

2

2 X
I 6
Xred = Ny 1 ©

whereNg.i. = 78 andn = 10 are the number of data points and degrees of freedom regglgcti
(e.g., Pinte et al. 2007, 2008; Bouy et al. 2008). The retagivobabilityexp [—x2,,/2] of each
parameter set is used as a statistical weight to calculateethtive likelihood for every parameter
by summing over all models with a common value and normaiwiith the total sum. Non-uniform
distributions of models in parameter space due to diffesantpling density are considered as the
prior probabilities and have to be taken into account. Qitativie error bars for every parameter can
then be deduced from the resulting probability distribogio

Figure 2 presents the probability distribution for somestdd disk parameters. The results show
that SED analysis places constraints on the parameteesatitly, e.g. only high inclinations (edge-
on) can be excluded, while all other configurations appebetequally likely. The scale height
and the flaring exponertt, characterizing the vertical geometry of the disk and hétsceapacity
to absorb stellar energy, are constrained to some extenB&yesian analysis clearly supports the
notion that SEDs mainly contain information on the inneiuaénd dust mass of circumstellar disks
as we get the best constraints on these two parameters. Woyae noticed that the best-fit model
implies a parameter value (e.@), is offset from the peak of its probability distribution. ihis an
indicator of model degeneracy often encountered in pure fREmYy.
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Fig. 2 Bayesian probability distribution of selected disk partear® The triangles mark the proba-
bility bins containing the best-fit parameters. The veltitzsshed lines denote the reference values.

4 OPTIMIZATION WITH SIMULATED ANNEALING

SAis a variation of the Metropolis-Hastings algorithm thpplies methods of statistical physics to
optimization problems like the traveling salesman prob&erd has been used for many optimiza-
tion challenges (e.g., Metropolis et al. 1953; Hastings0l &irkpatrick et al. 1983). The physical
analogy of quenching a hot melt has given this extremelyulsséthod its name, as the main fea-
ture of SA is the gradual reduction in temperature duringnogition. Basically, the distribution
under scrutiny can be interpreted as the inner energy oftargyim a thermal bath. By starting at
a high temperature and subsequently cooling the bath wiilwiag the system to evolve through
phase space, the system trajectory intrinsically leadegmns of lower inner energy and thus to
the global optimum in the underlying problem. One of the majdvantages of this Monte Carlo
method is the independence in terms of dimensionality. Lextaema are overcome intrinsically, no
gradients have to be evaluated and the parameter space désciae or continuous. We adapted
this technique to search the optimal disk model for the stittSED derived from the RM.

4.1 Algorithm

SA creates a Markov chain of points in parameter space birajdrom an arbitrarily chosen set
of parameters within the constrained range, see Table 2p@tameter intervals considered here
are consistent with those for establishing the pre-caledldatabase. The Markov chain progresses
from the starting point by generating new parameter setgmi#ipg on the current position until
ideally the global optimum is reached. The parameter vatdesach step are recorded and can
be used for subsequent analysis. We list eight starting feadeTable 3 with parameter values
that deviate from the RM to varying degrees. After samplinpnéiormly distributed number in the
range [0, 1] using the andonu function in the IDL programming language, we scale it to the
corresponding parameter range to obtain the starting poéwery dimension. The argumes¢ed
of ther andoru function used to initialize the random sequence is choséretmentical to the
chain number. Moreover, the random sampling procedurepseimented in logarithmical space for
parameters with a large dynamical range, such as the indersradust mass and maximum grain
size. We define the starting points in this way to ensure iaddpnce from the RM and reproducible
results. The applicability of SA to the optimization of SEBfscircumstellar disks can be validated
by comparing the disk models generated by the algorithm thiégfRM. Moreover, we are interested
in the number of Markov chains and steps per chain neededdafyood fit. The displacemenia
in parameter space is sampled from a Gaussian distribusiog warying step sizes;,
2
Prob(Aa) ~ Hexp [—%} ,
k

% ™
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Table 2 Initial Step Widths and Boundary of the Parameter Space

Parameter B Min Max
T, [K] 0.2T%0 2500 7000
Ly [Lo] 0.2 Lxo 0.2 8.0
Rin [AV] 0.2 Rino 0.1 20.0
Rout [AU] 0.2 Routo 50 1000
a 0.005 15 3.0
3 0.005 1.0 1.3
hiooau [AU] 0.25 5.0 20.0
Mdust [MG)] 0.5 J\/[dustO 1079 1073
@max [Hm] 0.2 amaxo 0.25 1000
i[°] 2.0 15 85

NOteS:T*Oy L*O! RinO! RoutOx MdustO andamaxo are the Starting points.

