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Abstract Three new longitudinal magnetic field parameters are extracted from
SOHO/MDI magnetograms to characterize properties of the stressed magnetic field
in active regions, and their flare productivities are calculated for 1055 active regions.
We find that the proposed parameters can be used to distinguish flaring samples from
non-flaring samples. Using the long-term accumulated MDI data, we build the so-
lar flare prediction model by using a data mining method. Furthermore, the decision
boundary, which is used to divide flaring from non-flaring samples, is determined by
the decision tree algorithm. Finally, the performance of the prediction model is eval-
uated by 10-fold cross validation technology. We conclude that an efficient solar flare
prediction model can be built by the proposed longitudinal magnetic field parameters
with the data mining method.
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1 INTRODUCTION

The prediction of solar flares is an important unsolved problem in solar physics. Many parameters
have been proposed to describe the non-potentiality and complexity of active regions which are con-
sidered as necessary conditions for solar eruptions. This led McIntosh (1990) to define the McIntosh
classification system for sunspot groups. The sunspots are classified in 60 possible classifications us-
ing three components of the McIntosh system. However, thesemorphological parameters are simply
proxies of the photospheric magnetic field, and the relationships between solar flares and properties
of the magnetic field in active regions are more fundamental (Bornmann & Shaw 1994; Sammis
et al. 2000). Therefore, many magnetic field parameters thatdescribe active regions are proposed to
distinguish flaring samples from non-flaring samples. Theseparameters include the gradient of the
magnetic fields (Krall et al. 1982; Leka & Barnes 2003), the length of the neutral line (Falconer et al.
2002; Cui et al. 2006), the number of singular points (Cui et al. 2006), the current density (Zhang
2001), the current helicity (Bao et al. 1999), the shear angle (Hagyard et al. 1984) and the magnetic
twist (Zhang et al. 2002; Hahn et al. 2005). Leka & Barnes (2007) pointed out that none of these
variables by themselves make a strong distinction between flaring samples and non-flaring samples,
therefore many efforts were continually made to improve theperformance of solar flare prediction.
Barnes & Leka (2006) quantified the topological complexity describing the coronal fields associ-
ated with an active region. Georgoulis & Rust (2007) defined the effective connected magnetic field
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to measure the flaring potential in active regions. Welsch etal. (2009) quantitatively characterized
the flow field of active regions. Yu et al. (2009) studied influences of parameter sequences on the
prediction of solar flares. Huang et al. (2010) proposed subsets of predictors to group complemen-
tary parameters together. Komm et al. (2011) proposed subsurface flow parameters to distinguish
between flaring and non-flaring samples.

Large-sample studies based on long-duration observationsof active regions are important for the
prediction of solar flares (Schrijver 2009), and the accumulated data from the Michelson Doppler
Imager (MDI) onboard theSolar and Heliospheric Observatory (SOHO) are suitable for this pur-
pose. However, most of the above-mentioned works focus on properties of the photospheric vector
magnetic field with a relatively small number of samples. Hence, we propose three new photospheric
longitudinal magnetic field parameters from MDI magnetograms to describe the stressed property
of active regions. The relationships between the proposed parameters and solar flares were studied
by a large-sample statistical method in which more than 70 000 samples of 1055 active regions are
observed. Using this large-sample dataset, a short-term solar flare prediction model is built using a
data mining method, and its performance is evaluated by 10-fold cross validation technology.

This paper is organized as follows: the data are introduced in Section 2, the prediction model is
built and evaluated in Section 3, and conclusions are given in Section 4.

2 DATA

In order to build a solar flare prediction model by using a datamining method (Wang et al. 2008;
Qahwaji et al. 2008; Li et al. 2008; Yu et al. 2010; Ball & Brunner 2010; Huang et al. 2012a; Huang
et al. 2012b), a large dataset is required.

