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A fast ellipsoid model for asteroids inverted from lightcurves*

Xiao-Ping LW, Hai-Bin Zhad and Zhong Yot

1 Faculty of Information Technology, Macau University of &te and Technology, Avenida Wai
Long, Taipa, Macau, Chinaplu@must.edu.mo
2 Purple Mountain Observatory, Chinese Academy of Scierasjing 210008, China

Received 2012 August 20; accepted 2012 November 15

Abstract Research about asteroids has recently attracted more aredattention,
especially focusing on their physical structures, sucthas spin axis, rotation pe-
riod and shape. The long distance between observers on &aithsteroids makes
it impossible to directly calculate the shape and othermatars of asteroids, with
the exception of Near Earth Asteroids and others that hassegaby some space-
crafts. Photometric measurements are still generally thi@ avay to obtain research
data on asteroids, i.e. the lightcurves recording the bmiggs and positions of as-
teroids. Supposing that the shape of the asteroid is adtialipsoid with a stable
spin, a new method is presented in this article to recontstinecshape models of as-
teroids from the lightcurves, together with other physgatameters. By applying a
special curvature function, the method calculates thehbmigss integration on a unit
sphere and Lebedev quadrature is employed for the disatietiz Finally, the method
searches for the optimal solution by the Levenberg-Mamfuegorithm to minimize
the residual of the brightness. By adopting this methodpnét can related physical
parameters of asteroids be obtained at a reasonable agdurbelso a simple shape
model of an ellipsoid can be generated for reconstructingeersophisticated shape
model.
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1 INTRODUCTION

With the development of technology, humans have much maligyab discover the universe now
than in the past. The beginning of our solar system is stilhégresting problem, which motivates
research about asteroids because asteroids hold mucmatfon about the original formation of
the solar system. Most asteroids found now lie between Madslapiter, and are commonly called
main belt asteroids (MBAs). Generally MBAs are orbiting Ben in a stable configuration, with
the exception of some larger bodies that pass nearby thempeatdtb their orbits. Due to the long
distance of 2L ~ 3.3 AU between the Earth and most of the asteroids, until nowrtaim research
data about asteroids have been photometric brightnessheitosition coordinates of asteroids, the
Earth and the Sun, generally lightcurves, which are reabbgemany ground-based observatories.
Shape models with other physical parameters such as thorofgeriod and spin axis, and
especially the albedo of asteroids, are the most importdntration about asteroids. The total
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distribution of the spin axis and rotation period of MBAs daglp in researching the origin and
evolution of the solar system. It is common for the rotati@rigds of MBAs to be stable with
durations of some hours, less than one day. But recentlystfaund that thermal radiation from the
Sun can change the asteroid’s rate of rotation, called thBRF@fect. From observations, Lowry
et al. (2007) and Taylor et al. (2007) predicted that thetimteperiod of asteroid 54 509 will double
in about 600 000 years which demonstrates that the pericaig@foids can change with a very small
amplitude over a long term.

There are many methods to reconstruct the shape modelsenbidst with other physical pa-
rameters. Russell (1906) first started the research abewshtipe of asteroids and concluded a pes-
simistic result that the shape could not be obtained by melegpending on the lightcurves observed
at opposition. With the development of both mathematioabtfes and technologies applied to tele-
scopes, more and more lightcurves viewed from various giase angles have been recorded by
many observatories located all over the world and shapesiorealgorithms can calculate the shape
model with reasonable accuracy by using high-speed comgputemme & Bowell (1981a,b) pre-
sented an estimation of the scattering law in the surfacénabsphereless bodies and introduced a
method based on spherical harmonics for determinationecésteroid’s pole (Lumme et al. 1990).
Hapke (1984) contributed further to the scattering law withsideration of bidirectional reflectance
and the roughness of the surface. Based on the scatteringflawmme and Bowell, Karttunen
(1989); Karttunen & Bowell (1989) presented a method to gaedightcurves of triaxial ellipsoid
models and discussed the variations in the convex and neagomodels. However, they just noted
that it was possible to determine the axial ratios of a tebeilipsoid model, but did not give a
method to find the shape models from lightcurves. Cellinol.ef1®89) adopted a model formed
by merging eight octants of ellipsoids havingtdrent semiaxes and also generated the correspond-
ing lightcurves without an inverse method. Adopting therspghotometric data collected by the
Hipparcos satellite, Cellino et al. (2009) presented aq@etric inversion to find the physical prop-
erties of asteroids with the assumption that the shape najdbe asteroid is a triaxial ellipsoid.
Furthermore Kaasalainen et al. (1992a,b) built a véfigient method to reconstruct the arbitrary
surface of asteroids and the inverse shape models werectanéirmed by flyby observations in
space (Kaasalainen et al. 2002).

