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Abstract Three new longitudinal magnetic field parameters are etddafrom
SOHO/MDI magnetograms to characterize properties of the strbgsagnetic field
in active regions, and their flare productivities are calted for 1055 active regions.
We find that the proposed parameters can be used to distmfigisng samples from
non-flaring samples. Using the long-term accumulated MDadae build the so-
lar flare prediction model by using a data mining method. lt@mhore, the decision
boundary, which is used to divide flaring from non-flaring gées, is determined by
the decision tree algorithm. Finally, the performance ef phediction model is eval-
uated by 10-fold cross validation technology. We conclundé &n efficient solar flare
prediction model can be built by the proposed longitudinagmetic field parameters
with the data mining method.
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1 INTRODUCTION

The prediction of solar flares is an important unsolved @wbin solar physics. Many parameters
have been proposed to describe the non-potentiality anglesity of active regions which are con-
sidered as necessary conditions for solar eruptions. &disicintosh (1990) to define the Mcintosh
classification system for sunspot groups. The sunspotdassified in 60 possible classifications us-
ing three components of the Mclntosh system. However, thesphological parameters are simply
proxies of the photospheric magnetic field, and the relatigs between solar flares and properties
of the magnetic field in active regions are more fundamematfmann & Shaw 1994; Sammis
et al. 2000). Therefore, many magnetic field parameterdstribe active regions are proposed to
distinguish flaring samples from non-flaring samples. Thesameters include the gradient of the
magnetic fields (Krall et al. 1982; Leka & Barnes 2003), thegth of the neutral line (Falconer et al.
2002; Cui et al. 2006), the number of singular points (CuileR@06), the current density (Zhang
2001), the current helicity (Bao et al. 1999), the shearafighgyard et al. 1984) and the magnetic
twist (Zhang et al. 2002; Hahn et al. 2005). Leka & Barnes @R@inted out that none of these
variables by themselves make a strong distinction betwaendl samples and non-flaring samples,
therefore many efforts were continually made to improvegédormance of solar flare prediction.
Barnes & Leka (2006) quantified the topological complexigsctibing the coronal fields associ-
ated with an active region. Georgoulis & Rust (2007) defiteddffective connected magnetic field
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to measure the flaring potential in active regions. Welscll.g2009) quantitatively characterized
the flow field of active regions. Yu et al. (2009) studied infloes of parameter sequences on the
prediction of solar flares. Huang et al. (2010) proposedesstasf predictors to group complemen-
tary parameters together. Komm et al. (2011) proposed sislesuflow parameters to distinguish
between flaring and non-flaring samples.

Large-sample studies based on long-duration observaif@atdive regions are important for the
prediction of solar flares (Schrijver 2009), and the accated data from the Michelson Doppler
Imager (MDI) onboard thé&olar and Heliospheric Observatory (SOHO) are suitable for this pur-
pose. However, most of the above-mentioned works focus opepties of the photospheric vector
magnetic field with a relatively small number of samples. ¢tgnve propose three new photospheric
longitudinal magnetic field parameters from MDI magnetogsdo describe the stressed property
of active regions. The relationships between the propoaeahpeters and solar flares were studied
by a large-sample statistical method in which more than D0z0nples of 1055 active regions are
observed. Using this large-sample dataset, a short-telanftare prediction model is built using a
data mining method, and its performance is evaluated bylefoss validation technology.

This paper is organized as follows: the data are introdut&kction 2, the prediction model is
built and evaluated in Section 3, and conclusions are givé&ertion 4.

2 DATA

In order to build a solar flare prediction model by using a dataing method (Wang et al. 2008;
Qahwaji et al. 2008; Li et al. 2008; Yu et al. 2010; Ball & Brem2010; Huang et al. 2012a; Huang
et al. 2012b), a large dataset is required.

