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Abstract Effective extraction of data association rules can providea reliable basis
for classification of stellar spectra. The concept of stellar spectrum weighted itemsets
and stellar spectrum weighted association rules are introduced, and the weight of a
single property in the stellar spectrum is determined by information entropy. On that
basis, a method is presented to mine the association rules ofa stellar spectrum based
on the weighted frequent pattern tree. Important properties of the spectral line are
highlighted using this method. At the same time, the waveform of the whole spectrum
is taken into account. The experimental results show that the data association rules
of a stellar spectrum mined with this method are consistent with the main features of
stellar spectral types.
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1 INTRODUCTION

The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo
Shou Jing Telescope) is a special reflecting Schmidt telescope constructed so that its optical axis is
fixed in the meridian plane. LAMOST’s special design allows both a large aperture (effective aper-
ture of 3.6m–4.9m) and a wide field of view (Cui et al. 2012). Compared with other large telescopes
around the world, LAMOST is able to acquire celestial spectral data with the highest rate. Since the
completion of LAMOST, there have been so many astronomical observations gathered by LAMOST
that the associated “data avalanche” and “information explosion” have become urgent problems. For
example, Wu et al. (2010) reports the discovery of eight new quasars by the LAMOST telescope in
one extragalactic field. In order to effectively extract information from a large amount of complex,
distributed and multi-band astronomical data, research ondata fusion and data mining has gradually
become one of the hot topics in astronomy. At the same time, itis challenging to analyze the massive
amount of data collected by LAMOST; therefore, there is a pressing need to develop novel data anal-
ysis tools to be integrated into data processing systems located in observatory facilities. Association
rule mining, as an important data mining method, can effectively discover relationships between
properties derived from the spectra of large celestial bodies, and has great potential in studying the
origin and evolution of the universe.
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In recent years, research on celestial spectral data processing has mainly addressed automatic
spectral classification and recognition. Dimension reduction using the methods of principal com-
ponent analysis and neural networks was applied to classifying simulated data of galactic spectra
with low signal-to-noise ratio by Folkes et al. (1996), where classification accuracy reached more
than 90%. By combining the Fisher information matrix with kernel techniques, the method of gen-
eralized discriminant analysis was used to classify stellar spectra by Xu et al. (2006). Based on the
research of Xu et al. (2006), Yang et al. (2007) adopted the support vector method by integrating ker-
nel techniques and with a covering algorithm to classify quasars. The multi-band data fusion method
based on the Map-Reduce model in a distributed environment was proposed by Zhao et al. (2010).

The currently available methods used for automated extraction of stellar spectral parameters are
mainly based on minimum distance methods (MDMs), and a representative line of research is the
ELODIE online stellar parameter estimation system by Katz et al. (1998) and Soubiran et al. (1998).
They constructed a stellar spectral template library composed of 211 FGK type stellar spectral tem-
plates with a resolution of 0.1̊A. Recio-Blanco et al. (2006) designed the MATISSE algorithm to
automatically derive the parameters and chemical abundances for the Gaia/RVS survey. Spectral
classification by astronomers has mainly focused on stellarclassification (von Hippel et al. 1994;
Bailer-Jones et al. 1998; Bai et al. 2005) and galaxy classification (Connolly et al. 1995; Galaz & de
Lapparent 1998; Zaritsky et al. 1995), where the latter usually needs to know redshifts of the spectra.
The spectra with unknown redshifts will be roughly classified into three types: star, galaxy or quasar
(QSO). Qin et al. (2003) and Zhang & Zhao (2003, 2004) have done some research on the rough clas-
sification of spectra using support vector machines (SVMs) and radial basis function (RBF) neural
networks. General descriptions of the evolution of Young Stellar Objects and the process of planet
formation can be found in the monographs of Hartmann (2001),Stahler & Palla (2005), Armitage
(2010), Ward-Thompson & Whitworth (2011) and Garcia (2011), the proceedings of the Protostars
and Planets V conference (Reipurth et al. 2007), as well as the recent reviews of Williams & Cieza
(2011) and Armitage (2011). The spectral data correlation analysis system based on the constrained
frequent pattern (FP) tree was presented by Zhao et al. (2008), but constraint conditions can only
be artificially generated, and in the absence of expert information, a constrained FP-tree will give
degraded performance.

