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Abstract Motivated by the increasing evidence for the need of a gegntieat re-
sembles Bianchi morphology to explain the observed armupgtin the WMAP data,
we have discussed some features of Bianchi typgWiiverses in the presence of a
fluid that has an anisotropic equation of state (EoS) pamamegeneral relativity. We
present two accelerating dark energy (DE) models with asoair@ipic fluid in Bianchi
type VI, space-time. To ensure a deterministic solution, we chdusedale factor
a(t) = Vt"et, which yields a time-dependent deceleration parametgresenting a
class of models which generate a transition of the univecse the early decelerating
phase to the recent accelerating phase. Under suitablé@iomscthe anisotropic mod-
els approach an isotropic scenario. The EoS forddig found to be time-dependent
and its existing range for derived models is in good agre¢méh data from recent
observations of type la supernovae (SNe la) (Knop et al. g0®¥e la data com-
bined with cosmic microwave background (CMB) anisotropy galaxy clustering
statistics (Tegmark et al. 2004a), as well as the latest guatibn of cosmological
datasets coming from CMB anisotropies, luminosity distsaf high redshift SNe la
and galaxy clustering. For different valuesrgfwe can generate a class of physically
viable DE models. The cosmological constanis found to be a positive decreasing
function of time and it approaches a small positive valuate time (i.e. the present
epoch), which is corroborated by results from recent SN keokations. We also ob-
serve that our solutions are stable. The physical and gemmaspects of both models
are also discussed in detail.
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1 INTRODUCTION

Recent cosmological observations obtained by type la sopae (SNe la) (Riess et al. 1998;
Perimutter et al. 1999) suggested that the expansion ofrtivense is accelerating. Recent observa-
tions of SNe la with a high level of confidence (Tonry et al. 20Riess et al. 2004; Clocchiatti et al.
2006) have further confirmed this. In addition, measuremehthe cosmic microwave background
(CMB) anisotropies (Bennett et al. 2003; de Bernardis e2@00; Hanany et al. 2000), large scale
structure (Tegmark et al. 2004a,b; Spergel et al. 20035 kban Digital Sky Survey (SDSS) (Seljak
et al. 2005; Adelman-McCarthy et al. 2006), the Wilkinsorchdivave Anisotropy ProbeNMAP)
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(Knop et al. 2003) and the Chandra X-ray Observatory (Alleale2004) strongly indicate that
our universe is dominated by a component with negative presdubbed dark energy (DE), which
constitutes~ 3/4 of the critical density. The cosmic acceleration arisesifriegative pressure and
positive energy density that violate the strong energy itamd This violation gives a reverse gravi-
tational effect. Due to this effect, the universe experésrac“cosmic jerk” and the transition from the
earlier deceleration phase to the more recent accelernaliase takes place (Caldwell et al. 2006).
A recent survey of more tha200 000 galaxies appears to confirm the existence of DE, although the
exact physics behind it remains unknown (Rincon 2011).

During the last two decades, cosmology has quickly beconmexparimental part of physics.
The theoretical models can be tested, and new and more &data in the near future will constrain
our models of the universe to within an accuracy of a few p&rcEhe simplest candidate for DE
is the cosmological constant (Overduin & Cooperstock 1&8ni & Starobinsky 2000; Komatsu
et al. 2009; Kachru et al. 2003), which suffers from concapjpuoblems such as fine-tuning and
coincidence issues (Weinberg 1989). Other scenariosdecuintessence (Wetterich 1988; Ratra &
Peebles 1988), chameleon (Khoury & Weltman 2004), the kress(Chiba et al. 2000; Armendariz-
Picon et al. 2000), which is based on earlier work of K-inflat{Armendariz-Picén et al. 1999),
modified gravity (Capozziello & Fang 2002; Carroll et al. 20MWojiri & Odintsov 2003, 2004;
Abdalla et al. 2005; Rami EI-Nabulsi 2011a), tachyons (Paambhan 2002) arising in string theory
(Sen 2002), quintessential inflation (Peebles & Vilenki@9p Chaplygin gas as well as generalized
Chaplygin gas (Srivastava 2005; Bertolami et al. 2004; 8entl. 2002; Bilic et al. 2002; Avelino
et al. 2003), and cosmological nuclear energy (Gupta & Rrad®10). Recently, Rami EI-Nabulsi
(2011b), Feng & Yang (2011), Biesiada et al. (2011), Singhl&aabey (2012), Amirhashchi et al.
(2011a) and Pradhan et al. (2011a) have studied DE modelfenedit contexts. In spite of these
attempts, cosmic acceleration is still a challenge in modesmology and astrophysics.