2.1 Extraction of an Active Region and Definition of a Flare Irdex

Mason & Hoeksema (2010) provided the location and the eidersf active regions withir80°
of the solar disk’s center from 1996 May 10 to 2007 JuheHence, data describing 1055 active
regions in 70 078 magnetograms (Scherrer et al. 1995) araotadl to form the dataset.

According to the peak flux of soft X-rays, solar flares are sifed as C, M or X. For each
classification, a linear scale (1 to 9) is used to determiaesitact value of the solar flare. Within a
forward looking period, more than one flare may occur, anddted importance (Antalova 1996) of
these flares is defined as

Lot =Y c+10x > m+100x Yz, (1)

wherec, m andx represent linear scales in terms of solar flare classificat® M and X, respec-
tively. If the total importance of solar flares within a fomddooking period is larger than a given
threshold, this sample observation of the active regioroissitlered to be flaring. Otherwise, it is
considered to be non-flaring. Here, the threshold,gf is set to be 10 (M1.0 equivalent), and the
forward looking period is taken to be 48 hours.

2.2 Highly Stressed Longitudinal Magnetic Field Parametes

Wang (1995) proposed a parameketo quantify the highly stressed longitudinal magnetic fdld
active regions.
B,

P=vV\B, —2 (2
|Bpt|

1 http://soi.stanford.edu/data/tables/
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Fig.1 (a) Full disk image oSOHO/MDI magnetogram observed on 2005 January 14 at 23:59:30
UT, and the active region NOAA 10720 is marked by the blackamgle. (b) Full diskSOHO/EIT
195A image observed on 2005 January 15 at 00:00:05 UT. (c) Isouaosof the solar flare and the
stressed longitudinal magnetic field paramed®eoverplotted on theSOHO/MDI magnetogram for

the active region NOAA 10720. The background is the graysoap of the longitudinal magnetic
field. Red contours enclose the solar flare observed b$EHeO/EIT 195A image. Blue and green
contours show 0.1 G kmt and 0.2 G km* for the value ofP, respectively.

whereVy, B, is the horizontal gradient of the longitudinal magneticdjeind B, is the transverse
component of the magnetic field inferred by the potentiatifrabdel with the boundary condition
of the longitudinal magnetic field.

The direction ofVy, B, is usually different from that oiB,;, however it changes when the
longitudinal magnetic field is stressed. Hence, positivimdicates the presence of highly stressed
longitudinal magnetic fields. Taking the active region NOAB720 (the locations of this region
in the SOHO/MDI magnetogram an@OHO/EIT 195A image are shown in Figure 1(a) and (b),
respectively) as an example, we show isocontours of the flal® and the stressed longitudinal
magnetic field parametd? overplotted on th&SOHO/MDI magnetogram in Figure 1(c). We find
that the solar flare appears in the place wheiie large. Therefore, we propose three parameters to
characterize the high stress of the longitudinal magnetid fnh an active region:
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(1) Phum: the number of pixels where the is positive in an active region.
(2) Pupax: the maximum ofP in an active region.
(3) P,um: the summation of whereP is positive in an active region.

The flare productivity (FP) for a paramete) (s defined as

NFlare(x 2 X)

FP(X) B NTotal(x Z X)’

®3)
whereX is a given threshold for a magnetic field parameteNp .o (z > X ) and Nooar (z > X)
are the number of flaring samples and the total number of sswyen the value of parameteis
larger than the threshold, respectively.

The thresholdX is determined by the number of eliminated samples whosesvialgmaller
than the given threshold rather than equally dividing thegeaof the parameter. Taking the param-
eter Py, for example, the initial flare productivity calculated by thle samples is 15.15%, which
means that the threshold is at its minimum. We increase the threshdfduntil 500 samples are
included and the value df,,,,, becomes smaller than the threshaldThe corresponding threshold
X of Psum is 0.18 (G knm!) and the flare productivity is 15.17%. This process is regmbantil the
remaining samples are less than 500. The generated flaneqtraty curves for the proposed param-
eters are shown in Figure 2. We find that by increasing theqeeg parameters, the corresponding
flare productivity increases, so these parameters can bidarsgistinguishing flaring samples from
non-flaring samples.