Due to the lack of a priori knowledge from astronomical experts and users in stellar spectral
data sets, the degree of importance for each item is difficultto set in advance, though each item has a
different importance. According to the item’s different importance in the stellar spectral data set, this
paper introduces two concepts about the spectra of stellar weighted itemsets and a stellar spectrum
of the weighted association rule. At the same time, information entropy is used to determine stellar
spectra with single attribute weights, and a compromise between the geometric mean and maximum
is used to determine the weights in a multi-layer itemset. Its purpose is to highlight the important
properties of the spectrum, when the waveform of the whole spectrum is taken into account. On this
basis, the stellar spectra of weighted frequent patterns are extracted by using the weighted frequent
pattern tree of stellar spectra, and the method of using a weighted frequent pattern as a tree structure
is given. In the end, the experimental results show that using the method of stellar spectral data
mining association rules is consistent with the main features of stellar spectral types.

Section 2 includes the basic concepts. Section 3 defines the stellar spectral weighted frequent
itemset. Section 4 describes a method of stellar spectra weighted FP-tree construction and rule ex-
traction. The last section gives the summary and further prospects.

2 BASIC CONCEPTS

Let DB be a database of transactions, andI = I1, I2, · · · , Im be a set ofm transaction itemsets in
DB. Each transactionT in DB is a subset in the set of transactionsI, that isT⊆I.
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Definition 1. We refer to patternP as a subset ofI. Thus, we haveP = I1
⋂

I2
⋂

· · ·
⋂

Ik,
Ii ∈ I (i = 1, 2, · · · , k), and the length of patternP is the number of items inP . For example, the
length of the above patternP is k, because there arek items inP .

Definition 2. We say patternP has a support degree 0≤ σ ≤1 with respect to database DB if
and only if at leastσ× | DB | number of transactions in DB satisfy patternP .

Let | t → P | be the number of transactions that satisfies patternP . We define supportσ as
Equation (1), whereσ(P/DB) is the fraction of transactions in DB that satisfies the givenpattern.
Thus, we have

σ(P/DB) =| t→ P | / | DB | . (1)

We say two patterns A and B are disjoint patterns if and only iftheir intersection is a null set,
i.e.{Ai}

⋂

{Bj} = ∅, whereA = A1

⋂

A2

⋂

· · ·
⋂

Ak,B = B1

⋂

B2

⋂

· · ·
⋂

Bm.
Definition 3. Given two disjoint patterns (A, B) and an association ruleA =⇒ B in DB, we

define the confidence of the association rule as below

ψ(A⇒ B/DB) = σ(A
⋂

B/DB)/σ(A/DB), (2)

whereσ(A
⋂

B/DB) and σ(A/DB) can be derived from the two support factors defined in
Equation (1).

Definition 4. Let σmin be the threshold of the minimum support factor, then thek-frequent
pattern setLk and the non-k-frequent pattern setL′

k in database DB is defined as

Lk = {A1

⋂

A2

⋂

· · ·
⋂

Ak | Ai ∈ I, σ(A1

⋂

A2

⋂

· · ·
⋂

Ak/DB) ≥ σmin}, (3)

L′

k = {A1

⋂

A2

⋂

· · ·
⋂

Ak | Ai ∈ I, σ(A1

⋂

A2

⋂

· · ·
⋂

Ak/DB) < σmin}. (4)

To extract association rules from database DB, one has to specify the minimum support threshold
σmin and the minimum confidence thresholdψmin. Thus, we need to search for any association rule
(e.g.A⇒B) that satisfies the following two conditions

σ(A
⋂

B/DB) ≥ σmin and ψ(A⇒ B/DB) ≥ ψmin. (5)

Definition 5. An FP-tree is a tree data structure that meets the following three conditions:

– Condition 1: An the FP-tree contains a root node marked as “NULL” (denoted as root). The
children of the root node are item-prefix subtree sets. The tree also consists of a head table
containing frequent items.

– Condition 2: Each node in an item-prefix subtree is made up ofthree components, namely,
item-name, count and node-link. Item-name represents the name of the item; count denotes the
number of transactions that are on any path leading to the node; and node-link is a link pointing
to the next node with the same item-name value as in the FP-tree. If the next node does not exist,
then the value of the node-link is set to null.

– Condition 3: Each item in the head table of frequent items iscomprised of two components -
item-name and head-of-node-link. Head-of-node-link is a pointer pointing to the head node of a
singly linked list for nodes that have the same item-name value in the FP-tree.

