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Abstract Effective extraction of data association rules can prowdeliable basis

for classification of stellar spectra. The concept of stedfeectrum weighted itemsets
and stellar spectrum weighted association rules are inted, and the weight of a
single property in the stellar spectrum is determined bgrimiation entropy. On that

basis, a method is presented to mine the association rukesteflar spectrum based
on the weighted frequent pattern tree. Important propexifethe spectral line are
highlighted using this method. At the same time, the wawafof the whole spectrum

is taken into account. The experimental results show tredtta association rules
of a stellar spectrum mined with this method are consistétht the main features of

stellar spectral types.
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1 INTRODUCTION

The Large Sky Area Multi-Object Fiber Spectroscopic Tebgsc(LAMOST, also called the Guo
Shou Jing Telescope) is a special reflecting Schmidt tepesconstructed so that its optical axis is
fixed in the meridian plane. LAMOST's special design allovashoa large aperture (effective aper-
ture of 3.6m—4.9m) and a wide field of view (Cui et al. 2012)n@ared with other large telescopes
around the world, LAMOST is able to acquire celestial sp@atata with the highest rate. Since the
completion of LAMOST, there have been so many astronomieséorations gathered by LAMOST
that the associated “data avalanche” and “informationasiph” have become urgent problems. For
example, Wu et al. (2010) reports the discovery of eight neasgrs by the LAMOST telescope in
one extragalactic field. In order to effectively extracoimhation from a large amount of complex,
distributed and multi-band astronomical data, researdteda fusion and data mining has gradually
become one of the hot topics in astronomy. At the same tingechtallenging to analyze the massive
amount of data collected by LAMOST; therefore, there is @&gireg need to develop novel data anal-
ysis tools to be integrated into data processing systenasdddn observatory facilities. Association
rule mining, as an important data mining method, can effettidiscover relationships between
properties derived from the spectra of large celestial émdind has great potential in studying the
origin and evolution of the universe.
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In recent years, research on celestial spectral data miogesas mainly addressed automatic
spectral classification and recognition. Dimension reidactising the methods of principal com-
ponent analysis and neural networks was applied to clasgifsimulated data of galactic spectra
with low signal-to-noise ratio by Folkes et al. (1996), whetassification accuracy reached more
than 90%. By combining the Fisher information matrix withrkel techniques, the method of gen-
eralized discriminant analysis was used to classify stsfj@ctra by Xu et al. (2006). Based on the
research of Xu et al. (2006), Yang et al. (2007) adopted thpat vector method by integrating ker-
nel techniques and with a covering algorithm to classifysgus. The multi-band data fusion method
based on the Map-Reduce model in a distributed environmasipproposed by Zhao et al. (2010).

The currently available methods used for automated extraof stellar spectral parameters are
mainly based on minimum distance methods (MDMs), and a septative line of research is the
ELODIE online stellar parameter estimation system by Katd.§1998) and Soubiran et al. (1998).
They constructed a stellar spectral template library casagmf 211 FGK type stellar spectral tem-
plates with a resolution of 0.A. Recio-Blanco et al. (2006) designed the MATISSE algonitio
automatically derive the parameters and chemical abumdaioe the Gaia/RVS survey. Spectral
classification by astronomers has mainly focused on steléessification (von Hippel et al. 1994;
Bailer-Jones et al. 1998; Bai et al. 2005) and galaxy clasgifin (Connolly et al. 1995; Galaz & de
Lapparent 1998; Zaritsky et al. 1995), where the latter iIisnaeds to know redshifts of the spectra.
The spectra with unknown redshifts will be roughly classifigto three types: star, galaxy or quasar
(QS0). Qin et al. (2003) and Zhang & Zhao (2003, 2004) havedome research on the rough clas-
sification of spectra using support vector machines (SVMsl)radial basis function (RBF) neural
networks. General descriptions of the evolution of Youngjl&t Objects and the process of planet
formation can be found in the monographs of Hartmann (208tBhler & Palla (2005), Armitage
(2010), Ward-Thompson & Whitworth (2011) and Garcia (2011¢ proceedings of the Protostars
and Planets V conference (Reipurth et al. 2007), as wellasatent reviews of Williams & Cieza
(2011) and Armitage (2011). The spectral data correlati@lyasis system based on the constrained
frequent pattern (FP) tree was presented by Zhao et al. {2B08Bconstraint conditions can only
be artificially generated, and in the absence of expertinébion, a constrained FP-tree will give
degraded performance.