Nevertheless, until now the ellipsoid model has played groitant role. Firstly the photomet-
ric data observed by ground-based observatories are fi@isntly accurate because of atmospheric
mist, CCD heat, incorrect operations and so on. Generbtyetror associated with photometric data
is about 2% and we cannot expect to obtain a very accurate shagel by only using lightcurves.
Secondly, the ellipsoid model is simple but it can make tierision easy andfécient with accept-
able physical parameters while statistical research atheuspin axis and period of asteroids can
obtain the required data in a fast way. Thirdly the rough nhatferred from the ellipsoid model
may be the initial value for reconstructing a more accuratgpe model by using Kaasalainen’s
method.

Under a similar definition as that employed in Kaasalainemethod and tiling the triangular
facets in the Lebedev way, we present a fast method of congpiiite ellipsoid model in this article,
which is organized as follows. In Section 2 we describe tlcrieeal details of the fast ellipsoid
model, including the scattering law in Section 2.1 and thetpimetric integration by applying the
curvature function in Section 2.2. Furthermore, the inggn®blem with a discretized integration is
presented in Section 2.3. Finally the equations for ddvigatare given for reference in optimization
in Section 2.4. To conclude, the summary and future planiaoesgsed in Section 3.

2 ELLIPSOID MODEL FOR ASTEROIDS

The disk-integrated photometric data, representing tighbress in lightcurves, contain much in-
formation about the asteroid which can be applied to caleul#e related parameters. The periodic
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variation of brightness is mainly due to the variation ofshape as the asteroid spins around its axis.
We assume that the shape of the asteroid is a triaxial eltipadth three semiaxea > b > ¢ > 0,
which spins with period® expressed in hours around its shortest axis whose sphedoadinate

is denoted asA(3) in the J2000 ecliptic frame system. As is the conventioa, iightness data
recorded in lightcurves are reduced to unit distances lestwiee asteroid, the Sun and the Earth,
and are corrected according to the light-time (Durech e2@10). So we assume lightcurves have
been processed in this way before applying our method.

2.1 The Scattering Law

The scattering behavior is an inevitable problem in theragtenodel. Lumme & Bowell (1981a,b)
considered several physical parameters, such as the -sicafering albed®o, the asymmetry fac-
tor g, the volume density of the surface mateialand the roughness of the surfacd&ventually, a
sophisticated scattering model was built to simulate theabier of the light reflecting from the Sun.
Hapke (1984) took into account the oppositidteet and the shadowing cast by the particles onto
the surface. These scattering models can express the phgis&racteristics of the light reflection in
a rational manner, but they are ndlieient in reality due to uncertainty in the physical paramsete
Kaasalainen et al. (2005) carried out photometry reseaittham artificial asteroid in laboratory
experiments and confirmed that shape variation is the maisecaf variation in brightness, not
the scattering law. Furthermore, they found that it is hardistinguish the dference between the
scattering law and random error. In order to acquire the esimapdel in an #icient way, a simple
scattering law is needed. Kaasalainen et al. (2001) predentonvenient method to simulate the
scattering behavior by defining a linear combination of tilgle scattering factoB, s (Lommel-
Seeliger) and the multiple scattering fac8r (Lambert). The scattering law can be expressed as