3 STELLAR SPECTRAL WEIGHTED FREQUENT ITEMSETS

3.1 Determining a Single Attribute Weight for Stellar Spectral Data

Let DB be a stellar spectral database, andI = {I1, I2, · · · , Im} be the itemset containing 200 wave-
length attributes and six physical/chemical attributes.W = (WI1 ,WI2 , · · · ,WIm

) is the weight
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vector of the stellar spectral attributes. Due to the lack ofa priori knowledge from experts and users,
weight vectorW is difficult to predetermine. The uncertainty ofW can be measured with a proba-
bility function. Information entropy based on this probability can reflect the uncertainty in discrete
messages and has been successfully applied in many fields. The uncertainty implies there is informa-
tion content, and it is feasible to use the information entropy to describe the importance of a stellar
spectral data attribute.

According to Shannon’s definition of information entropy, letP (y) be the probability of property
y in the stellar spectral data set, thenI(y) = − log2 P (y), in which I(y) represents the amount
of information inY . The information entropy ofY is denoted asH(Y ) which represents mean
information content in the stellar spectral propertyY . A property ofH(Y ) is that whenH(Y )
gradually increases, the degree of uncertainty inY also increases and more information is hidden in
it. Therefore, the amount of information entropy can indicate the general characteristics ofY .

H(X) = E[lb(1/P (xi))] = −
n

∑

i=1

P (xi)lbP (xi). (6)

In general, stellar spectra are independent of each other and the amount of information in all spec-
tral data of the same attribute can be cumulative. Information entropy represents the importance of
attributes, so it is reasonable to use information entropy as an attribute weight. LetTi ∈D be a stellar
spectrum, andP (m/Ti) be the probability ofm when the spectrum isTi, then the mean amount of
information is expressed byH(m).

H(m) = E[I(m/Ti)] = −
n

∑

i=1

P (m/Ti)lbP (m/Ti). (7)

Let I = {I1, I2, · · · , Im} be the attribute set of the stellar spectral data, then the weight of the
attributeIi equalsH(Ii), that is weight (Ii)=H(Ii).

3.2 Determining Multi-attribute Weights in Stellar Spectral Data

Let I = {I1, I2, · · · , Im} be an attribute set for the stellar spectral database. Weight Wj given by
information entropy is assigned to attributeij to show its importance, that isW (ij) = wj . The
weight vector is denoted asW = {W1,W2, · · · ,Wm}.

Let a = W1 + W2 + · · · + Wm, then{W1/a, W2/a, · · · , Wm/a} is the normalized attribute
weight vector, that isW ′ = {W ′

1,W
′

2, · · · ,W
′

m, } in whichW ′

i = Wi/a andW ′

1+W ′

2+· · ·+W ′

m =
1. So ifY is an itemset of stellar spectra, its weight can be defined as follows

W (Y ) =
1

2





k

√

∏

ij∈Y

W ′

j +
max
ij ∈ Y

{W ′

j}



 . (8)

This definition has resolved the issue that the value of levelweighted support may be greater than
one, and has highlighted key aspects by using the maximum weights. At the same time, the difference
between items is reduced by using the geometric mean.

3.3 Stellar Spectrum Weighted Frequent Itemset

Definition 6. Let Y ={I1, I2, · · · , Im} be a stellar spectral data itemset, then the weighted support
of itemsetY , σwsup, can be defined as follows

σwsup(Y ) = W (Y ) × σ(Y ) =
1

2





k

√

∏

ij∈Y

W ′

j +
max
ij ∈ Y

{W ′

j}



 × σ(Y ), (9)
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whereσ(Y ) is the general support ofY .
Definition 7. LetX⇒Y be an association rule for the stellar spectral data, then its weighted

support can be defined asσwsup(X⇒ Y ) = W (X ∪ Y ) × σ(X ∪ Y ), in whichW (X ∪ Y ) is the
weight of a stellar spectral data itemset(X ∪ Y ). In accordance with the above formula,σ(X ∪ Y )
is the general support of(X ∪ Y ).

Definition 8. LetX ⇒ Y be an association rule of the stellar spectral data, then itsweighted
confidence can be defined as

ψwsup(X ⇒ Y/DB) = σwsup(X
⋂

Y/DB)/σwsup(X/DB). (10)

Definition 9. For data itemsetY , if σwsup(Y ) ≥ σmin, thenY is a weighted frequent itemset
of the stellar spectrum, in whichσmin is the minimum support threshold set by the user.