Due to the lack of a priori knowledge from astronomical exp@&nd users in stellar spectral
data sets, the degree of importance for each item is diffie@ét in advance, though each item has a
differentimportance. According to the item’s differentgortance in the stellar spectral data set, this
paper introduces two concepts about the spectra of steilyhted itemsets and a stellar spectrum
of the weighted association rule. At the same time, inforomagntropy is used to determine stellar
spectra with single attribute weights, and a compromiseéetn the geometric mean and maximum
is used to determine the weights in a multi-layer itemsstplirpose is to highlight the important
properties of the spectrum, when the waveform of the whatetspm is taken into account. On this
basis, the stellar spectra of weighted frequent pattemsxracted by using the weighted frequent
pattern tree of stellar spectra, and the method of using ghte frequent pattern as a tree structure
is given. In the end, the experimental results show thatgudie method of stellar spectral data
mining association rules is consistent with the main fezgwf stellar spectral types.

Section 2 includes the basic concepts. Section 3 definegehar spectral weighted frequent
itemset. Section 4 describes a method of stellar spectrghtexl FP-tree construction and rule ex-
traction. The last section gives the summary and furthespeots.

2 BASIC CONCEPTS

Let DB be a database of transactions, d&nd I, I», - - -, I,,, be a set ofn transaction itemsets in
DB. Each transactioft’ in DB is a subset in the set of transactidnshat is7'CI.
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Definition 1. We refer to patterrP as a subset of. Thus, we have® = I (I - () Ix,
I, el(@=1,2,---,k), and the length of patterR is the number of items . For example, the
length of the above patter® is k, because there akeitems inP.

Definition 2. We say patterrP has a support degreedQs <1 with respect to database DB if
and only if at least-x | DB | number of transactions in DB satisfy pattdPn

Let| ¢t — P | be the number of transactions that satisfies patieriVe define suppoit as
Equation (1), where (P/DB) is the fraction of transactions in DB that satisfies the gipattern.
Thus, we have

o(P/DB)=|t—P|/|DB]. Q)

We say two patterns A and B are disjoint patterns if and ontiéir intersection is a null set,
Ie{Al}ﬂ{Bj} = @,WherEA = A1 ﬂAQﬂ 'ﬂAk, B = BlmB2ﬂ ﬂBm

Definition 3. Given two disjoint patterns4, B) and an association rulé —- B in DB, we
define the confidence of the association rule as below

(A= B/DB) =o(A(|B/DB)/o(A/DB), (2)

wherec(A(B/DB) ando(A/DB) can be derived from the two support factors defined in
Equation (1).

Definition 4. Let o, be the threshold of the minimum support factor, thenitHfeequent
pattern sef;, and the nork-frequent pattern sdt;, in database DB is defined as

Li={A [\ A2[ ) ()Ak | Ai € Lo(AL [\ A2 )+ A/DB) = omin},  (3)
p={A (A2 ) (A | Ai € Lo(Ar (A2 )+ A/DB) < omin}. (4

To extract association rules from database DB, one has tifgpiee minimum support threshold
omin @and the minimum confidence threshalg,;,,. Thus, we need to search for any association rule
(e.g.A= B) that satisfies the following two conditions

o(A(\B/DB) > omin  and  ¢(A = B/DB) > tmin. (5)
Definition 5. An FP-tree is a tree data structure that meets the followirggtconditions:

— Condition 1: An the FP-tree contains a root node marked a$L1N (denoted as root). The
children of the root node are item-prefix subtree sets. Tée &lso consists of a head table
containing frequent items.

— Condition 2: Each node in an item-prefix subtree is made ughree components, namely,
item-name, count and node-link. ltem-name representsaheerof the item; count denotes the
number of transactions that are on any path leading to the;rmodi node-link is a link pointing
to the next node with the same item-name value as in the EPHtbe next node does not exist,
then the value of the node-link is set to null.

— Condition 3: Each item in the head table of frequent itenmisprised of two components -
item-name and head-of-node-link. Head-of-node-link is@mer pointing to the head node of a
singly linked list for nodes that have the same item-nameeval the FP-tree.