In general relativity, the evolution of the expansion ratgarameterized by the cosmological
equation of state (EoS, the relationship between tempergbuessure, combined matter, energy,
and vacuum energy density for any region of space). MeagthiEoS for DE is one of the biggest
efforts in observational cosmology today. The DE model heenbcharacterized in a conventional
manner by the EoS parameteft) = %, which is not necessarily constant, wheres the energy
density and is the fluid pressure (Carroll et al. 2003). The present de¢ansto slightly favor an
evolving DE with EoSv < —1 around the present epoch and> —1 in the recent past. Obviously,
w cannot cross-1 for quintessence or phantoms alone. Some efforts have bedea to build a
DE model whose EoS can cross the phantom divide. The simpEstandidate is vacuum energy
(w = —1), which is mathematically equivalent to the cosmologiaahstant (\). The other con-
ventional alternatives, which can be described by miniynadlupled scalar fields, are quintessence
(w > —1) (Steinhardt & Wesley 2009), phantom enefgy< —1) (Caldwell 2002), and quintoms
(that can cross from a phantom region to a quintessencerregidhey evolve) and have a time-
dependent EoS parameter. Some other limits, obtained flmsareational results that come from
SNe la data (Knop et al. 2003) and a combination of SNe la date@WMB anisotropy and galaxy
clustering statistics (Tegmark et al. 20044a,b),ale67 < w < —0.62 and—1.33 < w < —0.79,
respectively. The latest results in 2009, obtained afterabmbination of cosmological datasets
coming from CMB anisotropies, luminosity distances of higtishift SNe la, and galaxy clustering,
constrain the DE EoS te-1.44 < w < —0.92 at the68% confidence level (Hinshaw et al. 2009;
Komatsu et al. 2009). However, it is not at all obligatory s constant value af. Due to a lack
of observational evidence in making a distinction betwemmstant and variable, usually the EoS
parameter is considered as a constant (Kujat et al. 2002 IB&mn et al. 2005; Yadav 2011) with
phase wise values1, 0, —% and+1 for a universe dominated by vacuum fluid, dust fluid, radratio
and a stiff universe, respectively. However, in generais a function of time, redshift or scale
factora as well (Ratra & Peebles 1988; Jimenez 2003; Das et al. 2008hrlier studies, various
forms of time dependent have been used for variablemodels by Mukhopadhyay et al. (2008).
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Recently, DE models with a variable EoS parameter have liedied by Ray et al. (2011), Akarsu
& Kiling (2010a,b), Yadav et al. (2011), Yadav & Yadav (2Q01Rradhan et al. (2011a), Pradhan
et al. (2011b), Amirhashchi et al. (2011a,b) and Saha & Y4@812). In well-known reviews on
modified gravity (Nojiri & Odintsov 2007, 2011), it is clegrindicated that any modified gravity
may be represented as effective fluid with time dependeitthe DE universe’s EoS with an inho-
mogeneous, Hubble parameter dependent term is considgrddjini & Odintsov (2005). Later,
Nojiri & Odintsov (2006) also presented the late-time cokgal consequences of DE with a
time-dependent periodic EoS in an oscillating universe.