2.1 Extraction of an Active Region and Definition of a Flare Index

Mason & Hoeksema (2010) provided the location and the extension of active regions within30◦

of the solar disk’s center from 1996 May 10 to 2007 June 91. Hence, data describing 1055 active
regions in 70 078 magnetograms (Scherrer et al. 1995) are extracted to form the dataset.

According to the peak flux of soft X-rays, solar flares are classified as C, M or X. For each
classification, a linear scale (1 to 9) is used to determine the exact value of the solar flare. Within a
forward looking period, more than one flare may occur, and thetotal importance (Antalova 1996) of
these flares is defined as

Itot =
∑

c + 10 ×
∑

m + 100 ×
∑

x, (1)

wherec, m andx represent linear scales in terms of solar flare classifications C, M and X, respec-
tively. If the total importance of solar flares within a forward looking period is larger than a given
threshold, this sample observation of the active region is considered to be flaring. Otherwise, it is
considered to be non-flaring. Here, the threshold ofItot is set to be 10 (M1.0 equivalent), and the
forward looking period is taken to be 48 hours.

2.2 Highly Stressed Longitudinal Magnetic Field Parameters

Wang (1995) proposed a parameterP to quantify the highly stressed longitudinal magnetic fields in
active regions.

P = ∇hBz ·
Bpt

|Bpt|
, (2)

1 http://soi.stanford.edu/data/tables/
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Fig. 1 (a) Full disk image ofSOHO/MDI magnetogram observed on 2005 January 14 at 23:59:30
UT, and the active region NOAA 10720 is marked by the black rectangle. (b) Full diskSOHO/EIT
195Å image observed on 2005 January 15 at 00:00:05 UT. (c) Isocontours of the solar flare and the
stressed longitudinal magnetic field parameterP overplotted on theSOHO/MDI magnetogram for
the active region NOAA 10720. The background is the grayscale map of the longitudinal magnetic
field. Red contours enclose the solar flare observed by theSOHO/EIT 195Å image. Blue and green
contours show 0.1 G km−1 and 0.2 G km−1 for the value ofP , respectively.

where∇hBz is the horizontal gradient of the longitudinal magnetic field, andBpt is the transverse
component of the magnetic field inferred by the potential field model with the boundary condition
of the longitudinal magnetic field.

The direction of∇hBz is usually different from that ofBpt, however it changes when the
longitudinal magnetic field is stressed. Hence, positiveP indicates the presence of highly stressed
longitudinal magnetic fields. Taking the active region NOAA10720 (the locations of this region
in the SOHO/MDI magnetogram andSOHO/EIT 195 Å image are shown in Figure 1(a) and (b),
respectively) as an example, we show isocontours of the solar flare and the stressed longitudinal
magnetic field parameterP overplotted on theSOHO/MDI magnetogram in Figure 1(c). We find
that the solar flare appears in the place whereP is large. Therefore, we propose three parameters to
characterize the high stress of the longitudinal magnetic field in an active region:
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(1) Pnum: the number of pixels where theP is positive in an active region.
(2) Pmax: the maximum ofP in an active region.
(3) Psum: the summation ofP whereP is positive in an active region.

The flare productivity (FP) for a parameter (x) is defined as

FP(X) =
NFlare(x ≥ X)

NTotal(x ≥ X)
, (3)

whereX is a given threshold for a magnetic field parameterx, NFlare(x ≥ X) andNTotal(x ≥ X)
are the number of flaring samples and the total number of samples when the value of parameterx is
larger than the thresholdX , respectively.

The thresholdX is determined by the number of eliminated samples whose value is smaller
than the given threshold rather than equally dividing the range of the parameter. Taking the param-
eterPsum for example, the initial flare productivity calculated by all the samples is 15.15%, which
means that the thresholdX is at its minimum. We increase the thresholdX until 500 samples are
included and the value ofPsum becomes smaller than the thresholdX . The corresponding threshold
X of Psum is 0.18 (G km−1) and the flare productivity is 15.17%. This process is repeated until the
remaining samples are less than 500. The generated flare productivity curves for the proposed param-
eters are shown in Figure 2. We find that by increasing the proposed parameters, the corresponding
flare productivity increases, so these parameters can be used for distinguishing flaring samples from
non-flaring samples.

