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Abstract Motivated by the increasing evidence for the need of a geometry that re-
sembles Bianchi morphology to explain the observed anisotropy in theWMAP data,
we have discussed some features of Bianchi type VI0 universes in the presence of a
fluid that has an anisotropic equation of state (EoS) parameter in general relativity. We
present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi
type VI0 space-time. To ensure a deterministic solution, we choose the scale factor
a(t) =

√
tnet, which yields a time-dependent deceleration parameter, representing a

class of models which generate a transition of the universe from the early decelerating
phase to the recent accelerating phase. Under suitable conditions, the anisotropic mod-
els approach an isotropic scenario. The EoS for DEω is found to be time-dependent
and its existing range for derived models is in good agreement with data from recent
observations of type Ia supernovae (SNe Ia) (Knop et al. 2003), SNe Ia data com-
bined with cosmic microwave background (CMB) anisotropy and galaxy clustering
statistics (Tegmark et al. 2004a), as well as the latest combination of cosmological
datasets coming from CMB anisotropies, luminosity distances of high redshift SNe Ia
and galaxy clustering. For different values ofn, we can generate a class of physically
viable DE models. The cosmological constantΛ is found to be a positive decreasing
function of time and it approaches a small positive value at late time (i.e. the present
epoch), which is corroborated by results from recent SN Ia observations. We also ob-
serve that our solutions are stable. The physical and geometric aspects of both models
are also discussed in detail.
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1 INTRODUCTION

Recent cosmological observations obtained by type Ia supernovae (SNe Ia) (Riess et al. 1998;
Perlmutter et al. 1999) suggested that the expansion of the universe is accelerating. Recent observa-
tions of SNe Ia with a high level of confidence (Tonry et al. 2003; Riess et al. 2004; Clocchiatti et al.
2006) have further confirmed this. In addition, measurements of the cosmic microwave background
(CMB) anisotropies (Bennett et al. 2003; de Bernardis et al.2000; Hanany et al. 2000), large scale
structure (Tegmark et al. 2004a,b; Spergel et al. 2003), theSloan Digital Sky Survey (SDSS) (Seljak
et al. 2005; Adelman-McCarthy et al. 2006), the Wilkinson Microwave Anisotropy Probe (WMAP)
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(Knop et al. 2003) and the Chandra X-ray Observatory (Allen et al. 2004) strongly indicate that
our universe is dominated by a component with negative pressure, dubbed dark energy (DE), which
constitutes≃ 3/4 of the critical density. The cosmic acceleration arises from negative pressure and
positive energy density that violate the strong energy condition. This violation gives a reverse gravi-
tational effect. Due to this effect, the universe experiences a “cosmic jerk” and the transition from the
earlier deceleration phase to the more recent accelerationphase takes place (Caldwell et al. 2006).
A recent survey of more than200 000 galaxies appears to confirm the existence of DE, although the
exact physics behind it remains unknown (Rincon 2011).

During the last two decades, cosmology has quickly become anexperimental part of physics.
The theoretical models can be tested, and new and more accurate data in the near future will constrain
our models of the universe to within an accuracy of a few percent. The simplest candidate for DE
is the cosmological constant (Overduin & Cooperstock 1998;Sahni & Starobinsky 2000; Komatsu
et al. 2009; Kachru et al. 2003), which suffers from conceptual problems such as fine-tuning and
coincidence issues (Weinberg 1989). Other scenarios include quintessence (Wetterich 1988; Ratra &
Peebles 1988), chameleon (Khoury & Weltman 2004), the k-essence (Chiba et al. 2000; Armendariz-
Picon et al. 2000), which is based on earlier work of K-inflation (Armendáriz-Picón et al. 1999),
modified gravity (Capozziello & Fang 2002; Carroll et al. 2004; Nojiri & Odintsov 2003, 2004;
Abdalla et al. 2005; Rami El-Nabulsi 2011a), tachyons (Padmanabhan 2002) arising in string theory
(Sen 2002), quintessential inflation (Peebles & Vilenkin 1999), Chaplygin gas as well as generalized
Chaplygin gas (Srivastava 2005; Bertolami et al. 2004; Bento et al. 2002; Bilić et al. 2002; Avelino
et al. 2003), and cosmological nuclear energy (Gupta & Pradhan 2010). Recently, Rami El-Nabulsi
(2011b), Feng & Yang (2011), Biesiada et al. (2011), Singh & Chaubey (2012), Amirhashchi et al.
(2011a) and Pradhan et al. (2011a) have studied DE models in different contexts. In spite of these
attempts, cosmic acceleration is still a challenge in modern cosmology and astrophysics.

In general relativity, the evolution of the expansion rate is parameterized by the cosmological
equation of state (EoS, the relationship between temperature, pressure, combined matter, energy,
and vacuum energy density for any region of space). Measuring the EoS for DE is one of the biggest
efforts in observational cosmology today. The DE model has been characterized in a conventional
manner by the EoS parameterω(t) = p

ρ
, which is not necessarily constant, whereρ is the energy

density andp is the fluid pressure (Carroll et al. 2003). The present data seem to slightly favor an
evolving DE with EoSω < −1 around the present epoch andω > −1 in the recent past. Obviously,
ω cannot cross−1 for quintessence or phantoms alone. Some efforts have been made to build a
DE model whose EoS can cross the phantom divide. The simplestDE candidate is vacuum energy
(ω = −1), which is mathematically equivalent to the cosmological constant (Λ). The other con-
ventional alternatives, which can be described by minimally coupled scalar fields, are quintessence
(ω > −1) (Steinhardt & Wesley 2009), phantom energy(ω < −1) (Caldwell 2002), and quintoms
(that can cross from a phantom region to a quintessence region as they evolve) and have a time-
dependent EoS parameter. Some other limits, obtained from observational results that come from
SNe Ia data (Knop et al. 2003) and a combination of SNe Ia data with CMB anisotropy and galaxy
clustering statistics (Tegmark et al. 2004a,b), are−1.67 < ω < −0.62 and−1.33 < ω < −0.79,
respectively. The latest results in 2009, obtained after the combination of cosmological datasets
coming from CMB anisotropies, luminosity distances of highredshift SNe Ia, and galaxy clustering,
constrain the DE EoS to−1.44 < ω < −0.92 at the68% confidence level (Hinshaw et al. 2009;
Komatsu et al. 2009). However, it is not at all obligatory to use a constant value ofω. Due to a lack
of observational evidence in making a distinction between constant and variableω, usually the EoS
parameter is considered as a constant (Kujat et al. 2002; Bartelmann et al. 2005; Yadav 2011) with
phase wise values−1, 0,− 1