Today there is considerable evidence suggesting that flierse may be isotropic and homoge-
neous. After the discovery of CMB radiation, cosmology leea precise science. CMB radiation
is also considered to be the major experimental evidencelachvthe most commonly accepted
theory about the origin of the universe, i.e. “Big-Bang” cudogy, is based. Statistical Isotropy (Sl)
is usually assumed in almost all CMB studies. However, nbete exist many indications which
suggest that CMB may violate this assumption. Apart from Cilli& e are some other indications of
violation of SI which suggest the existence of a preferreéladion in the universe. These indications
include distributions of polarizations from radio galaxi@irch 1982; Jain & Ralston 1999; Jain
et al. 2004) and statistics of optical polarizations fronasars (Hutsemekers 1998; Hutsemékers &
Lamy 2001; Jain et al. 2004; Ralston & Jain 2004). The pcoddian of electromagnetic waves com-
ing from distant radio galaxies and quasars measured at aadi optical frequencies, respectively,
are not consistent with the assumptions of Sl; rather radlarjzations are organized coherently
over the dome of the sky and optical polarizations are atignea preferential direction on very
large scales, violating the assumed isotropy of the unévérsese studies confirmed the strong sig-
nificance of anisotropy and also claimed that the statigtiesnot consistent with isotropy at the
99.9% confidence level. It has also been observed that the quaérapd the octopole have almost
all their power perpendicular to a common axis in space pajiiowards the Virgo cluster (Tegmark
et al. 2003; de Oliveira-Costa & Tegmark 2006). The dipolkicl is commonly attributed to our
motion relative to the CMB rest frame, also aligns in the sainection as the quadrupole and the
octopole, which is not expected under the condition of sfiail isotropy. Another indication of
anisotropy in CMB data is the presence of a cold spot with goraimably low temperature. It was
found by Cruz et al. (2005) by using spherical Mexican hateletanalysis oRVMMAP data. Several
authors have also searched for anisotropy using the SNédaela Jain et al. (2007) found violation
of isotropy in this data. Subsequently, there have beenge laumber of studies (Bielewicz et al.
2004; Eriksen et al. 2004; Katz & Weeks 2004, Bielewicz e2805; Prunet et al. 2005; Bernui et al.
2006; de Oliveira-Costa & Tegmark 2006; Freeman et al. 2B@6&ui et al. 2007; Land & Magueijo
2007) which claim the CMB is not consistent with isotropyeglgossible violation of Sl in the CMB
has led to many theoretical studies. Several physical eafitlans for the observed anisotropy have
been put forward (Cline et al. 2003; Contaldi et al. 2003;d&sset al. 2003; Armendariz-Picon
2004; Berera et al. 2004; Gordon et al. 2005; Abramo et al620@mpanelli et al. 2007; Rodrigues
2008). Land & Magueijo (2005) found evidence that the detgeinisotropy has positive mirror par-
ity. The generation and evolution of primordial perturbas in an anisotropic universe have also
been studied (Armendariz-Picon 2006; Battye & Moss 2006eiPe et al. 2007) along with the
possibility of anisotropic inflation (Hunt & Sarkar 2004; By et al. 2006; Donoghue et al. 2009).

The possible violation of global isotropy in the CMB has baeubject of intense research after
the publication ofMMAP data. The possible alignment of axes corresponding to akdigerse data
sets in the direction of the Virgo cluster makes this extrigrimteresting. In recent years, there have
been alarge number of studies, which claim that the CMB teaipee fluctuations are not consistent
with statistical isotropy and thus question the cosmolalgicinciple. The CMB is considered to be
major experimental evidence supporting the current/mtes®dels of the observed universe and,
from these CMB observations, several people have foundfisignt anisotropic scenarios. Based on
these studies one may not preclude the possibility that oetse is anisotropic.
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There is general agreement among cosmologists that CMBtamyiy on the small angle scale
holds the key to the formation of discrete structure. Thetégcal argument (Misner 1968) and
modern experimental data support the existence of an aosophase, which turns into an isotropic
one. The anisotropy of DE within the framework of Bianchigygpace-times is found to be useful in
generating arbitrary ellipsoidality of the universe, aadihe tune the observed CMB anisotropies.
Koivisto & Mota (2008a,b) have investigated cosmologicaldals with the anisotropic EoS and
have also shown that the present SNe la data allow largeteopgo Recently, Akarsu & Kiling
(2010c) have described some features of the Bianchi typaérses in the presence of fluid that has
an anisotropic EoS. Hence, for a realistic cosmological@hode should consider spatially homo-
geneous and anisotropic space-times and then show whiedlyezdn evolve to the observed amount
of homogeneity and isotropy. The only spatially homogeisgmut anisotropic models other than
Bianchi-type models are the Kantowski-Sachs locally symicamily. See Ellis & van Elst (1999)
for generalized, particularly anisotropic, cosmologitaldels and Ellis (2006) for a concise review
on Bianchi type models. The motivation for this investigatcomes from the hints of statistical
anisotropy in our universe that several observations seemggest.