3 STELLAR SPECTRAL WEIGHTED FREQUENT ITEMSETS
3.1 Determining a Single Attribute Weight for Stellar Spectal Data

Let DB be a stellar spectral database, énd {I, I», - - - , I,,,} be the itemset containing 200 wave-
length attributes and six physical/chemical attribulés.= (W, ,Wy,,--- , Wy ) is the weight
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vector of the stellar spectral attributes. Due to the lack pfiori knowledge from experts and users,
weight vectorlV is difficult to predetermine. The uncertainty Bf can be measured with a proba-
bility function. Information entropy based on this proldahican reflect the uncertainty in discrete
messages and has been successfully applied in many fieklsintertainty implies there is informa-
tion content, and it is feasible to use the information gngrto describe the importance of a stellar
spectral data attribute.

According to Shannon’s definition of information entrot,P(y) be the probability of property
y in the stellar spectral data set, théfy) = —log, P(y), in which I(y) represents the amount
of information inY. The information entropy ot” is denoted ad7(Y’) which represents mean
information content in the stellar spectral propety A property of H(Y') is that whenH (Y)
gradually increases, the degree of uncertainty ialso increases and more information is hidden in
it. Therefore, the amount of information entropy can intédhe general characteristics¥of

H(X) = E[Ib(1/P(2:))] = = > P(a:)IbP(x;). 6)
i=1
In general, stellar spectra are independent of each otlieth@ramount of information in all spec-
tral data of the same attribute can be cumulative. Inforomegintropy represents the importance of
attributes, so it is reasonable to use information entregmreattribute weight. Lel; €D be a stellar
spectrum, and®(m/T;) be the probability ofn when the spectrum i&;, then the mean amount of
information is expressed b§f (m).

H(m) = E[I(m/T;)] ZP m/T;)IbP(m/T;). (7)
=1
Let I = {I,I»,---,I,} be the attribute set of the stellar spectral data, then thghvef the

attributel; equaIsH( 1), that is weight (;)=H(Z;).

3.2 Determining Multi-attribute Weights in Stellar Spectral Data

LetI = {I,,Is,---,I,} be an attribute set for the stellar spectral database. Wegtgiven by
information entropy is assigned to attributeto show its importance, that 8 (i;) = w;. The
weight vector is denoted 88 = {W,, Wa,--- , W, }.

Leta = Wy + Wy + - - - + Wy, then{W, /a, W/a, ---, W, /a} is the normalized attribute
weight vector, that i$V" = {W, W3,--- . W, , }inwhichW/ = W, /aandW{+Wj+-- -+ W/ =
1. SoifY is an itemset of stellar spectra, its weight can be defined|msis

WY ;;/HW’ EY{W} . (8)
i; €Y

This definition has resolved the issue that the value of lexhted support may be greater than
one, and has highlighted key aspects by using the maximughtgiAt the same time, the difference
between items is reduced by using the geometric mean.

3.3 Stellar Spectrum Weighted Frequent Itemset

Definition 6. LetY ={I, I, -- -, I,,,} be a stellar spectral data itemset, then the weighted stppor
of itemsetY’, owsup, Can be defined as follows

Twsup (V) = W (Y) x o( [T] Wi+ e y (Wit ] xa(Y), (9)
;€Y
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whereo (Y) is the general support &f.

Definition 7. Let X=Y be an association rule for the stellar spectral data, tlsenweighted
support can be defined agq,,(X=Y) = W(X UY) X o(X UY), inwhichW(X UY) is the
weight of a stellar spectral data item$é&t U Y'). In accordance with the above formud,X UY")
is the general support ¢ UY).

Definition 8. Let X = Y be an association rule of the stellar spectral data, themdighted
confidence can be defined as

Ywsup(X = Y/DB) = oysup(X ﬂ Y/DB)/owsup(X/DB). (20)

Definition 9. For data itemseY’, if oywsup(Y) > omin, thenY is a weighted frequent itemset
of the stellar spectrum, in which,,;,, is the minimum support threshold set by the user.

Definition 10. The association rules simultaneously satisfying the mimmsupport and min-
imum confidence threshold are known as the weighted as&otiaties of the stellar spectrum.

Property: LetX ={i1, i2, - - -, ix } be the stellar spectrum’s weighted frequent itemset, irchvhi
E>1,Y C X, thenif W(Y) > W(X), Y is certainly a weighted frequent itemset of the stellar
spectrum; ifi7 (Y) < W(X), Y is not a weighted frequent itemset of the stellar spectrum.