3 and+1 for a universe dominated by vacuum fluid, dust fluid, radiation
and a stiff universe, respectively. However, in general,ω is a function of time, redshiftz or scale
factora as well (Ratra & Peebles 1988; Jimenez 2003; Das et al. 2005).In earlier studies, various
forms of time dependentω have been used for variableΛ models by Mukhopadhyay et al. (2008).
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Recently, DE models with a variable EoS parameter have been studied by Ray et al. (2011), Akarsu
& Kılınç (2010a,b), Yadav et al. (2011), Yadav & Yadav (2011), Pradhan et al. (2011a), Pradhan
et al. (2011b), Amirhashchi et al. (2011a,b) and Saha & Yadav(2012). In well-known reviews on
modified gravity (Nojiri & Odintsov 2007, 2011), it is clearly indicated that any modified gravity
may be represented as effective fluid with time dependentω. The DE universe’s EoS with an inho-
mogeneous, Hubble parameter dependent term is considered by Nojiri & Odintsov (2005). Later,
Nojiri & Odintsov (2006) also presented the late-time cosmological consequences of DE with a
time-dependent periodic EoS in an oscillating universe.

Today there is considerable evidence suggesting that the universe may be isotropic and homoge-
neous. After the discovery of CMB radiation, cosmology became a precise science. CMB radiation
is also considered to be the major experimental evidence on which the most commonly accepted
theory about the origin of the universe, i.e. “Big-Bang” cosmology, is based. Statistical Isotropy (SI)
is usually assumed in almost all CMB studies. However, now, there exist many indications which
suggest that CMB may violate this assumption. Apart from CMBthere are some other indications of
violation of SI which suggest the existence of a preferred direction in the universe. These indications
include distributions of polarizations from radio galaxies (Birch 1982; Jain & Ralston 1999; Jain
et al. 2004) and statistics of optical polarizations from quasars (Hutsemekers 1998; Hutsemékers &
Lamy 2001; Jain et al. 2004; Ralston & Jain 2004). The polarization of electromagnetic waves com-
ing from distant radio galaxies and quasars measured at radio and optical frequencies, respectively,
are not consistent with the assumptions of SI; rather radio polarizations are organized coherently
over the dome of the sky and optical polarizations are aligned in a preferential direction on very
large scales, violating the assumed isotropy of the universe. These studies confirmed the strong sig-
nificance of anisotropy and also claimed that the statisticsare not consistent with isotropy at the
99.9% confidence level. It has also been observed that the quadrupole and the octopole have almost
all their power perpendicular to a common axis in space pointing towards the Virgo cluster (Tegmark
et al. 2003; de Oliveira-Costa & Tegmark 2006). The dipole, which is commonly attributed to our
motion relative to the CMB rest frame, also aligns in the samedirection as the quadrupole and the
octopole, which is not expected under the condition of statistical isotropy. Another indication of
anisotropy in CMB data is the presence of a cold spot with an improbably low temperature. It was
found by Cruz et al. (2005) by using spherical Mexican hat wavelet analysis onWMAP data. Several
authors have also searched for anisotropy using the SNe Ia data set. Jain et al. (2007) found violation
of isotropy in this data. Subsequently, there have been a large number of studies (Bielewicz et al.
2004; Eriksen et al. 2004; Katz & Weeks 2004; Bielewicz et al.2005; Prunet et al. 2005; Bernui et al.
2006; de Oliveira-Costa & Tegmark 2006; Freeman et al. 2006;Bernui et al. 2007; Land & Magueijo
2007) which claim the CMB is not consistent with isotropy. The possible violation of SI in the CMB
has led to many theoretical studies. Several physical explanations for the observed anisotropy have
been put forward (Cline et al. 2003; Contaldi et al. 2003; Kesden et al. 2003; Armendáriz-Picón
2004; Berera et al. 2004; Gordon et al. 2005; Abramo et al. 2006; Campanelli et al. 2007; Rodrigues
2008). Land & Magueijo (2005) found evidence that the detected anisotropy has positive mirror par-
ity. The generation and evolution of primordial perturbations in an anisotropic universe have also
been studied (Armendariz-Picon 2006; Battye & Moss 2006; Pereira et al. 2007) along with the
possibility of anisotropic inflation (Hunt & Sarkar 2004; Buniy et al. 2006; Donoghue et al. 2009).