3 SOLAR FLARE PREDICTION MODEL

3.1 Building a Model from Data

There are two methods which can be used to build the prediction model:

(1) The deductive method: it starts with physical laws to provide relationships between magnetic
parameters and solar flares.

(2) The inductive method: it starts with observations of physical phenomena to summarize relation-
ships between magnetic parameters and solar flares.

The decision tree algorithm (Quinlan 1996; Yu et al. 2009) isone inductive method, and the divide-
and-conquer strategy is used to construct the decision treemodel from the dataset. In this strategy, a
best parameter is selected in each step to divide samples into smaller subsets. We hope that samples
with the same classification are assigned to the same subset as much as possible, so the importance
of a parameter is measured by the information gain ratio (GR)

GR(y, Xi) =
H(y) − H(y|Xi)

H(Xi)
, (4)

wherey is the status of solar flares,Xi stands for theith parameter (i = 1, 2, 3 stands forPnum, Pmax

andPsum respectively.), andH stands for the information entropy (Yu et al. 2009) which describes
the uncertainty of the system. The information GR measures the reduction in the uncertainty of
samples associated with the partition process.

For a continuous parameter (CP), samples are sorted by theirvalues to give the ordered distinct
valuesdv1, dv2, . . . , dvN (for example, 5.7, 5.9, 6.0 etc. shown in Table 1). Every pairof adjacent
values suggests a possible thresholdPT = (dvi+dvi+1)

2 . The threshold T, which is used to divide the
dataset into two parts (CP≤ T and CP> T), should be determined by maximizing the information
GR among the possible thresholds (Quinlan 1996). Suppose weusePsum to distinguish flaring sam-
ples from non-flaring samples (see Table 1). We sort samples by the value ofPsum, and the possible
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Fig. 2 Flare productivity curves ofPnum, Pmax andPsum for different threshold valuesX. The first
point is calculated by all the samples. With the increase of the thresholdX, the number of remaining
samples decreases. The thresholdX is determined by the number of eliminated samples whose value
is smaller than the given threshold. At each step 500 samplesare reduced, and this process is repeated
until the number of remaining samples is less than 500.

Table 1 Example of Possible Positions to Split the Samples

Psum (G km−1) 5.7 5.9 6.0 6.1 6.2 6.2 6.4
Solar flares 0 1 0 0 1 1 1

Note: There are three possible positions (5.7+5.9

2
,5.9+6.0

2
and 6.1+6.2

2
)

to slit the samples. The partition value with the largest information GR is
selected as the final partition threshold. “1” and “0” stand for flaring and
non-flaring samples, respectively.

positions to split samples are determined by changes in the status for solar flares. There are three
possible positions (5.7+5.9

2 , 5.9+6.0
2 and6.1+6.2

2 ) to split the samples in Table 1. The information GR
for each possible partition value is calculated and the position with the largest value of information
GR is used to divide the samples into the subsets. The best parameter determined by the information
GR is selected to divide the samples into the smaller subsets, and this process is recursive until the
stopping criterion is satisfied. The stopping criterion is that the subset contains only one type of
sample (flaring samples or non-flaring samples) or there are no improvements of information GR for
the next possible partition. At this point, samples in the subset are considered to represent the class
with the most samples in this subset.

The decision boundary generated by the decision tree algorithm for solar flare prediction using
the parametersPnum, Pmax, andPsum is shown in Figure 3.
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Fig. 3 Decision boundary generated by the decision tree algorithmin parameter space ofPnum,
Pmax andPsum. The decision tree algorithm divides the samples into subsets indicated by the pa-
rameter with the largest information GR at each step, and this process is repeated until the stopping
criterion is achieved. (a) shows the generation process of the decision boundary. The final decision
boundary is shown in (b), and the left side is considered to bea non-flaring area, while the right side
is considered to be a flaring area.