Table 3 Starting Points of the Markov Chains

Parameter [ 1 Il v % VI vil vl

T, [K] 4372 4040 6540 2984 3277 3781 3052 2806
Ly [Le)] 093 071 5.48 029 038 057 032 025
Rix [AU] 0.906 0613 11.64 017 024 045 019 0.14
Rout [AU] 1738 1394 7365 69.0 839 1173 722 613
a 2124 2013 2846 1.661 1.759 1.927 1.684 1.602
8 1124 1102 1.269 1.032 1.051 1.085 1.036 1.021
higoau [AU] 11.24 1013 1846 661 759 927 6.84 6.02
Maust [107°Mg] 032 0.88 0.00041 22.0 9.2 1.9 18 39
amax [Hm] 7.8 4.3 428.8 0.6 1.0 26 0.69 043
i[°] 44 38 77 22 27 35 24 19

where theindex € {1,..., D} enumerates the parameter dimensions. To ensure randoaftiess
sampling processes in our study, four different seeds @e tasnitialize the pseudorandom number
sequence for each of the eight starting points, resultirg total number o8 x 4 = 32 different
Markov chains.

After sampling a new stepha, we accept or reject it by evaluating the acceptance préotyabi
using the difference iy? between the last accepted step and the new position

A:min{l,exp [—ATXQ]} . (8)

We immediately accept a new step if thé at the new position is lower than at the actual position.
If we only accept choices with = 1, the Markov chain converges to the next local minimum that is
not necessarily identical with the global optimum. Insteadniformly distributed number € [0, 1]

is sampled and compared with The new proposed position is accepted ik A and the chain
has a chance to escape a local minimum depending on the satyadrature. The crucial role of the
temperature is discussed in the next section.

4.2 Annealing Schedule

The random walk through parameter space not only moves terlmodels with smalleg? but also
to worse models with a probability exp[—Ax?/7]. The system temperatureis hence the major
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control parameter of the random walk and is gradually reduoesteer the Markov chain to the
vicinity of the global optimum. It can be shown in the caseagfdrithmic cooling that the Markov
chain will reach the global optimum asymptotically (GemarG&man 1984). Unfortunately, no
upper bound for the time to reach the optimum with this sthatean be given and a variety of
cooling schedules have been proposed to achieve fasteergamce (Nourani & Andresen 1998).
Monotonic cooling, like in exponential and linear schedulis used in most applications of SA.
The chain starts at a high temperature, runs througteking phaseo reduce any bias from the
chosen starting point, and is then successively cooleddiacesthe probability of moving to worse
parameter sets until it freezes at a location in parametaresp

However, monotonic cooling schedules always contain séveze parameters that must be
adjusted empirically to control the duration of the optiatinn. For this study we implemented a
non-monotonic schedule by setting the chain temperataifter each accepted step to

T=7" X12ast . (9)

Here,y ~ 0.25 is a fixed parameter controlling the probability of taking.gill step (e.g., Locatelli
2000). Without any user interaction during the optimizatiwocedure, our approach enables a chain
to escape a local minimum.

4.3 Adaptive Step Sizes

The step sizeg;, controls the displacement between the two adjacent positioparameter space.
Optimal step sizes cannot be defined at the beginning dueettattk of any information on the
distribution under investigation. Fixed step width is nog@propriate solution because this approach
can waste computation time if the chosen values are too tanggared to the local shape of the merit
function, leading to a low efficiency of the algorithm. If therements are too small, the Markov
chain converges slowly and the escape from a local vallegrbes unlikely as too many steps are
needed. The step sizes for each of the parameters hencechasatiapted along the run. For this
purpose, reasonable initial values are listed in Table 2.