The possible violation of global isotropy in the CMB has beena subject of intense research after
the publication ofWMAP data. The possible alignment of axes corresponding to several diverse data
sets in the direction of the Virgo cluster makes this extremely interesting. In recent years, there have
been a large number of studies, which claim that the CMB temperature fluctuations are not consistent
with statistical isotropy and thus question the cosmological principle. The CMB is considered to be
major experimental evidence supporting the current/present models of the observed universe and,
from these CMB observations, several people have found significant anisotropic scenarios. Based on
these studies one may not preclude the possibility that our universe is anisotropic.
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There is general agreement among cosmologists that CMB anisotropy on the small angle scale
holds the key to the formation of discrete structure. The theoretical argument (Misner 1968) and
modern experimental data support the existence of an anisotropic phase, which turns into an isotropic
one. The anisotropy of DE within the framework of Bianchi type space-times is found to be useful in
generating arbitrary ellipsoidality of the universe, and to fine tune the observed CMB anisotropies.
Koivisto & Mota (2008a,b) have investigated cosmological models with the anisotropic EoS and
have also shown that the present SNe Ia data allow large anisotropy. Recently, Akarsu & Kılınç
(2010c) have described some features of the Bianchi type I universes in the presence of fluid that has
an anisotropic EoS. Hence, for a realistic cosmological model one should consider spatially homo-
geneous and anisotropic space-times and then show whether they can evolve to the observed amount
of homogeneity and isotropy. The only spatially homogeneous but anisotropic models other than
Bianchi-type models are the Kantowski-Sachs locally symmetric family. See Ellis & van Elst (1999)
for generalized, particularly anisotropic, cosmologicalmodels and Ellis (2006) for a concise review
on Bianchi type models. The motivation for this investigation comes from the hints of statistical
anisotropy in our universe that several observations seem to suggest.

Bianchi type VI0 (B-VI0) space-time, in connection with massive strings, is studied by Pradhan
& Bali (2008) and Bali et al. (2008). Belinchón (2009) studied several cosmological models with
B-VI0 & III symmetries under the self similar approach. Given the growing interest of cosmologists,
here, we propose to study the evolution of the universe within the framework of a B-VI0 space-
time. Recently, Amirhashchi et al. (2011c) and Pradhan et al. (2012) presented DE models in an
anisotropic B-VI0 space-time by considering constant and variable deceleration parameters (DPs)
respectively. In this paper, we have investigated two new B-VI0 DE models with variableω by
assuming different scale factors in such a way that they provide a time dependent DP in the presence
of anisotropic fluid. The outline of the paper is as follows: in Section2, the metric and the field
equations are described. Section3 deals with the solutions of the field equations. Section4 covers
physical and geometric behavior of the model. Section5 addresses the stability of the corresponding
solutions. In Section6, we describe another DE model and its physical aspects. In Section7, we again
examine the stability of corresponding solutions for the second DE model. Finally, conclusions are
summarized in Section8.

2 THE METRIC AND FIELD EQUATIONS

We consider a totally anisotropic Bianchi type VI0 line element, given by

ds2 = −dt2 + A2dx2 + B2e2xdy2 + C2e−2xdz2, (1)

where the metric potentialsA, B andC are functions oft alone. This ensures that the model is
spatially homogeneous.

The simplest generalization of the EoS parameter of perfectfluid may be to determine the EoS
parameter separately along each spatial axis by preservingthe diagonal form of the energy momen-
tum tensor in a consistent way with the considered metric. Therefore, the energy momentum tensor
of fluid can be written, most generally, in an anisotropic diagonal form as follows

T j
i = diag[T 0

0 , T 1
1 , T 2

2 , T 3
3 ]. (2)

Allowing for anisotropy in the pressure of the fluid, and thusin its EoS parameter, gives rise to
new possibilities for the evolution of the energy source. Tosee this, we first parametrize the energy
momentum tensor given in (2) as follows:

T j
i = diag[ρ,−px,−py,−pz]

= diag[1,−ωx,−ωy,−ωz]ρ

= diag[1,−ω,−(ω + δ),−(ω + γ)]ρ. (3)
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Hereρ is the proper energy density,px, py andpz are the pressures, andωx, ωy andωz are the
directional EoS parameters along thex, y and z axes, respectively;ω is the deviation-free EoS
parameter of the fluid. The deviation from isotropy is parametrized by settingωx = ω and then
introducing skewness parametersδ andγ which are the deviations fromω, respectively along they
andz axes.ω, δ andγ are not necessarily constants and might be functions of the cosmic time,t.

Einstein’s field equations (with gravitational units,8πG = 1 andc = 1) read as

Rj
i −

1

2
Rgj

i = −T j
i , (4)

where the symbols have their usual meaning. In a comoving co-ordinate system, Einstein’s field
equation (4), with (3) for the B-VI0 metric (1) subsequently leads to the following system of equa-
tions:

B̈

B
+

C̈

C
+

ḂĊ

BC
+

1

A2
= −ωρ, (5)

C̈

C
+

Ä

A
+

ĊȦ

CA
− 1

A2
= −(ω + δ)ρ, (6)

Ä

A
+

B̈

B
+

ȦḂ

AB
− 1

A2
= −(ω + γ)ρ, (7)

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
− 1

A2
= ρ, (8)

Ċ

C
− Ḃ

B
= 0. (9)

Here and in what follows, an overhead dot denotes ordinary differentiation with respect tot.

The spatial volume for the model (1) is given by

V 3 = ABC. (10)

We definea = (ABC)
1
3 as the average scale factor so that Hubble’s parameter is anisotropic and

may be defined as

H =
ȧ

a
=

1

3

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

. (11)

The DPq, the scalar expansionθ, the shear scalarσ2, and the average anisotropy parameterAm are
defined by

q = −aä

ȧ2
, (12)

θ =
Ȧ

A
+

Ḃ

B
+

Ċ

C
, (13)

σ2 =
1

2

(

3
∑

i=1

H2
i − 1

3
θ2

)

, (14)

Am =
1

3

3
∑

i=1

(

∆Hi

H

)2

, (15)

where∆Hi = Hi − H(i = x, y, z).
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3 SOLUTIONS OF THE FIELD EQUATIONS

Integrating Equation (9), we obtain
C = ℓB, (16)

whereℓ is a constant of integration. Now if we put the value of Equation (16) in (7) and subtract the
result from Equation (6), we obtain that the skewness parameters along they andz axes are equal,
i.e.δ = γ.