S(u, po, @) = f(a)[SLs(ﬂ,#O) + CSL(,U,#O)]
HHo
= f + R 1
«a(ﬂ_+#0 ¥ Hpto) (1)
whereu andug are defined as follows under the definitionrdf, ¢) as the outward unit normal

vector of the surface, and andwg as the directions to the Earth and the Sun observed from the
asteroid respectively,

H=w-n,  po=wo-. 2)
The phase functiofi(«) is a fitted function in the three-parameter form
f(a) = Aoexp(—%) tka+ 1, ®)

whereAq andD are the amplitude and scale length of the opposititeceéandk is the overall slope
of the phase curve. The above scattering law with four pat@sadopted in this article can perform
efficiently in the shape inverse problem and realistically $ateuthe oppositionféect.

2.2 The Photometric Integration

In order to reconstruct the shape model of asteroids, thiaetio brightness must be described in the
direct problem. As mentioned above, the scattering law fitii parameters can be adopted herein
to generate the photometric brightness as a surface ihtegra

WmM=I£SMMﬂNm @)

whereE, is the part of the asteroid’s shape that is both illuminatethle Sun and visible from the
Earth, i.eu, o > 0. Assuming that the shape model of asteroids is a triaxtipbeld, the integral (4)



474 X.P. Lu, H. B. Zhao & Z. You

{A@/V‘A%i\%\m
S YAVA %Y,
I AVAVAVAY:))!
%ﬁgﬁﬂg‘gﬂ»
N7

Fig. 1 The comparison of two dierent tessellation methodseft: Triangulation;Right: Lebedev).

can be calculated numerically by traditional triangulafitiling the approximately equal triangular
facets on the surface, which is a linear algorithm of the nemnalh tessellated facets. In Figure 2, it
is shown that an error level of 1bhneeds more than f@riangular facets tessellated on the surface
of the ellipsoid.

Lebedev & Laikov (1999) presented a fast method to calcukeesurface integral on the unit
sphereS by unequally tiling the triangular facets. Kaasalainen &2912) applied this technique to
their method and confirmed that the Lebedev quadraturgic@ent in terms of the surface integra-
tion. The diferent distributions of triangular facets of the traditibmeangularization and Lebedev
guadrature are shown in Figure 1.

Due to the fact that the Lebedev quadrature is based on thepl@re, in our method a curvature
function from the surface of ellipsoié to the unit spher& is built with the format

ar g or
G.0) =~ 10.9)<E (5)

With the curvature functiotG(6, ¢) the brightness integral (4) can be transformed to the serfa
integral on the unit sphei®

L(wo.w) = f fs S(u. 0. @) G(6. 6) o (6)

whereS, is the similar part of the unit sphere withuo > 0.
The curvature function under the standard parameterizafithe ellipsoidal surfac

X; = asinfcosp, Xy =bsindsing, x3=ccosd, 6¢€]0,2r], ¢e€]0,n], (7
has the form
. 2 . . 2 2
: sind cos¢ singsing cosd
G(O,qﬁ)_abc\/( - ) +( - ) +( . ) ®)

Kaasalainen et al. (1992b) also presented the other cuevaatnction with the form

6000 - abe )2

(asin® cosp)? + (bsind sing)? + (ccosd)?

(9)
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Fig.2 The comparison of triangulation«() and Lebedev quadratures with our curvature€)(and
Kaasalainen’s curvatured() respectively for computing the surface area of ellipsoidth various
semiaxesl(eft: a=8,b=7,c=6; Right: a=10,b=2,c=15).

under the definition ofi{, ¢) denoting the spherical coordinates of the normal vectbtbeellip-
soidal surface.