4 STELLAR SPECTRA WEIGHTED FREQUENT PATTERN TREE CONSTRUCT ION
AND RULE EXTRACTION

4.1 Weighted Frequent Pattern Tree Construction Algorithm

Similar to FP-tree construction, all information assaaiatvith the weighted frequent itemset should
be stored in the Weighted Frequent Pattern tree (WFP-trfesfetlar spectral data. In WFP-tree
construction, all 1-frequent and non-1-frequent patteta seed to be gathered when the database is
scanned for the first time, which is different from constraicof the FP-tree. The WFP-tree of stellar
spectral data can be built through traversing database & tagcording to the following steps.

(1) Scanthrough stellar spectral database D for the firg, tiathering frequent length-1 patterns of
sets, non-frequent length-1 patterns of sets, and theghtail supports, sort frequent length-1
patterns in descending order of the weighted supports anergie a frequent item tablg

(2) Create the root node of the stellar spectral data andtedrmy “NULL;"

(3) For each transactiofi in D, sort frequent items df in order of L. and generate a new list of
frequent items namef’, then update the WFP-tree according to the followings thteps:

(i) Search for a path that has the longest prefix matcfiihigp the WFP-tree;
(ii) The count of the node that is in the matching path is iase=l by one;
(iii) Search for the mismatching suffix if’, and determine the node to which the last frequent
item in the longest matching prefix is corresponding as tberrode, then create child nodes
successively in the WFP-tree and set the count value to 1.

4.2 Experimental Analysis

We implement a data-mining tool for the correlation anaysistellar spectral data sets. The WFP-
tree-construction algorithm described in Section 4.1d¢®iporated in our correlation analysis mod-
ule for stellar spectral data. The experiments are perfdione PC with an Intel Pentium IV 3.0 GHz
processor and 512 MB of main memory; the operating systemnsldws XP professional. We have
fully implemented our correlation analysis module on tofDo&cle 9i DBMS. Our stellar spectral
data-mining tool and the correlation analysis module, inciithe WFP-tree-construction algorithm
is implemented, are developed with Visual C++ 6.0. 8315 SBte#ar spectral data are selected
as the data set (SDSS is one of the largest astronomicalysprogcts to date), the data which
were publicly released by SDSS in June of 2007, including®saand the associated database. The
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Table 1 Contruction Time of WFP-Tree(s)

Dataset opmin = 5% Omin = 3% Omin = 2% Omin = 1%
1000 143 175 201 287
2000 188 230 255 330
4000 198 257 289 395
8315 390 550 638 820

Table 2 Numbers of Weighted Frequent Patterns

Data set Omin = 5% Omin = 3% Omin = 2% Omin = 1%
1000 435 530 850 1562
2000 489 750 1008 2017
4000 956 1218 1356 1980
8315 1007 1236 1478 2030

amount of data for figures is about 15TB. The SDSS is curréimélyargest astronomical data set that
has been publicly released. The data are provided by Na#@tanomical Observatories, Chinese
Academy of Sciences. We select 200 wavelengths and five galicdiemical properties including
chemical composition, surface temperature, diametefitguaminosity and the like as attributes to
represent stellar spectral data. The experimental data gbtained after pretreatment on the source
data set. The pretreatment is briefly summarized as folltwSelecting six physical/chemical prop-
erties and 200 wavelengths which are sampled from 3816 7790A with an interval of 20A,
which represent a set of attributes for each spectral dafais2retizing spectral data according to
the flow, peak width and shape of each wavelength. Expergrametdivided into four groups with
different data set sizes and minimum support thresholds dBita sets contain 1000, 2000, 4000 and
8315 objects and the minimum support threshold is respagtset to 1%, 2%, 3% and 5%.

The experimental steps are as follows. Firstly, the minimueighted support is calculated
according to the above Equation (8). Then the weighted &atjpattern tree is constructed using
the WFP-tree-construction algorithm. The constructioretis shown in Table 1.

Table 1 shows that for the same data set, the constructiendfrthe WFP-tree gradually be-
comes longer with the decrement of the minimum support Hulelsr,,,;,,. When the minimum sup-
port decreases, its corresponding minimum weighted stijgleareases which leads to an increase
in the number of weighted frequent patterns satisfying thed@ions. This is why the time for con-
structing the tree has increased. It can also be seen frola Tdbat, for the same support threshold,
the construction time of the WFP-tree gradually increasiés tlie increase of data set size. If the
data set increases in size, and the number of stellar spectemses, the time to scan the database
must also increase.