Therefore, Equations (5)–(9) are reduced to

2
B̈

B
+

Ḃ2

B2
+

1

A2
= −ωρ, (17)

Ä

A
+

B̈

B
+

ȦḂ

AB
− 1

A2
= −(ω + γ)ρ, (18)

2
ȦḂ

AB
+

Ḃ2

B2
− 1

A2
= ρ. (19)

The field Equations (17)–(19) are a system of three linearly independent equations with five unknown
parametersA, B, ω, ρ andγ. Two additional constraints relating these parameters arerequired to
obtain explicit solutions of the system.

In literature, it is common to use a constant DP (Akarsu & Kılınç 2010a,b; Amirhashchi et al.
2011c; Pradhan et al. 2011b; Kumar & Yadav 2011; Yadav 2011),as it duly gives a power law for
the metric function or corresponding quantity. The motivation to choose such a time dependent DP
is behind the fact that the universe shows accelerated expansion at present as observed in recent
observations of SNe Ia (Riess et al. 1998; Perlmutter et al. 1999; Tonry et al. 2003; Riess et al.
2004; Clocchiatti et al. 2006) and CMB anisotropies (Bennett et al. 2003; de Bernardis et al. 2000;
Hanany et al. 2000), but there was decelerated expansion in the past. Also, the transition redshift
from decelerated expansion to accelerated expansion is about 0.5. Now for a universe which was
decelerating in the past and is accelerating at the present time, the DP must show signature flipping
(see the Refs. Padmanabhan & Choudhury 2003; Amendola 2003;Riess et al. 2001). So, in general,
the DP is not a constant but rather is variable in time. This motivates us to choose a scale factor
which yields a time-dependent DP. At this juncture, it should be stated that some authors first choose
the scale factors as a power law, exponential or in another form, and then calculate other variables
with some conditions under these solutions.

In this paper, following Saha et al. (2012) and Pradhan & Amirhashchi (2011), we take the
following ansatz for the scale factor, where the increase in the term of time evolution is

a(t) =
√

tnet, (20)

wheren is a positive constant. Saha et al. (2012) and Pradhan & Amirhashchi (2011) examined the
relation (20) when studying a two-fluid scenario for DE models in an FRW universe and accelerating
DE models in Bianchi type V space-times, respectively. Thisansatz generalized the one proposed
by Amirhashchi et al. (2011b). If we putn = 0 in Equation (20), it is reduced toa(t) =

√
et, i.e. an

exponential law of variation for the scale factor. This choice of scale factor yields a time-dependent
DP (see Eq. (30)) such that before the DE era, the corresponding solution gives the inflation and
radiation/matter dominated era, with subsequent transition from deceleration to acceleration. Thus,
our choice of scale factor is physically acceptable.

It is worth mentioning here that one can also select many other ansatzes than Equation (20)
which mimic an accelerating universe. However, one should also be careful to check the physical
acceptability and stability of their corresponding solutions, otherwise they do not prove any relation
of such solutions with the observable universe. Equation (20) yields physically plausible solutions.
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Secondly, we assume that the expansion (θ) is proportional to shear (σ). This condition and
Equation (16) lead to

1√
3

(

Ȧ

A
− Ḃ

B

)

= α0

(

Ȧ

A
+ 2

Ḃ

B

)

, (21)

which yields
Ȧ

A
= m

Ḃ

B
, (22)

wherem = 2α0

√
3+1

1−α0

√
3

andα0 are arbitrary constants. The above equation, after integration, reduces
to

A = β(B)m, (23)

whereβ is a constant of integration. Here, for simplicity and without any loss of generality, we
assumeβ = 1. Hence we have

A = (B)m. (24)

Collins et al. (1980) have pointed out that for a spatially homogeneous metric, the normal congruence
with the homogeneous expansion satisfies the condition thatσ

θ
is constant.

Using Equations (16), (20) and (24) in (11), we obtain the expressions for metric functions as
follows

B(t) = ℓ1(t
net)

3
2(m+2) , (25)

C(t) = ℓ2(t
net)

3
2(m+2) , (26)

A(t) = ℓ3(t
net)

3m

2(m+2) , (27)

whereℓ1 = k− 1
(m+2) , ℓ2 = ℓℓ1, ℓ3 = ℓm

1 andk is a constant of integration.
Hence the model (1) reduces to

ds2 = −dt2 + ℓ2
3(t

net)
6m

(m+2) dx2 + ℓ2
1(t

net)
6

(m+2) dy2 + ℓ2
2(t

net)
6

(m+2) dz2. (28)

4 PHYSICAL ASPECTS OF THE DARK ENERGY MODEL

The expressions for the Hubble parameter (H), scalar of expansion (θ), shear scalar (σ), the spatial
volume (V ), and the average anisotropy parameter (Am) for the model (28) are given by

θ = 3H =
3

2

(

1 +
n

t

)

, (29)

q =
2n

(n + t)2
− 1, (30)

σ2 =
3

4

(

m − 1

m + 2

)2
(

1 +
n

t

)2

, (31)

V = (tnet)
3
2 , (32)

Am = 2

(

m − 1

m + 2

)2

. (33)

From Equations (29)−(33), it is observed that att = 0, the spatial volume vanishes and the other
parameters,θ, σ andH , diverge. Hence the model starts with a big bang singularityat t = 0. This is
a point type singularity (MacCallum 1971) since directional scale factorA(t), B(t) andC(t) vanish
at the initial time. Sinceσ

2

θ2 6= 0 except form = 1, the model is anisotropic for all values ofm
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except form 6= 1. The dynamics of the mean anisotropy parameter depend on thevalue ofm. We
observe that whenm = 1, Am = 0 (i.e. the case of isotropy). Thus, the observed isotropy of the
model can be achieved in the region of a cosmological constant (see Fig. 2).