3 SOLAR FLARE PREDICTION MODEL
3.1 Building a Model from Data
There are two methods which can be used to build the prediotiadel:

(1) The deductive method: it starts with physical laws tovite relationships between magnetic
parameters and solar flares.

(2) The inductive method: it starts with observations of gibgl phenomena to summarize relation-
ships between magnetic parameters and solar flares.

The decision tree algorithm (Quinlan 1996; Yu et al. 2009ris inductive method, and the divide-
and-conquer strategy is used to construct the decisiomtoekel from the dataset. In this strategy, a
best parameter is selected in each step to divide samptesrdller subsets. We hope that samples
with the same classification are assigned to the same subsrich as possible, so the importance
of a parameter is measured by the information gain ratio (GR)

H(y) — H(y|X:)
H(X;) ’

wherey is the status of solar flareX,; stands for théth parameteri(= 1, 2, 3 stands foP,uum, Puax
and Py, respectively.), and/ stands for the information entropy (Yu et al. 2009) whichalises
the uncertainty of the system. The information GR measuresé¢duction in the uncertainty of
samples associated with the partition process.

For a continuous parameter (CP), samples are sorted bytiaas to give the ordered distinct
valuesduvy, dvs, ...,dvy (for example, 5.7, 5.9, 6.0 etc. shown in Table 1). Every phadjacent

values suggests a possible threshold = “”Lj”f“). The threshold T, which is used to divide the
dataset into two parts (GPT and CP> T), should be determined by maximizing the information
GR among the possible thresholds (Quinlan 1996). Supposse@,,,, to distinguish flaring sam-
ples from non-flaring samples (see Table 1). We sort samplésdvalue ofPs,.,, and the possible

GR(y, X;) = (4)
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Fig. 2 Flare productivity curves aP,um, Pmax and Psum for different threshold valueX . The first
point is calculated by all the samples. With the increas@ethresholdX, the number of remaining
samples decreases. The thresh®lds determined by the number of eliminated samples whosevalu
is smaller than the given threshold. At each step 500 saraptagduced, and this process is repeated
until the number of remaining samples is less than 500.

Table 1 Example of Possible Positions to Split the Samples

Psum (G km’l) 5.7 5.9 6.0 6.1 6.2 6.2 6.4
Solar flares 0 1 0 0 1 1 1

Note: There are three possible positioRs’>-2,2:946.0 ang 8:1£6.2)
to slit the samples. The partition value with the largesbinfation GR is
selected as the final partition threshold. “1” and “0” stand ffaring and
non-flaring samples, respectively.

positions to split samples are determined by changes intéthessfor solar flares. There are three
possible positions¥=E2-2, 2:946-0 ang 81462 to split the samples in Table 1. The information GR
for each possible partition value is calculated and thetjposwith the largest value of information
GR is used to divide the samples into the subsets. The besnpser determined by the information
GR is selected to divide the samples into the smaller subaetkthis process is recursive until the
stopping criterion is satisfied. The stopping criterionhattthe subset contains only one type of
sample (flaring samples or non-flaring samples) or there@m@provements of information GR for
the next possible partition. At this point, samples in thiessi are considered to represent the class
with the most samples in this subset.

The decision boundary generated by the decision tree #igofor solar flare prediction using
the parameters,, i, Puax, andPs,y, is shown in Figure 3.
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Fig.3 Decision boundary generated by the decision tree algorithparameter space @Puum,
Prax and Psum. The decision tree algorithm divides the samples into dstisdicated by the pa-
rameter with the largest information GR at each step, arsjptfucess is repeated until the stopping
criterion is achieved. (a) shows the generation procedseoflecision boundary. The final decision

boundary is shown in (b), and the left side is considered ta hen-flaring area, while the right side
is considered to be a flaring area.