We define a local acceptance ratio of the chain using the sequyg € {0, 1} of rejected and
accepted steps by calculating

n

m=n—I+1

for the constant lookback length< n, wheren refers to the step count. In order to maintain the
optimal acceptance ratio in the vicinity &f = 0.234 (Roberts et al. 1997), we implement a control
loop that adjusts the step widthis by analyzing the lagt= 25 positions of the chain. The algorithm
calculates the moduli of relative changes between the gegpparameter,, ;, and the previously
accepted parametey,_1

An k — anfl,k

(11)

Cn,k =

an—l,}’c

By separately summing up the relative changes for every parameter in accepted and rejected
proposals, two vectorg, ;, andb,, ;, can be derived to describe the impact of good and bad desision

n n
In.k = Z TmCm, k> bn,k - Z (1 - nm)cm,k . (12)
m=n—I+1 m=n—I+1

If &, > &o, the step size of the parameter with the smallest compomegy j is increased to
encourage riskier proposals. On the contrary,if< &, the step size of the parameter with the
largest component it, ; is decreased to induce more conservative proposals. ler@dse the step
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size of the selected parameter is adjusted by multiplyindpbyactor of(1 — &y) + &,,. Moreover, for
parameters spanning several orders of magnitudeplikg; anda,.., we adapt their step widths
using a logarithmical scale.

Additionally, the step sizes are controlled to tie50% and > 1% of the current parameter
values in order to avoid large fluctuations and extremelwstonvergence of the Markov chain
respectively.

4.4 Chain Abortion

Since no upper bound for the step count to reach the globathapt in SA can be given, we must
define a reasonable criterion to stop an optimization runeithe system temperaturelrops, the
Markov chain can get trapped at a location in parameter sipacgrounded by sufficiently steep
gradients as any deviation from the local minimum will yitddge Ay 2, see Equation (8).

The system temperature is coupled to fRef the current position, see Equation (9). Hence, the
probability to escape a local minimum does not converge rimomcally to zero as the probability to
climb uphill remains constant. Hence, it is not straightfard to decide when to abort the chain using
a temperature threshold in the normal implementation ,(&lgurani & Andresen 1998). Instead,
we analyze the quality of the fit step by step for every acakpiedel of an individual Markov
chain. The variation of the fitting quality is evaluated byccéating the modulus of the difference
Ax? between two adjacent accepted steps. A particular Markaindh aborted if the box average
(Ax?) remains below a variation threshold for a certain conseeutumber of stepapor. We
usedAx?, ... = 67 and N~100 steps and averaged with a box of 10 samples, see Figure 3(a) fo

examples of chaifll;, andIV4. The value for the threshold is derived frcmf % =1,
asNgata = 78 @andn = 10 correspond to the number of data points we fit and the c?egfeﬁRdom
of our model respectively. Here, we emphasize that ourraiteof chain abortion, especially the
defined threshold\y?2, ., is not universal. One should choose an appropriate saldgpending
on they2-distribution of the problem at hand and the required aaura

4.5 Fitting Results

Thirty-two CPUs were used to perform the optimization andhellarkov chain was propagated
on a single CPU. The typical number of steps for a chain bedbi@tion was~1200. Because
the calculation time per iteration highly depends on thécaptdepth of the proposed model, the
total run-time of an individual chain can vary significantn average, it took about 25 days to
complete one chain, comparable to the time to establish dtebdse. The?, (Ax?) and some
model parameters of the Markov chailg/IV, are plotted in Figure 3 versus the accepted step
count. Itis clear from this plot that the merit function deases quickly during the optimization run
and then remains in the vicinity ef50. Both R;, and M., gradually converge to the value of the
RM. This behavior is the basis for the criterion describe8étt. 4.4 for chain abortion. Parameters
like Ry, that are difficult to constrain by the observations, do riverge in an obvious pattern
but instead cover an extended interval.

The minimumy? values for the best fit of each Markov chain are listed in TdbRy comparing
these values to the minimu? of ~179.5 obtained from fitting the SED to the database we can
evaluate the quality of fit. Most Markov chains found paraensets with significantly loweg?2,
as compared to the result from the database, demonstragngpiplicability of SA in the field of
circumstellar disk SED modeling.