Figure 3(a) shows the associated generation process in detail. In step 1,Psum with the partition
threshold T= 6 G km−1 is selected to divide samples into two subsets. The samples whosePsum is
smaller than6 G km−1 satisfy the stopping criterion, so these samples do not needfurther division.
The samples whosePsum is larger than6 G km−1 continue to be divided byPsum with the partition
threshold T= 12 G km−1 in step 2 andPmax with the partition threshold T= 0.1 G km−1 in step 3,
until all the subsets satisfy the stopping criterion. Finally, the generated decision boundary is shown
in Figure 3(b), in which samples on the left side of the decision boundary are considered to be non-
flaring samples, and samples on the right side of the decisionboundary are considered to be flaring
samples.

The whole process can be represented by a tree-like structure, so the prediction model is called
a decision tree model. In Figure 3, we find thatPnum is not used in the prediction model, because
given the selected parameters,Pnum does not contain more information for distinguishing between
flaring samples and non-flaring samples. From the predictionmodel, we find that the active region
with a more highly stressed longitudinal magnetic field is more prone to produce solar flares.
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Table 2 Definition of Contingency Table for Solar Flare Prediction

Predicted flaring samples Predicted non-flaring samples

Actual flaring samples Hit Miss
Actual non-flaring samples False alarm Correct rejection

Table 3 Testing Results of the Solar Flare Prediction Model in the Contingency Table

Predicted flaring samples Predicted non-flaring samples

Actual flaring samples 686 ± 26 254 ± 26
Actual non-flaring samples 1609 ± 153 3941 ± 153

3.2 Performance Evaluation

The performance of the prediction model can be estimated by a10-fold cross validation technique.
In this technique, the dataset is randomly divided into 10 folds with approximately equal size; 9 folds
are considered as the training set, and the remaining fold isused as the testing set. The prediction
model is built from the training set and its performance is estimated on the testing set. This process
is repeated 10 times, until each of the 10 subsets is used exactly once as the testing set. Finally, the
10 results are averaged to produce a single estimation.

The solar flare prediction model has four possible outputs, and its contingency table (Jolliffe &
Stephenson 2003) is defined in Table 2. Based on the contingency table, the hit rate and the correct
rejection rate are defined to measure the performance of flaring prediction and non-flaring prediction,
respectively.

Hit rate =
Nhit

Nhit + Nmiss
, (5)

whereNhit is the number of hit samples andNmiss is the number of miss samples.

Correct rejection rate =
NCR

NCR + NFA
, (6)

whereNCR is the number of correct rejection samples andNFA is the number of false alarm samples.
The results from testing the solar flare prediction model areshown in Table 3; furthermore, the

hit rate of the prediction model is73%± 3% and the correct rejection rate of the prediction model is
71%±3%. Although the solar flare prediction model based on the proposed three parameters cannot
completely distinguish flaring samples from non-flaring samples, the performance of this model is
similar to that of an experienced forecaster (Wang et al. 2008).

4 CONCLUSIONS

Extracting three parameters (Pnum, Pmax andPsum) from SOHO/MDI magnetograms, we quan-
tify the stress of a longitudinal magnetic field in active regions, and calculate the flare productivity
for each parameter. We find that the proposed parameters effectively characterize the stress of the
longitudinal magnetic field and these parameters can be usedto distinguish flaring samples from
non-flaring samples.

In the parameter space ofPnum, Pmax andPsum, the decision boundary, which is used to divide
the flaring samples from non-flaring samples, is generated bythe decision tree algorithm. The deci-
sion tree algorithm automatically determines the locally optimal partition threshold at each step. The
decision tree model, which represents this partition process, may be helpful for understanding the
physical basis of the solar flare prediction. The hit rate andthe correct rejection rate of the prediction
model are both larger than 70%, so the derived model is efficient for prediction of solar flares.
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Generally speaking, the proposed parameters characterizethe non-potentiality of active regions.
In the future, the trigger mechanism of solar flares should bestudied to improve the performance of
the solar flare prediction model.