Definition 10. The association rules simultaneously satisfying the minimum support and min-
imum confidence threshold are known as the weighted association rules of the stellar spectrum.

Property: LetX ={i1, i2, · · · , ik} be the stellar spectrum’s weighted frequent itemset, in which
k>1, Y ⊆ X , then ifW (Y ) ≥ W (X), Y is certainly a weighted frequent itemset of the stellar
spectrum; ifW (Y ) < W (X), Y is not a weighted frequent itemset of the stellar spectrum.

4 STELLAR SPECTRA WEIGHTED FREQUENT PATTERN TREE CONSTRUCT ION
AND RULE EXTRACTION

4.1 Weighted Frequent Pattern Tree Construction Algorithm

Similar to FP-tree construction, all information associated with the weighted frequent itemset should
be stored in the Weighted Frequent Pattern tree (WFP-tree) of stellar spectral data. In WFP-tree
construction, all 1-frequent and non-1-frequent pattern sets need to be gathered when the database is
scanned for the first time, which is different from construction of the FP-tree. The WFP-tree of stellar
spectral data can be built through traversing database D twice according to the following steps.

(1) Scan through stellar spectral database D for the first time, gathering frequent length-1 patterns of
sets, non-frequent length-1 patterns of sets, and their weighted supports, sort frequent length-1
patterns in descending order of the weighted supports and generate a frequent item tableL;

(2) Create the root node of the stellar spectral data and denote it by “NULL;”
(3) For each transactionT in D, sort frequent items ofT in order ofL and generate a new list of

frequent items namedT ′, then update the WFP-tree according to the followings threesteps:
(i) Search for a path that has the longest prefix matchingT ′ in the WFP-tree;
(ii) The count of the node that is in the matching path is increased by one;
(iii) Search for the mismatching suffix inT ′, and determine the node to which the last frequent

item in the longest matching prefix is corresponding as the root node, then create child nodes
successively in the WFP-tree and set the count value to 1.

4.2 Experimental Analysis

We implement a data-mining tool for the correlation analysis of stellar spectral data sets. The WFP-
tree-construction algorithm described in Section 4.1 is incorporated in our correlation analysis mod-
ule for stellar spectral data. The experiments are performed on a PC with an Intel Pentium IV 3.0 GHz
processor and 512 MB of main memory; the operating system is Windows XP professional. We have
fully implemented our correlation analysis module on top ofOracle 9i DBMS. Our stellar spectral
data-mining tool and the correlation analysis module, in which the WFP-tree-construction algorithm
is implemented, are developed with Visual C++ 6.0. 8315 SDSSstellar spectral data are selected
as the data set (SDSS is one of the largest astronomical survey projects to date), the data which
were publicly released by SDSS in June of 2007, including images and the associated database. The
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Table 1 Contruction Time of WFP-Tree(s)

Data set σmin = 5% σmin = 3% σmin = 2% σmin = 1%

1000 143 175 201 287
2000 188 230 255 330
4000 198 257 289 395
8315 390 550 638 820

Table 2 Numbers of Weighted Frequent Patterns

Data set σmin = 5% σmin = 3% σmin = 2% σmin = 1%

1000 435 530 850 1562
2000 489 750 1008 2017
4000 956 1218 1356 1980
8315 1007 1236 1478 2030

amount of data for figures is about 15TB. The SDSS is currentlythe largest astronomical data set that
has been publicly released. The data are provided by National Astronomical Observatories, Chinese
Academy of Sciences. We select 200 wavelengths and five physical/chemical properties including
chemical composition, surface temperature, diameter, quality, luminosity and the like as attributes to
represent stellar spectral data. The experimental data setis obtained after pretreatment on the source
data set. The pretreatment is briefly summarized as follows:1. Selecting six physical/chemical prop-
erties and 200 wavelengths which are sampled from 3810Å to 7790Å with an interval of 20Å,
which represent a set of attributes for each spectral data. 2. Discretizing spectral data according to
the flow, peak width and shape of each wavelength. Experiments are divided into four groups with
different data set sizes and minimum support thresholds. The data sets contain 1000, 2000, 4000 and
8315 objects and the minimum support threshold is respectively set to 1%, 2%, 3% and 5%.

The experimental steps are as follows. Firstly, the minimumweighted support is calculated
according to the above Equation (8). Then the weighted frequent pattern tree is constructed using
the WFP-tree-construction algorithm. The construction time is shown in Table 1.