More quantitatively75% of the Markov chains found “improved” models compared tolibst
fit in our pre-computed database. Here, we use quotationsiarkaution the reader that betsgr
does not necessarily translate into disk parameters doske RM as the model is degenerate.
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Fig. 3 x? and selected model parameters plotted against the numaeceted steps for the Markov
chainslly andIV4. The horizontal dashed lines in the upper and lower paneiagirdm (a) depict
the best-fity? from the database and the level(@x?) = 67 respectively. Diagram (b) depicts the
inner radius gpper pandl and the dust masofver pane) of the accepted models. The dashed lines

in diagram (b) denote the reference values.

Table 4 Comparison of the Best® Obtained with Optimization Starting with
Four Different Seeds from Eight Locations Given in Table 3

Chain a b c d
| 45 72 56 89

Il 82 39 12 68
1 504 236 293 693
\Y 39 127 375 11
\Y 34 262 165 31
VI 85 52 127 64
VI 106 31 527 22
VIl 351 95 71 166

Notes: (1)x? from SED-Fitting on the basis of the database is 179.5. (2)sklbscript letters
from a to d represent different seeds used to initialize eigdorandom number sequence.

4.6 Estimation of Local Error Intervals with SA

Estimation of the uncertainties for the best-fit paramaisisg SA is quite different from the previ-
ously described Bayesian analysis. First, a confidencevaitg? . has to be defined from already
calculated models. The deduction of this bound relies opthetitioner’'s experience as no analytic
solution can be given. Secondly, the vicinity of the bestrfpharameter space is probed by starting
one or several Markov chains from this location. After coiileg sufficient parameter sets below the
confidence threshold, this normally asymmetric domain eacharacterized by taking the minimum
and maximum value of each degree of freedom.
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Table 5 Best-fit Disk Parameters for the RM
Found by SA and the Derived Error Intervals

Parameter Best-fit
Ty [K] 4010732
L. [Lo] 0.9370-09
Rin [AU] 1.9570-3%
Rous [AU] 480752
o 231400
6 1204909
h1oo [AU] 1158191
Maust [1075Mp] 4.57H5 100
@max [1m] 355005
i[°] 60.975:9

We started a new Markov chain from the best-fit model of cHaiy to sample they?-
distribution. The low starting temperature o3 (see Eq. (9)) restrained the random walk to the
vicinity for sufficient steps to examine the local optimume gathered-500 samples with this new
chain below the confidence threshalg ; defined by

X(2:0nf - XE < 3(Ndata —n— 1) ) (13)

wherey? is the new overall minimuny? found during the restart run (Robitaille et al. 2007). Again
Nyata = 78 andn = 10 denote the number of data points and dimensionality of theaho

Table 5 summarizes the best-fit model of chBfy; the error bounds are deduced from the
minimal and maximal components of all sampled parameter set

We would like to emphasize that the error bounds deducedthishmethod have to be inter-
preted as docal confidence interval as it is only based on a Markov chain prgpltie direct envi-
ronment of the best fit, while the Bayesian analysis is mopg@iate for eglobal error estimation
by taking the whole database into account.

5 DISCUSSION

There are generally two explanations for discrepanciewdsst SEDs derived from the best-fit
model and the RM. First, the SED is a spatially integratecenkzble but high-dimensional disk
models are often degenerate. Hence, the fitting proces<bfrandels can only provide weak con-
straints on the disk structure (e.g., Robitaille et al. 208%Xperience from previous modeling cam-
paigns unambigously indicates that additional obsermatiespecially multi-wavelength, high reso-
lution images, are crucial to overcome model degeneragy; (@inte et al. 2008; Sauter et al. 2009).
Secondly, it is impractical to search on a sufficiently finielgn parameter space as realistic models
usually contain too many dimensions. The SED fitting prohiketherefore an excellent showcase to
assess optimization methods for astrophysical modelirgailVdiscuss in the following paragraphs
the highlights of our study on fitting with a pre-calculatedabase and SA.

Database vs. SA: We implemented two different approaches to fit SED data oRNE the use
of a pre-calculated model database and SA, and extensiogipared these two methods.