The energy density of the fluid can be found by using Equations(25) and (27) in (19)

ρ =
9

4

(

2m + 1

m + 2

)

(

1 +
n

t

)2

− ℓ0(t
net)−

3m

(m+2) , (34)

whereℓ0 = 1
ℓ23

. Using Equations (25), (27) and (34) in (17), the EoS parameterω is obtained as

ω =

27
4(m+2)2

(

1 + n
t

)2 − 3n
(m+2)t2 + ℓ0(t

net)−
3m

(m+2)

ℓ0(tnet)−
3m

(m+2) + 9
4

(

2m+1
m+2

)

(

1 + n
t

)2
. (35)

Using Equations (25), (27), (34) and (35) in (18), the skewness parametersδ (or γ) (i.e. deviations
from ω along they andz axes) are computed as

δ = γ =

3
4

(

m−1
m+2

){

(

1 + n
t

)2 − 2n
t2

}

− 2ℓ0(t
net)−

3m

(m+2)

ℓ0(tnet)−
3m

(m+2) − 9
4

(

2m+1
m+2

)

(

1 + n
t

)2
. (36)

From Equation (35), it is observed that the EoS parameterω is time dependent, and it can also be a
function of redshiftz or scale factora (as already discussed in Sect.1).

So, if the present work is compared with experimental results (Knop et al. 2003; Tegmark et al.
2004b; Hinshaw et al. 2009; Komatsu et al. 2009), then one canconclude that the limit ofω provided
by Equation (35) may accommodate the acceptable range of theEoS parameter. Also it is observed
that att = tc, ω vanishes, wheretc is a critical time given by the following relation

27

4(m + 2)2

(

1 +
n

tc

)2

− 3n

(m + 2)t2c
+ ℓ0(t

n
c etc)−

3m

(m+2) . (37)

Thus, for this particular time, our model represents a dustyuniverse. We also note that at the earlier
time, whent ≤ tc andω ≥ 0, the universe was dominated by real matter, but later att > tc, and
ω < 0, the phase dominated by DE begins.

From Equation (34), we note that energy density of the fluidρ(t) is a decreasing function of
time andρ ≥ 0 when

(

1 +
n

t

)2

(tnet)
3m

(m+2) ≥ 4ℓ0

9

(

m + 2

2m + 1

)

. (38)

Figure 1 is the plot of energy density for the fluid (ρ) versus time in the accelerating mode of the
universe. Here we observe thatρ is a positive decreasing function of time and it approaches zero as
t → ∞.

Figure 2 depicts the variation of EoS parameter (ω) versus cosmic time (t) in the evolution of
the universe, as a representative case with an appropriate choice of constants of integration and other
physical parameters using reasonably well known situations (parameters are given in the Figure
caption). Form = 1, we obtain the isotropic model that is studied here as a representative case.
From Figure 2, we observed that at the initial time there is a quintessence (ω > −1) region and at a
late time it approaches the cosmological constant (ω = −1) scenario. This is a situation in the early
universe where a quintessence dominated universe (Caldwell 2002) may be playing an important
role for the EoS parameter. Sinceω approaches−1 for sufficiently large time, its value is consistent
with the range of all the three observations (Knop et al. 2003; Tegmark et al. 2004b; Hinshaw et al.
2009; Komatsu et al. 2009).
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Fig. 1 The plot of energy densityρ versust. Here
ℓ0 = 0.1 andm = 1.

Fig. 2 The plot of EoS parameterω versust. Here
ℓ0 = 0.1 andm = 1.

In the absence of any curvature, matter energy densityΩm and DEΩΛ are related by the equation

Ωm + ΩΛ = 1, (39)

whereΩm = ρ
3H2 andΩΛ = Λ

3H2 . Thus, Equation (39) reduces to

ρ

3H2
+

Λ

3H2
= 1. (40)

Using Equations (29) and (34) in (40), the cosmological constant is obtained as

Λ = −3

4

(

5m + 1

m + 2

)

(

1 +
n

t

)2

+ ℓ0(t
net)−

3m

(m+2) . (41)

From Equation (41), we observe thatΛ is a decreasing function of time and is always positive when

(

1 +
n

t

)2

(tnet)
3m

(m+2) <
4ℓ0

3

(

m + 2

5m + 1

)

. (42)

In general relativity, the Bianchi identities for Einstein’s tensorGij and the vanishing covariant
divergence of the energy momentum tensorTij together imply that the cosmological termΛ is con-
stant. In theories with a variableΛ-term, one either introduces new terms (involving scalar fields,
for instance) in the left hand side of the Einstein field equations to cancel the non-zero divergence
of Λgij (Bergmann 1968; Wagoner 1970) or interpretΛ as a matter source and move it to the right
hand side of the field equations (Zel’dovich 1968), in which case energy momentum conservation is
understood to meanT ∗ij

;j = 0, whereT ∗
ij = Tij − (Λ/8πG)gij . It is here that the first assumption

that leads to the cosmological constant problem is made. It is that the vacuum has a non-zero energy
density. If such a vacuum energy density exists, Lorentz invariance requires that it have the form
〈Tµν〉 = −〈ρ〉gµν . This allows the definition of an effective cosmological constant and a total effec-
tive vacuum energy densityΛeff = Λ+8πG〈ρ〉 or ρvac = 〈ρ〉+Λ/8πG. Note at this point that only
the effective cosmological constant,Λeff , is observable, notΛ, so the latter quantity may be referred
to as ‘bare.’ The two approaches are of course equivalent fora given theory (Vishwakarma 2000).
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Fig. 3 The plot of cosmological constantΛ versus
t. Hereℓ0 = 0.1 andm = 1.

Fig. 4 The plot of DPq versust.

For detailed discussions, readers are advised to see the references (Carroll et al. 1992; Abdussattar &
Vishwakarma 1996; Peebles & Ratra 2003; Sahni & Starobinsky2000; Padmanabhan 2003, 2008).