Table 1 shows that for the same data set, the construction time of the WFP-tree gradually be-
comes longer with the decrement of the minimum support thresholdσmin. When the minimum sup-
port decreases, its corresponding minimum weighted support decreases which leads to an increase
in the number of weighted frequent patterns satisfying the conditions. This is why the time for con-
structing the tree has increased. It can also be seen from Table 1 that, for the same support threshold,
the construction time of the WFP-tree gradually increases with the increase of data set size. If the
data set increases in size, and the number of stellar spectraincreases, the time to scan the database
must also increase.

After traversing a constructed WFP-tree, one can extract frequent patterns from the stellar spec-
tral data. To efficiently traverse a WFP-tree, we create an item-head table in which each item has a
node link pointing to its location in the WFP-tree. Note thata conditional pattern base is a stellar
spectral sub-database composed of the prefix path sets appearing in both the WFP-tree and the suf-
fix pattern. Next, a conditional WFP-tree is built. The association rule mining process is performed
recursively on the WFP-tree. Finally, the pattern growth isrealized through the combination of fre-
quent patterns generated by the suffix and the conditions associated with the WFP-tree. The numbers
of weighted frequent patterns are described in Table 2.

Table 2 shows that, with the same data sets, the number of WFP-trees gradually increases, when
the minimum support thresholdσmin decreases. It can also be further explained that the construction
time of the WFP-tree gradually increases when the minimum support is smaller. With the same
minimum support, the number of weighted frequent patterns between the different data sets did not
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Fig. 1 Results of the association rule for a stellar spectrum.

significantly change and did not have an obvious trend in terms of increase. So the above can show
that the relation between the number of weighted frequent patterns and the size of the data sets is not
obvious.

4.3 Weighed Association Rule Extraction

After the weighed frequent pattern is obtained, the weighedassociation rules are extracted through
the following two steps. Firstly, the confidence of every spectrum’s frequent pattern is calculated
by following Definition 3, and some of the spectrum’s frequent patterns are filtered since their con-
fidence is lower than the minimum confidence set by users. Secondly, every frequent pattern that
remains is divided into two parts: the feature set of attributes after discretizing the stellar spectra
and the attribute set of physical/chemical properties after discretizing. LetL be a frequent pattern,
s ands′ be two parts obtained through all non-empty subsets ofL, andψmin be the threshold of
minimum confidence, for instance, the association rule “s ⇒ s′” is output under the condition of
σ((s+ s′)/DB)/σ(s/DB) ≥ ψmin. Its results are shown in Figure 1.

Figure 1 shows the results of the correlation analysis of thestellar spectral data. In this experi-
ment, the minimum support thresholdσmin is set to 1% and the minimum confidence thresholdψmin

is set to 70%. Interesting conclusions can be drawn from the association rules. For example, one of
the association rules is 3870strong wide, 4090weaker wide, 4850weaker wide, 5250strong
wide ⇒ temperatureD, chemical 2, microturbulence2, luminosity 2 (1.800%, 78.26%). This
association rule can be explained as follows:

(1) There exist very strong and very wide peaks at the wavelength of 3870;
(2) There exist weaker and very wide peaks at the wavelength of 4090;
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Fig. 2 Stellar spectral classification.

(3) The peak at the wavelength of 4850 is weaker and very wide;
(4) If the peak at the wavelength of 5250 is very strong and very wide, then the temperature range

of this spectrum is from 7500 to 8300, the chemical abundancerange is from−3 to −0.5,
the microturbulence value is 2, and the luminosity range is from 0 to 1.1. The support of the
association rule is 1.8%, and the confidence is 78.26%.

Comparing the rules generated by our celestial-spectral data-mining tool with the properties of
stellar spectral wavelengths in Figure 2, one can conclude that it is basically similar to the prop-
erties of spectral type A. Thus, it shows that the weighted association rule mining used to extract
knowledge was successful. From these association rules, wecan see that some of them are known
by astronomy experts, which validates the correctness, andothers are unknown which can help as-
tronomy experts to discover new properties.

5 CONCLUSIONS

According to the item’s different importance in the stellarspectral data set, the concepts of stellar
spectral weighted itemsets and weighted association rulesare introduced, and the weight of a single
property in the stellar spectrum is determined by information entropy; at the same time a compromise
between the geometric mean and maximum is used to determine the multi-layer itemset weights. On
this basis, the stellar spectra of a weighted frequent pattern tree are constructed, and a method is
presented to mine the weighted frequent patterns and association rules for stellar spectra.
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