After traversing a constructed WFP-tree, one can extraguient patterns from the stellar spec-
tral data. To efficiently traverse a WFP-tree, we createam-ihead table in which each item has a
node link pointing to its location in the WFP-tree. Note thatonditional pattern base is a stellar
spectral sub-database composed of the prefix path setsraqgpieeboth the WFP-tree and the suf-
fix pattern. Next, a conditional WFP-tree is built. The assti@n rule mining process is performed
recursively on the WFP-tree. Finally, the pattern growttreslized through the combination of fre-
guent patterns generated by the suffix and the conditionsi$ésd with the WFP-tree. The numbers
of weighted frequent patterns are described in Table 2.

Table 2 shows that, with the same data sets, the number of WéEB-gradually increases, when
the minimum support threshold,;, decreases. It can also be further explained that the catistnu
time of the WFP-tree gradually increases when the minimuppstt is smaller. With the same
minimum support, the number of weighted frequent patteateéen the different data sets did not
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LANOST — WFP-DataNining CEEX
Weights Open CFP-Tree Frequent Pattern Rule Help(H)
| @
Heights CFE-Tree Pattern Rule
nncsbe: o ningonki | 70 & teble  [s80001s begin | LU L]
All agsocition rules

ihssocition rule supph, confi%
3970 _weak wide, 4010 strong wide=—>temp_3,chem _Z, lumi_1 1..900%, 73. 07%
3970 _weak wide, 4010 strong wide=—=>temp_3,mic 1 lumi 1 1..900%, 73. 07%
3970 _weak wide, 4010 strong wide=—=>temp_ 3, chem _Zomic 1, lumi_ 1 1..900%, 73. 07%
4010 _strong wide, 4050_strong wide==>temp 3, 1um1 2. 100%, 100. 0%
4010 _strong wide, 4050_strong wide==>temp 3, chem 2, lumi 1 2. 100%, 100. 0%
4010 _strong wide, 4050 _strong wide==>temp 3, mic 1 lumi_1 2. 100%, 100. 0%
4010 _strong wide, 4050_strong wide==>temp 3, chem _Zomic 1, lumi_ 1 2. 100%, 100. 0%
4010 _strong wide, 5190 weak narrow—>temp_3, lumi 1 1. 400%, 0. 00%
4010 _strong wide, 5190 _weak narrow—>temp 3, chem 2, lumi 1 1. 400%, 0. 00%
4010 _strong wide, 5190 weak narrow—>temp 3, mic 1 lumi_. 1. 400%, 0. 00%
4010 _strong wide, 5190 _weak narrow—>temp 3, chem _Zomic 1, lumi_ 1 1. 400%, 70. 00%
4870 _weak middle, 5510 weak narrow—>temp_1, lumi 1 2.100%, 100. 0%
4870 _weak middle, 5510 _weak narrow—>temp 1, chem 2, lumi 1 2. 100%, 100. 0%
4870 _weak middle, 5510 _weak narrow—>temp 1, mic 1 lumi 1 2. 100%, 100. 0%
4870 _weak middle, 5510 _weak narrow—>temp 1, chem _Zomic 1, lumi_1 2. 100%, 100. 0%
3910 _strong wide, 3950_weaker wide, 4390 _wealk m1dd1877>terrp e Tumi e 2.000%, 83. 33%
3910 _strong wide, 3950 weaker wide, 4390 _weak middle==>temp_ 5, chem 2, lumi 2 2. 000%, 83. 33%
3910 _strong wide, 3950 weaker wide, 4390 weak middle==>temp 5. mic 2 lumi 2 2. 000%, 83. 33%
3910 _strong wide, 3950 weaker wide, 4390 _weak middle==>temp_ 5, chem _Zomic 2, lumi 2 2. 000%, 83. 33%
3870 _strong wide, 3950 weaker wide, 4090 _weaker wide, 6550 wealker w1deff>terrp G, lumi_1 2. 300%, 79. 31%
3870 _strong wide, 3950 weaker wide, 4090 _weaker wide, 8550 weaker wide——>temp G, physlcal 4 lumi 1 2. 300%, 79. 31%
3870 _strong wide, 3950 weaker wide, 4090 _weaker wide, 6550 weaker wide—>temp G, chem _Z, umi = 2. 300%, 79. 31%
3870 _strong wide, 3950 weaker wide, 4090 _weaker wide, 6550 weaker wide=——>temp G, m1c 2 lumi 1 2. 300%, 79. 31%
3870 _strong wide, 3950 weaker wide, 4090 _weaker wide, 6550 weaker wide | oy chern 2, lumi_1 2. 300%, 79. 31%
3870 _strong wide, 3950 weaker wide, 4090 _weaker wide, 5550 weaker wide—> G, i 4 mic 2 Tumi. =il 2. 300%, 79. 31%
3870 _strong wide, 3950 weaker wide, 4090 _weaker wide, 6550 wealker wid; 2. 300%, 79. 31%
3870 _strong wide, 4090 weaker wide, 4850 _weaker wide, 5250 strong wids 1. 800%, 78. 26%
3870 _strong wide, 4090 weaker wide, 4850 _weaker wide, 5250 i > 1. 800%, 78. 26%
3870 _strong wide, 4090 weaker wide, 4850 _weaker wide, 5250 strong wide=—=>temp D.mic _Z, lumi_Z 1. 800%, 78. 26%
3870 _strong wide, 4090 weaker wide, 4850 _weaker wide, 5250 strong wide=—=>temp D, chem _Zomic 2, lumi 2 1. 800%, 78. 26%
s Eied