Figure 3 is the plot of cosmological constantΛ versus timet. We observe that the cosmological
parameter is a decreasing function of time and it approachesa small positive value at late time (i.e.
at the present epoch). Recent cosmological observations (Perlmutter et al. 1998, 1999; Riess et al.
1998, 2004; Tonry et al. 2003) suggest the existence of a positive cosmological constantΛ with the
magnitudeΛ(G~/c3) ≈ 10−123. These observations of magnitude and redshift in SNe Ia suggest
that our universe may be accelerating with induced cosmological density through the cosmological
Λ-term. Thus, the nature ofΛ in our derived DE model is supported by recent observations.

Figure 4 is the plot of DPq versus timet. From Figure 4, it is observed thatq decreases very
rapidly and reaches values−1, then afterwards it remains constant at−1 (like a de Sitter universe).
From this figure, we observe that the DE model, for0 < n < 1.5, evolves from the matter dom-
inated era to a quintessence era and ultimately approaches the cosmological constant era, whereas
for n ≥ 1.5, the universe evolves from the quintessence to the cosmological constant era. It is worth
mentioning here that forn < 1.5, transition of the universe takes place from the early decelerating
phase to the recent accelerating phase, whereas forn ≥ 1.5, the expansion of the universe is always
accelerating.

From these analyses, we conclude that it is the choice of scale factor that makes the model
inflationary at the early stages of the universe and a radiation/matter dominated phase before the
DE era. From Equation (29), we observe that whent → 0, the expansion scalarθ becomes infinity,
which indicates the inflationary scenario. Also from Figure4, we observe that beforet ≈ 1, q > 0
and this indicates the radiation/matter dominated era of the universe. However, aftert ≈ 1, q < 0
which indicates the DE dominated era. The solution in our model is stable at any given epoch for the
choice of theansatz (20). Hence our derived model is physically acceptable.

The CMB is also considered to be major experimental evidencesupporting the present mod-
els of the observed universe and from CMB observations several scientists found the signature of
anisotropy. Based on these studies and observations, one may not preclude the possibility that our
universe is anisotropic. We have already discussed this scenario in the Introduction.
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5 STABILITY OF THE CORRESPONDING SOLUTIONS

A rigorous analysis on the stability of the corresponding solutions can be done by invoking a per-
turbative approach. Perturbations of the fields in a gravitational system against the background evo-
lutionary solution should be checked to ensure the stability of the exact or approximate background
solution (Chen & Kao 2001). Now we will study the stability ofthe background solution with respect
to perturbations of the metric. Perturbations will be considered for all three expansion factorsai via

ai → aBi + δai = aBi(1 + δbi). (43)

We will focus on the variablesδbi instead ofδai from now on for convenience. Therefore, the
perturbations of the volume scale factorVB = Π3

i=1ai, directional Hubble factorsθi = ȧi

ai

and the

mean Hubble factorθ =
∑3

i=3
θi

3 = V̇
3V

can be shown to be

V → VB + VB

∑

i

δbi, θi → θBi +
∑

i

δbi, θ → θB +
1

3

∑

i

δbi. (44)

One can show that the metric perturbationsδbi, to the linear order inδbi, obey the following equa-
tions

∑

i

δb̈i + 2
∑

θBiδḃi = 0 , (45)

δb̈i +
V̇B

VB

δḃi +
∑

j

δḃjθBi = 0 , (46)

∑

δḃi = 0. (47)

From the above three equations, we can easily find

δb̈i +
V̇B

VB

δḃi = 0, (48)

whereVB is the background volume scale factor. In our case,VB is given by

VB = t
3
2ne

3
2 t (49)

using the above equation in Equation (6) and after integration we get

δbi = cit
− 3

4ne−
3
4 t WittakerM

(

−3

4
n,−3

4
n +

1

2
,
3

2
t

)

, (50)

whereci is a constant of integration. Therefore, the “actual” fluctuations for each expansion factor
δai = aBiδbi are given by

δai → cit
−n

4 e−
t

4 WittakerM

(

−3

4
n,−3

4
n +

1

2
,
3

2
t

)

. (51)

From the above equation we see that forn ≫ 1, δai approaches zero. Consequently, the background
solution is stable against the perturbation of the gravitonfield.
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6 OTHER DARK ENERGY MODELS

Now we take the followingansatz for the scale factor, where the increase in terms of time evolution is

a(t) = −1

t
+ t2. (52)

The above choice of scale factor yields a time dependent DP and the corresponding solutions are
stable. The motivations for selecting such a type of scale factors for finding solutions were already
described in Section3. We define the DPq as usual

q = − äa

ȧ2
= − ä

aH2
. (53)

Using (52) in (53), we find

q = −2

(

t3 − 1

2t3 + 1

)2

. (54)

Using Equations (16), (24) and (52) in (11), we obtain the expressions for metric functions as follows

B(t) = ℓ4

(

−1

t
+ t2

)
3

(m+2)

, (55)

C(t) = ℓ5

(

−1

t
+ t2

)
3

(m+2)

, (56)

A(t) = ℓ6

(

−1

t
+ t2

)
3m

(m+2)

, (57)

whereℓ4 = l−
1

(m+2) , ℓ5 = ℓℓ4, ℓ6 = ℓm
4 andl is a constant of integration.

Hence the model (1) reduces to

ds2 = −dt2 + ℓ2
6

(

−1

t
+ t2

)
6m

(m+2)

dx2 + ℓ2
4

(

−1

t
+ t2

)
6

(m+2)

dy2

+ ℓ2
5

(

−1

t
+ t2

)
6

(m+2)

dz2 . (58)

The expressions for the Hubble parameter (H), scalar of expansion (θ), shear scalar (σ), spatial
volume (V ) and the average anisotropy parameter (Am) for the model (58) are given by

θ = 3H =
3

t

(

2t3 + 1

t3 − 1

)

, (59)

σ2 = 3

[(

m − 1

m + 2

)

(2t3 + 1)

(t3 − 1)t

]2

, (60)

V =

(

−1

t
+ t2

)3

, (61)

Am = 2

(

m − 1

m + 2

)2

. (62)

From Equation (59), we observe that whent → 0, θ → ∞ and this indicates the inflationary scenario
at early stages of the universe. Sinceσ2

θ2 6= 0 for all values ofm except form = 1, the model is
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anisotropic except form = 1. The dynamics of the mean anisotropy parameter depend on thevalue
of m. The mean anisotropic parameter is constant. We observed that whenm = −2, Am → ∞
and form = 1, Am = 0. Thus, the observed isotropy of the universe can be achievedin a phantom
model (see Fig. 6).