After construction of the database, a single set of obsensican be fitted very quickly by
calculating thex? of every model in the database. The result may be only an ajppation but the
database enables us to deduce global error intervals fpaedimeters with the Bayesian inference
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Fig.4 An illustration of the hybrid approach to model SEDs of twantsition disks identified by
Cieza et al. (2010), in their nomenclature TRAN 1eft(plot) and TRAN 15 (ight plot). The best-
fit model in the pre-calculated database is indicated as laedakine. The solid line represents a
highly improved model found by SA based on the results ddrfvem the database. Observations
are overplotted with black squares.

method. It evaluates the probability for each parameter éighing all models in the database. The
fitting accuracy highly depends on the grid resolution of ehedels. Unfortunately, the number
of grid points increases exponentially with the dimensiitywaf the parameter space. It is hence
necessary to make a compromise between grid resolutionvaildlale computational resources.

Our results show that in most cases, SA finds parameter stitsiw? approximately half the
size of the solution from the pre-calculated databasecatitig a higher fitting quality on average.
However, some Markov chains are unable to reproduce the $#D as well during the allocated
timeframe as their siblings. This is caused by the stoahastiure of Monte Carlo methods and
should be taken into account by using sufficient Markov chairparallel to perform the optimiza-
tion. The increasing computational speed of multicore CRtusliorates this embarrassing/parallel
problem, but the user will also have to find a compromise toagsthe calculation time in a tol-
erable range. SA is a sequential process and the Markov afe@jrconverge slowly. The fitting of
SED data for a sample of objects can therefore be a very timsurning task, even for a medium
computer cluster with hundreds of CPUs.

Hence, both using SA and a pre-calculated model databasslingiv individual merits for solv-
ing astrophysical fitting problems. SA is often better slifter individual cases whereas a database
is preferable in a sample study, and the practitioner hafidose by weighing the computational
constraints against the required accuracy. One can of eass a hybrid approach by taking the
best-fit model from the database as the starting point folNB#xeover, the most probable value for
each parameter, indicated by the peak of a Bayesian prayabdtribution, is also a good starting
choice for SA. An illustration of this idea is given in Figudefor fitting SEDs of two “transition
disks” in the Ophiuchus molecular cloud identified by Ciezale (2010), in their nomenclature
TRAN 14 and TRAN 15. The quotation mark here is used as a regnith@t the selection criterion
for transition disks used by Cieza et al. (2010) is broad d8ferent Markov chains starting from the
best-fit, the most probable parameter set in our databakeiostirroundings were used to optimize
the fit. After we performed-150 accepted steps for each Markov chain, the quality of thedits f
both objects was highly improved.
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Starting point for SA:  The influence of the starting point on the probability of emt®@ring
the vicinity of the global optimum is obvious. In our studiietstarting location Il features the
largest distance in parameter space to the RM, see Tablen3eGoently, more steps are required
to reach the RM. The corresponding chains therefore have difficulty in finding better solutions
than the best fit from the database compared with other ggdiion runs. As some parameters of
astrophysical models can be constrained by observatiomsuggest choosing the starting values
accordingly.

6 SUMMARY

We have compared in detail the fitting of continuum SED usipgeacalculated database and SA,
a Markov chain Monte Carlo method that has been succesgfiployed to solve many optimiza-
tion problems outside the field of astrophysics. All the ditions are performed with the radiative
transfer codeMC3D. Our study shows the practical application of SA in the crinté circumstel-
lar disk SED modeling and compares fitting quality and efficieof both approaches. Because the
same radiative transfer code, disk structure and dust csitipoare used to calculate the database
and the Markov chain, the comparison of fitting quality regkito a comparison of resulting. We
show that SA typically finds better solutions than the dasabdirectly demonstrating the applica-
bility of this algorithm to the modeling of SED data. Howevamatabase can quickly evaluate the
overall uncertainty of all parameters and provides a goadisg point for SA. A hybrid approach
to combine both methods leads to more accurate solutions.

AcknowledgementsY.L. acknowledges support by the German Academic Exchaagéc®. H.W.
acknowledges support by the National Natural Science Fatiodof China (Grant Nos. 10733030,
10921063 and 11173060). We acknowledge the anonymougeefier comments and suggestions
that helped to improve this paper.