Figure 3(a) shows the associated generation process iih ttettep 1, P, with the partition
threshold = 6 G km™! is selected to divide samples into two subsets. The samplesaf,,,, is
smaller thar6 G km~! satisfy the stopping criterion, so these samples do not fugtiter division.
The samples whosB,,,,, is larger tharé G km~" continue to be divided by, with the partition
threshold = 12 G km™! in step 2 andP,,., with the partition threshold ¥ 0.1 G km~! in step 3,
until all the subsets satisfy the stopping criterion. Hindhe generated decision boundary is shown
in Figure 3(b), in which samples on the left side of the decidioundary are considered to be non-
flaring samples, and samples on the right side of the dedigandary are considered to be flaring
samples.

The whole process can be represented by a tree-like steystuthe prediction model is called
a decision tree model. In Figure 3, we find that,,, is not used in the prediction model, because
given the selected parametef%,,,, does not contain more information for distinguishing betwe
flaring samples and non-flaring samples. From the predictiodel, we find that the active region
with a more highly stressed longitudinal magnetic field isenarone to produce solar flares.
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Table 2 Definition of Contingency Table for Solar Flare Prediction

Predicted flaring samples  Predicted non-flaring samples

Actual flaring samples Hit Miss
Actual non-flaring samples False alarm Correct rejection

Table 3 Testing Results of the Solar Flare Prediction Model in that@gency Table

Predicted flaring samples  Predicted non-flaring samples

Actual flaring samples 686 + 26 254 £ 26
Actual non-flaring samples 1609 £ 153 3941 £ 153

3.2 Performance Evaluation

The performance of the prediction model can be estimatedf)/fald cross validation technique.
In this technique, the dataset is randomly divided into 1@5avith approximately equal size; 9 folds
are considered as the training set, and the remaining faldes as the testing set. The prediction
model is built from the training set and its performance tinggted on the testing set. This process
is repeated 10 times, until each of the 10 subsets is usetlyerace as the testing set. Finally, the
10 results are averaged to produce a single estimation.

The solar flare prediction model has four possible outpuig,is contingency table (Jolliffe &
Stephenson 2003) is defined in Table 2. Based on the contigdable, the hit rate and the correct
rejection rate are defined to measure the performance afdlprediction and non-flaring prediction,
respectively.

. Nuit
Hit rate = ————, (5)
Nhit + Nmiss
whereNy;; is the number of hit samples aid,,;s is the number of miss samples.
. Ncr
Correct rejection rate = ————— (6)
Ncr + Nra

whereN¢r is the number of correct rejection samples aad is the number of false alarm samples.

The results from testing the solar flare prediction modekam@vn in Table 3; furthermore, the
hit rate of the prediction model i83% =+ 3% and the correct rejection rate of the prediction model is
71% + 3%. Although the solar flare prediction model based on the pgegdhree parameters cannot
completely distinguish flaring samples from non-flaring pems, the performance of this model is
similar to that of an experienced forecaster (Wang et al8200

4 CONCLUSIONS

Extracting three parameter®{,.,, Punax and Py,,) from SOHO/MDI magnetograms, we quan-
tify the stress of a longitudinal magnetic field in activeicgts, and calculate the flare productivity
for each parameter. We find that the proposed parametergiefiy characterize the stress of the
longitudinal magnetic field and these parameters can be tasdidtinguish flaring samples from
non-flaring samples.

In the parameter space 8%, Pmax and Py, the decision boundary, which is used to divide
the flaring samples from non-flaring samples, is generatatdogecision tree algorithm. The deci-
sion tree algorithm automatically determines the locafifimal partition threshold at each step. The
decision tree model, which represents this partition pgecmay be helpful for understanding the
physical basis of the solar flare prediction. The hit ratethedcorrect rejection rate of the prediction
model are both larger than 70%, so the derived model is aftitie prediction of solar flares.
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Generally speaking, the proposed parameters charactieeir®n-potentiality of active regions.
In the future, the trigger mechanism of solar flares shoulstbdied to improve the performance of
the solar flare prediction model.
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