The energy density of the fluid can be found by using Equations(55) and (57) in (19)

ρ =
9(2m + 1)

(m + 2)2
(2t3 + 1)2

(t3 − 1)2t2
− ℓ0

(

−1

t
+ t2

)− 6m

(m+2)

, (63)

wherel0 = 1
ℓ26

. Using Equations (55), (57) and (63) in (17), the EoS parameterω is obtained as

ω =

27
(m+2)2

(2t3+1)2

(t3−1)2t2
− 6

(m+2)
(2t6+8t3−1)
(t3−1)2t2

+ ℓ0

(

− 1
t

+ t2
)− 6m

(m+2)

ℓ0

(

− 1
t

+ t2
)− 6m

(m+2) + 9(2m+1)
(m+2)2

(2t3+1)2

(t3−1)2t2

. (64)

Using Equations (55), (57), (63) and (64) in (18), the skewness parametersδ (or γ) (i.e. deviations
from ω along they andz axes) are computed as

δ = γ =
6
(

m−1
m+2

)

(5t6+2t3+2)
(t3−)2t2

− 2ℓ0

(

− 1
t

+ t2
)− 6m

(m+2)

ℓ0

(

− 1
t

+ t2
)− 6m

(m+2) − 9(2m+1)
(m+2)2

(2t3+1)2

(t3−1)2t2

. (65)

So, if the present work is compared with experimental results (Knop et al. 2003; Tegmark et al.
2004b; Hinshaw et al. 2009; Komatsu et al. 2009), then one canconclude that the limit ofω provided
by Equation (64) may be accommodated with an acceptable range for the EoS parameter. Also, it is
observed that att = tc, ω vanishes, wheretc is a critical time given by the following relation

27

(m + 2)2
(2t3c + 1)2

(t3c − 1)2t2c
− 6

(m + 2)

(2t6c + 8t3c − 1)

(t3c − 1)2t2c
+ ℓ0

(

− 1

tc
+ t2c

)− 6m

(m+2)

= 0. (66)

Thus, for this particular time, our model represents a dustyuniverse. We also note that the earlier
baryonic matter dominated phase att ≤ tc, whereω ≥ 0, is converted to the DE dominated phase
of universe, at timet > tc, whereω < 0.

From Equation (63), we note that energy density of the fluidρ(t) is a decreasing function of
time andρ ≥ 0 when

(2t3 + 1)2

(t3 − 1)2t2

(

−1

t
+ t2

)
6m

(m+2)

≥ ℓ0(m + 2)2

9(2m + 1)
. (67)

Figure 5 shows the variation of energy density (ρ) versus timet. Here we observe thatρ is a positive
decreasing function of time and it approaches zero ast → ∞.

Figure 6 displays parameter (ω) versus cosmic time (t) in the evolution of the universe, as a rep-
resentative case with an appropriate choice of constants ofintegration and other physical parameters
using reasonably well known values (parameters are given inthe Figure caption). From Figure 6, we
observe the following:

(i) for m ≤ 0.5, the evolution of the universe starts from the quintessenceera (ω > −1) and
approaches a phantom region (ω < −1).

(ii) for 1 ≤ m < 2, the universe evolves from a phantom region (ω < −1), then crosses PDL and
ultimately approaches a quintessence region (ω > −1).

(iii) for 2 ≤ m ≤ 3, the evolution of the universe commences from the phantom region (ω < −1),
crosses PDL and then skips over to a non-dark region.
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(iv) for 3 ≤ m, the evolution of the universe begins from the quintessenceera (ω > −1) and
ultimately passes over to a non-dark region.

(v) for m = 1, we getω ≅ −0.65, which is consistent with SN Ia data−1.67 < ω < −0.62 (Knop
et al. 2003).

(vi) for m = 0.5, we getω ≅ −1.1 which is reproducible with the current observational realm
(Knop et al. 2003; Tegmark et al. 2004b; Hinshaw et al. 2009; Komatsu et al. 2009).

Using Equations (59) and (63) in (40), the cosmological constant is obtained as

Λ =
3(4m2 + 10m + 13)

(m + 2)2
(2t3 + 1)2

(t3 − 1)2t2
+ ℓ0

(

−1

t
+ t2

)

−6m

(m+2)

. (68)

From Equation (68), we observe thatΛ is a decreasing function of time and it is always positive
when

(2t3 + 1)2

(t3 − 1)2t2

(

−1

t
+ t2

)
6m

(m+2)

> − ℓ0(m + 2)2

3(4m2 + 10m + 13)
. (69)

Figure 7 is the plot of cosmological constantΛ versus timet. It is observed that in all cases the
cosmological parameter is a decreasing function of time andit approaches a small positive value at
late time (i.e. at the present epoch). Thus, the nature ofΛ in this derived DE model is also in good
agreement with recent observations (Perlmutter et al. 1998, 1999; Riess et al. 1998, 2004; Tonry
et al. 2003).

Figure 8 is the plot of DPq versus timet. From the figure we observe that the expansion of the
universe starts from the accelerating phase and the rate of expansion decreases with time but then
stops, and again starts accelerating to approach−0.5, which is very close to the value (≈ −0.7)
predicted by the observations (Riess et al. 2004; Virey et al. 2005).