References

Andrews, S. M., & Williams, J. P. 2007a, ApJ, 671, 1800

Andrews, S. M., & Williams, J. P. 2007b, ApJ, 659, 705

Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullenm C. P. 2009, ApJ, 700, 1502
Beckwith, S. V. W., Sargent, A. ., Chini, R. S., & Guesten,1R90, AJ, 99, 924

Bjorkman, J. E., & Wood, K. 2001, ApJ, 554, 615

Bouy, H., Huélamo, N., Pinte, C., et al. 2008, A&A, 486, 877

Chiang, E. I., & Goldreich, P. 1997, ApJ, 490, 368

Chiang, E. I., & Goldreich, P. 1999, ApJ, 519, 279

Cieza, L. A., Schreiber, M. R., Romero, G. A,, et al. 2010, AfR, 925

Currie, T., & Kenyon, S. J. 2009, AJ, 138, 703

D’Alessio, P., Calvet, N., Hartmann, L., Lizano, S., & Cani. 1999, ApJ, 527, 893

Draine, B. T., & Malhotra, S. 1993, ApJ, 414, 632

Geman, S., & Geman, D. 1984, IEEE Transactions on Pattertygisand Machine Intelligence, 6, 721
Gullbring, E., Hartmann, L., Briceno, C., & Calvet, N. 199§J, 492, 323

Hastings, W. H. 1970, Biometrika, 57, 97

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. 1983, Scien220, 671

Lay, O. P., Carlstrom, J. E., & Hills, R. E. 1997, ApJ, 489, 917

Liu, Y., Madlener, D., Wolf, S., Wang, H., & Ruge, J. P. 201&A 546, A7

Locatelli, M. 2000, Journal of Optimization Theory and Ajsgtions, 104, 121

Lucy, L. B. 1999, A&A, 344, 282



434 Y. Liu et al.

Madlener, D., Wolf, S., Dutrey, A., & Guilloteau, S. 2012, A&543, A81

Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217542

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Tell&. H., & Teller, E. 1953, J. Chem. Phys., 21, 1087

Meyer, M. R., Backman, D. E., Weinberger, A. J., & Wyatt, M. ZD07, Protostars and Planets V, eds. B.
Reipurth, D. Jewitt, & K. Keil (Tucson: University of ArizanPress), 573

Mundy, L. G., Looney, L. W., & Welch, W. J. 2000, Protostarsi&lanets 1V, eds. Mannings, V., Boss, A. P.,
Russell, S. S. (Tucson: University of Arizona Press), 355

Muzerolle, J., Allen, L. E., Megeath, S. T., Hernandez&JGutermuth, R. A. 2010, ApJ, 708, 1107

Nourani, Y., & Andresen, B. 1998, Journal of Physics A Mathénal General, 31, 8373

Pinte, C., Fouchet, L., Ménard, F., Gonzalez, J.-F., & Buneh G. 2007, A&A, 469, 963

Pinte, C., Padgett, D. L., Ménard, F., et al. 2008, A&A, 4833

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & FlanneBy P. 1992, Numerical Recipes in FORTRAN.
The Art of Scientific Computing, 2nd ed., (Cambridge: Camitpei Univ. Press)

Ricci, L., Testi, L., Natta, A., & Brooks, K. J. 2010, A&A, 5266

Roberts, G. O., Gelman, A., & Gilks, W. R. 1997, Annals of ApgdlProbability, 7, 110

Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, R007, ApJS, 169, 328

Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, B.Denzmore, P. 2006, ApJS, 167, 256

Sauter, J., Wolf, S., Launhardt, R., et al. 2009, A&A, 50511

Schegerer, A. A., Wolf, S., Ratzka, T., & Leinert, C. 2008, Ag478, 779

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337

Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593

Weingartner, J. C., & Draine, B. T. 2001, ApJ, 548, 296

Whitney, B. A., Indebetouw, R., Bjorkman, J. E., & Wood, K020 ApJ, 617, 1177

Woitke, P., Pinte, C., Tilling, I., et al. 2010, MNRAS, 4026

Wolf, S. 2003, Computer Physics Communications, 150, 99

Wolf, S., Padgett, D. L., & Stapelfeldt, K. R. 2003, ApJ, 5883