Fig. 1 Results of the association rule for a stellar spectrum.

significantly change and did not have an obvious trend in $eshincrease. So the above can show
that the relation between the number of weighted frequetteipes and the size of the data sets is not
obvious.

4.3 Weighed Association Rule Extraction

After the weighed frequent pattern is obtained, the weighs=ibciation rules are extracted through
the following two steps. Firstly, the confidence of everycdpan’s frequent pattern is calculated
by following Definition 3, and some of the spectrum’s frequeatterns are filtered since their con-
fidence is lower than the minimum confidence set by users.r8iygcevery frequent pattern that
remains is divided into two parts: the feature set of attabuafter discretizing the stellar spectra
and the attribute set of physical/chemical properties afigcretizing. Letl be a frequent pattern,
s ands’ be two parts obtained through all non-empty subsets,adnd,,,;, be the threshold of
minimum confidence, for instance, the association rule=* s’” is output under the condition of
o((s+")/DB)/o(s/DB) > thmin. Its results are shown in Figure 1.

Figure 1 shows the results of the correlation analysis ostakar spectral data. In this experi-
ment, the minimum support threshaid,;, is set to 1% and the minimum confidence threshalgl,
is set to 70%. Interesting conclusions can be drawn fromskedation rules. For example, one of
the association rules is 3876trong wide, 4090weaker wide, 4850weaker wide, 5250strong
wide = temperatureD, chemical 2, microturbulence2, luminosity 2 (1.800%, 78.26%). This
association rule can be explained as follows:

(1) There exist very strong and very wide peaks at the waggheof 3870;
(2) There exist weaker and very wide peaks at the wavelerigtiQp;
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Fig. 2 Stellar spectral classification.

(3) The peak at the wavelength of 4850 is weaker and very wide;

(4) If the peak at the wavelength of 5250 is very strong angt wede, then the temperature range
of this spectrum is from 7500 to 8300, the chemical abundaacge is from—3 to —0.5,
the microturbulence value is 2, and the luminosity rangedsfO to 1.1. The support of the
association rule is 1.8%, and the confidence is 78.26%.

Comparing the rules generated by our celestial-specttatmigning tool with the properties of
stellar spectral wavelengths in Figure 2, one can conclhdeit is basically similar to the prop-
erties of spectral type A. Thus, it shows that the weighteseiation rule mining used to extract
knowledge was successful. From these association rulesawsee that some of them are known
by astronomy experts, which validates the correctnessptirats are unknown which can help as-
tronomy experts to discover new properties.

5 CONCLUSIONS

According to the item’s different importance in the stebgectral data set, the concepts of stellar
spectral weighted itemsets and weighted association anéesitroduced, and the weight of a single
property in the stellar spectrum is determined by infororaéintropy; at the same time a compromise
between the geometric mean and maximum is used to detern@maulti-layer itemset weights. On
this basis, the stellar spectra of a weighted frequent ppattee are constructed, and a method is
presented to mine the weighted frequent patterns and asisociules for stellar spectra.
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