AcknowledgementsWe thank theSOHO consortium for the data.SOHO is a project of inter-
national cooperation between ESA and NASA. This work is supported by the National Basic
Research Program of China (973 Program, Grant No. 2011CB811406), the National Natural Science
Foundation of China (Grant Nos. 11273031, 10733020, 10921303 and 11078010) and the China
Meteorological Administration grant (No. GYHY201106011). This paper has benefited from com-
ments given by the reviewer.

References

Antalova, A. 1996, Contributions of the Astronomical Observatory Skalnate Pleso, 26, 98
Ball, N. M., & Brunner, R. J. 2010, International Journal of Modern Physics D, 19, 1049
Bao, S. D., Zhang, H. Q., Ai, G. X., & Zhang, M. 1999, A&AS, 139,311
Barnes, G., & Leka, K. D. 2006, ApJ, 646, 1303
Bornmann, P. L., & Shaw, D. 1994, Sol. Phys., 150, 127
Cui, Y., Li, R., Zhang, L., He, Y., & Wang, H. 2006, Sol. Phys.,237, 45
Falconer, D. A., Moore, R. L., & Gary, G. A. 2002, ApJ, 569, 1016
Georgoulis, M. K., & Rust, D. M. 2007, ApJ, 661, L109
Hagyard, M. J., Smith, J. B., Teuber, D., & West, E. A. 1984, Sol. Phys., 91, 115
Hahn, M., Gaard, S., Jibben, P., Canfield, R. C., & Nandy, D. 2005, ApJ, 629, 1135
Huang, X., Yu, D., Hu, Q., Wang, H., & Cui, Y. 2010, Sol. Phys.,263, 175
Huang, X., Wang, H., & Dai, X. 2012a, Science in China: Phys Mech Astron, 55, 1
Huang, X., Wang, H.-N., & Li, L.-P. 2012b, RAA (Research in Astronomy and Astrophysics), 12, 313
Jolliffe, I., & Stephenson, D. 2003, Forecast Verification:A Practitioner’s Guide in Atmospheric Science (Wiley

Online Library)
Komm, R., Ferguson, R., Hill, F., Barnes, G., & Leka, K. D. 2011, Sol. Phys., 268, 389
Krall, K. R., Smith, J. B., Jr., Hagyard, M. J., West, E. A., & Cummings, N. P. 1982, Sol. Phys., 79, 59
Leka, K. D., & Barnes, G. 2003, ApJ, 595, 1277
Leka, K. D., & Barnes, G. 2007, ApJ, 656, 1173
Li, R., Cui, Y., He, H., & Wang, H. 2008, Advances in Space Research, 42, 1469
Mason, J. P., & Hoeksema, J. T. 2010, ApJ, 723, 634
McIntosh, P. S. 1990, Sol. Phys., 125, 251
Qahwaji, R., Colak, T., Al-Omari, M., & Ipson, S. 2008, Sol. Phys., 248, 471
Quinlan, J. R. 1996, Journal of Artificial Intelligence Research, 4, 77 (arXiv:cs/9603103)
Sammis, I., Tang, F., & Zirin, H. 2000, ApJ, 540, 583
Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, Sol. Phys., 162, 129
Schrijver, C. J. 2009, Advances in Space Research, 43, 739
Wang, H. 1995, Sol. Phys., 157, 213
Wang, H. N., Cui, Y. M., Li, R., Zhang, L. Y., & Han, H. 2008, Advances in Space Research, 42, 1464
Welsch, B. T., Li, Y., Schuck, P. W., & Fisher, G. H. 2009, ApJ,705, 821
Yu, D., Huang, X., Wang, H., & Cui, Y. 2009, Sol. Phys., 255, 91
Yu, D., Huang, X., Wang, H., et al. 2010, ApJ, 710, 869
Zhang, H. 2001, ApJ, 557, L71
Zhang, H., Bao, S., & Kuzanyan, K. M. 2002, Astronomy Reports, 46, 424