A convenient method to describe models close toΛ CDM is based on the “cosmic jerk” param-
eterj, a dimensionless third derivative of the scale factor with respect to the cosmic time (Chiba
& Nakamura 1998; Sahni 2002; Blandford et al. 2005; Visser 2004, 2005). A deceleration-to-
acceleration transition occurs for models with a positive value ofj0 and negativeq0. Flat Λ CDM

Fig. 5 The plot of energy densityρ versust. Here
ℓ0 = 0.1.

Fig. 6 The plot of EoS parameterω versust. Here
ℓ0 = 0.1.
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Fig. 7 The plot of cosmological constantΛ ver-
sust. Hereℓ0 = 0.1.

Fig. 8 The plot of DPq versust.

models have a constant jerkj = 1. We obtain the jerk parameter as

j(t) =
2t5 + 2t4 − 2t2 − t − 2

(t + 1)(1 + t2)
. (70)

This value is consistent with observational valuej ≃ 2.16 obtained from the combination of three
kinematical data sets: the gold sample of SNe Ia (Riess et al.2004), the SNe Ia data from the SN
Legacy Survey (SNLS) project (Astier et al. 2006), and the X-ray galaxy cluster distance measure-
ments (Rapetti et al. 2007) fort = 1.50.

7 STABILITY OF THE CORRESPONDING SOLUTIONS

The method to study the stability of the background solutionwith respect to perturbations of the
metric was already given in Section5. From Equations (45)−(47), we can easily derive

δb̈i +
V̇B

VB

δḃi = 0, (71)

whereVB is the background volume scale factor. In our case,VB is given by

VB = t6. (72)

Using the above expression in Equation (71), after integration we get

δbi = cit
−5, (73)

whereci is a constant of integration. Therefore, the “actual” fluctuations for each expansion factor
δai = aBiδbi are given by

δai → cit
−3, (74)

whereaBi → t2. From the above equation it is obvious thatδai approaches zero ast → ∞.
Consequently, the background solution is stable against the perturbation of the graviton field.
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8 CONCLUDING REMARKS

A new class of anisotropic B-VI0 DE models with a variable EoS parameterω has been investigated
by using a time-dependent DP. In the literature, it is commonto use a constant DP. Now, for a
universe which was decelerating in the past and is accelerating during the present epoch, the DP
must show signature flipping, as discussed in Section2. Therefore our consideration of defining DP
as variable is physically justified.

The main features of the models are as follows:

– DE models present the dynamics of the EoS parameterω provided by Equations (35) and (55)
whose range is in good agreement with the acceptable range bythe recent observations (Knop
et al. 2003; Tegmark et al. 2004b; Hinshaw et al. 2009; Komatsu et al. 2009).

– It can be easily seen that in both DE models, the mean anisotropic parameter vanishes atm = 1.
Thus, both our anisotropic models approach isotropy atm = 1.

– We obtain a cosmological constant dominated universe, a quintessence and phantom fluid dom-
inated universe (Chevallier & Polarski 2001), representing the different phases of the universe
throughout the evolution process for different cosmic times. These fits suggest thatω > −1 for
a long (quintessence-like) period in the past, and at the same time they suggest that the universe
has just entered a phantom phaseω < −1 near our present era.

– Unlike the Robertson-Walker (RW) metric, Bianchi type metrics can admit a DE that has an
anisotropic EoS parameter according to the characteristics. Therefore, one cannot rule out the
possibility of the anisotropic nature of DE in the frameworkof B-VI0 space-time.

– In the first case, the observed isotropy of the universe can be achieved in a model that incorpo-
rates a cosmological constant (see, Fig. 2) whereas in the second case, the observed isotropy of
the universe can be achieved in a phantom model (see, Fig. 6).Thus, Bianchi type VIpreferable
in terms of academical interest.

– Our DE models are of great importance in the sense that the nature of decaying vacuum energy
densityΛ(t) is supported by recent cosmological observations (Perlmutter et al. 1998, 1999;
Riess et al. 1998, 2004; Tonry et al. 2003).

– Though there are many candidates, such as the cosmologicalconstant, vacuum energy, the scalar
field, the brane world model, cosmological nuclear-energy,etc., as reported in the vast literature
for DE, the proposed models in this paper favor the EoS parameter as a possible suspect for DE.

– The cosmic jerk parameter in our derived models is also found to be in good agreement with
the recent data from astrophysical observations, namely the gold sample of SNe Ia (Riess et al.
2004), the SN Ia data from the SNLS project (Astier et al. 2006), and distance measurements of
the X-ray gas in galaxy clusters (Rapetti et al. 2007).

– For a different choice ofn, we can generate a class of DE models in Bianchi type VI0 space-
time. It is observed that such DE models are also in good harmony with current observations.
Our study is continuing and we shall generate some other interesting physically viable models
for other values ofn.

– Our corresponding solutions have an inflationary scenarioat the early stages of the universe and
also a radiation/matter era before the DE era.

– Our corresponding solutions are physically acceptable and the solutions are stable.

Thus, the solutions demonstrated in this paper may be usefulfor better understanding the charac-
teristics of anisotropic DE in the evolution of the universewithin the framework of Bianchi type VI0
space-time.
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Abramo, L. R., Sodré, L., Jr., & Wuensche, C. A. 2006, Phys. Rev. D, 74, 083515
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Akarsu,Ö., & Kılınç, C. B. 2010c, Ap&SS, 326, 315
Allen, S. W., Schmidt, R. W., Ebeling, H., Fabian, A. C., & vanSpeybroeck, L. 2004, MNRAS, 353, 457
Amendola, L. 2003, MNRAS, 342, 221
Amirhashchi, H., Pradhan, A., & Zainuddin, H. 2011a, International Journal of Theoretical Physics, 50, 3529
Amirhashchi, H., Pradhan, A., & Saha, B. 2011b, Chinese Physics Letters, 28, 039801
Amirhashchi, H., Pradhan, A., & Saha, B. 2011c, Ap&SS, 333, 295
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