Both of the curvature functions can perform well in compgtihe brightness integral (6). But
the first one mentioned and adopted in our method is midieent for extreme situations, such as
the ellipsoid model with a large flierence between its three semiaxes. The ‘dog-bone’ shaperd as
oid (216) Kleopatra has been found to have a shape that is e elongated ellipsoid (Descamps
etal. 2011). Figure 2 shows the comparison of our curvaturetion (*’) and Kaasalainen’s curva-
ture function (¢") to compute the surface area of ellipsoids witlfeiient semiaxes with the follow-
ing formula, easily defining the scattering functi®(u, uo, @) = 1 in the integral (6),

Surface Area of Ellipsoids ff G(0, ¢) do-. (20)
S+

Apparently our curvature can obtain less error than Kaasai& curvature, especially in the case
of elongated ellipsoids. Besides, théfdience between the triangulatior’j'and Lebedev quadra-
ture (<’ or ‘o’) is also compared in Figure 2. The dominant Lebedev quadeatan guarantee the
efficiency of our fast method.

2.3 The Inverse Problem

With the definitions of both the scattering function and thigltness integration, the inverse prob-
lem of the shape model of asteroids can be illustrated asAsl|

Supposing that all lightcurves in this article are forméftethe same way as DAMIT (Durech
et al. 2010), the relative brightnesss) (with respect to a Julian Dayt)(and the positions of the
Earth and Sung, wp) in an ecliptic asteroid-centric coordinate system cantidained directly from
lightcurves. According to the aforementioned brightnessgration, all the required parameters are
three semiaxesa(h, ), the spherical coordinate,(3) of the spin axis in the ecliptic system, the
period P), the four parametersA, D, k,y) of the scattering function and the initial phase angle
(Do) at the beginning epocltj. So there are 11 parameters in alli@is generally set to be the first
Julian date of all lightcurves.



476 X.P. Lu, H. B. Zhao & Z. You

The observed brightness will vary periodically with theatidn of the asteroid around its spin
axis, in which it seems that the Sun and Earth spin aroundtttimisary asteroid. Assuming the
asteroid’s coordinate system is the Cartesian frame wétsgtin axis being the-axis and the long
semiaxis being the-axis, the origins of the ecliptic and asteroid coordingtgems are located at
the same point at the center of the asteroid. Denatingdwy as the coordinate of the Earth and Sun
in the asteroid coordinate system, the transformation éetwhe ecliptic system and the asteroid
system can be given as

@ = Ry(P)R(BRs(Dw, o = Ra(P)R2(B)Rs()wo, (11)

whereR,; andRj3 are the rotation matrices describing thendz axes respectively with the forms
cosf 0 —sing cosd singd O

R@=f 0 1 0 |, Rs(#) =| —sind cosd O |. (12)
sind 0 cos 0 0 1

As the asteroid rotates with an angular spegtP2 phase anglé varies with respect to the epoth
(Julian Day) in the form

@) = 0o+ Z(t-to), a3)
but if the YORP éect is taken into account, the corresponding form will be
0() = o+ Z(t-1o) + v(t 1)’ (14

wherev = dQ/dt (Q = 27/P) is the angular rate of change of the perfd

Let (6, ¢i) be the discretized points of the Lebedev quadrature wititad humber of facetsl
being tessellated on the surface of the unit sphere withr@gponding weightv;, which can also be
treated as the area of small facets. With the normal vectanpftmall facet of the ellipsoid shape

sing; cosg; sing, sing; CcosH;
o — 15
nl ( a ) b B c ) B ( )
the brightness integral (6) can be discretized as
N
L(w wo) ~ ) (S, i), )G(6h, di)w) (16)

i=1
whereu® andpg) are the inner products of &ndwp and the unit normal vectay; /|| respectively.
Furthermore, under the definition of normal vector (15),¢dhevature function (8) can be simplified
in the form
G(6:, ¢i) = abelni. (7)
Finally, merging the scattering functi®(u, uo, @) in Equation (1), the discretized brightness inte-
gral (16) will be
N 1 y
L(w, wo) = f(a)(@ - ni)(Dg - ni) | —= = + —
(. w0) Zl( @@ 10 1)| g s +
where & - y) is the inner product of two vectossandy.
The inverse problem of the ellipsoid model can be describ&dd the 11 parameters mentioned
above to minimize
=)

abcwi) , (18)

o o |7?
L (19)
(LOY (L
whereL® andL® denote the brightness vectors of observed data and theetigntiata containing
all points in theth lightcurve, while(L®) and(L®") denote the mean brightness of the two brightness
vectors.
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2.4 The Optimization Algorithm

There are many methods to find the best fit solution of the sevproblem (19), such as a genetic
algorithm, methods of conjugate gradients and so on. Heveiemploy the Levenberg-Marquardt
(LM) method to search for the optimal solution, which worlesywwell in practice and has almost
become the standard in nonlinear least-squares routinesq(Mrdt 1963). The LM method can
converge rapidly, but the obtained result is often a locéihogl solution. There is a general method
to complement its deficiency, i.e. searching for the best8ult with various initial values. The
details of the LM method can be found in Press et al. (1992).

But it is necessary to compute the derivativegdfn the LM method, which means the deriva-
tives of the discretized brightness integral (18) with sxfo the 11 parameters have to also be
computed. In order to facilitate easy programming, we dineformulas for reference.

Letting

=& miji =@, S = L YO (20)
H+po il

The derivative ol (w, we) with respect to the semimajor ax@) (has the form

N

g; ZI.: [f(a)bcw.S + abew, (

0S 6;1 L 95 0S 6,uo L YHHo Sir? 6; cos ¢ . 21)
ou 6a Ouo 6a a3|I]i|3

The other semiaxes (suchtaandc) have similar formulas. The derivativeslofw, we) with respect
to (1,8, P, ®g) are

N
51 = 2, | Horabon [ ERORE T Do+ ROR TS oo . @2)
=1
N
=Z[f(a)ab (GoR@ PR o+ 2 R@ D R )|, @
i=1
TR 4S aR3(®) , S 9Ry(®) }
N L e . CLIO TS| D
Due to the relation oP and®g in Equation (13),
oL oL 90

The derivatives of (w, wp) with respect to the three paramet@gsD andk in the scattering function
are easy to obtain by multiplying the corresponding deikreatof f (a) respectively,

ooy ey G e

and the derivative with respect{ais

f(a)abcwi’%] . 27)
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3 CONCLUSIONS

We have described a fast method to obtain the physical paesasrend the shape models of asteroids
based on the ellipsoidal shape. This method adopted thedeghypiadrature to discretize the surface
integral on the unit sphere, which can largely decreasedh®atational cost while maintaining a
high accuracy. In addition, now that this method can comthaeoeriod and the orientation of the
spin axis in an fficient way, we can rely on its result to refine the shape of astgrsuch as adopting
Kaasalainen’s method.

The related equations are presented in this article, sutheasurvature function (8) and dis-
cretized brightness integral (18), and especially the dimaied derivatives of?. Here it should be
noted that all the formulas are given in a general form witleéhsemiaxis parameteasb andc
because this format is comprehensible and easy to comptrethier formulas like Kaasalainen’s
curvature function. In computation, due to the relativglbtiness, the semiaxis paramens andc
are not exactly the same as the real asteroids in terms ofSsizbe ratios of the axes in the ellipsoid
modela/b anda/c are more practical. By applying the fast method, it is easyolmpute the ratios
from the derived parameters or we can set 1 in the LM method to directly obtain the ratios.
Besides, we can also replace 1?§ein @(t) by its angular speef to simplify the computation. The
detailed numerical test and application to real asteroilde presented in a future article.
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