Bianchi type V|, (B-Vl) space-time, in connection with massive strings, is stliliePradhan
& Bali (2008) and Bali et al. (2008). Belinchon (2009) stediseveral cosmological models with
B-VI & Il symmetries under the self similar approach. Given thewgng interest of cosmologists,
here, we propose to study the evolution of the universe withe framework of a B-\{J space-
time. Recently, Amirhashchi et al. (2011c) and Pradhan.gf28l12) presented DE models in an
anisotropic B-V}, space-time by considering constant and variable decElarptirameters (DPs)
respectively. In this paper, we have investigated two neWl B-DE models with variables by
assuming different scale factors in such a way that theyigecavtime dependent DP in the presence
of anisotropic fluid. The outline of the paper is as follows:Section2, the metric and the field
equations are described. Sectibdeals with the solutions of the field equations. Sectiarovers
physical and geometric behavior of the model. Secliaddresses the stability of the corresponding
solutions. In Sectiofi, we describe another DE model and its physical aspects chin®&, we again
examine the stability of corresponding solutions for theosel DE model. Finally, conclusions are
summarized in Sectiod

2 THE METRIC AND FIELD EQUATIONS

We consider a totally anisotropic Bianchi typeMline element, given by
ds® = —dt* + A%da® + B*e* dy” + C%e™ 7 d2?, (1)

where the metric potentiald, B andC are functions oft alone. This ensures that the model is
spatially homogeneous.

The simplest generalization of the EoS parameter of pefliegdtmay be to determine the EoS
parameter separately along each spatial axis by presehendjagonal form of the energy momen-
tum tensor in a consistent way with the considered metrier&fore, the energy momentum tensor
of fluid can be written, most generally, in an anisotropiqgdiaal form as follows

71‘7 = dlag [TOO, T117 T227 T33] . (2)

Allowing for anisotropy in the pressure of the fluid, and thosts EoS parameter, gives rise to
new possibilities for the evolution of the energy sources@&e this, we first parametrize the energy
momentum tensor given in (2) as follows:

1sz = dlag[p, —Pz; =Py, _pz]
= diag[l, ~wgz, —wy, —w:]p
= diag[l, —w, —(w + ), —(w + 7)]p- )
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Herep is the proper energy density,,p, andp. are the pressures, and,w, andw, are the

directional EoS parameters along they and z axes, respectivelyy is the deviation-free EoS

parameter of the fluid. The deviation from isotropy is paraimed by settingv, = w and then

introducing skewness parametérand~ which are the deviations from, respectively along the

andz axesw, 6 and~ are not necessarily constants and might be functions ofabmic timet.
Einstein’s field equations (with gravitational unigs;G = 1 ande = 1) read as

1 .
Rl ~ SRl =T/, @

where the symbols have their usual meaning. In a comovingrdimate system, Einstein’s field
equation (4), with (3) for the B-\{l metric (1) subsequently leads to the following system ofaequ
tions:

B ¢ BC 1
preteotaE T e ®)
C A CA 1
ctatea = "Wt (6)
A B AB 1
1 E*‘@‘ﬁ:—@)*'ﬂpv (7)
Ai BC CA 1 o
AB " BC TCA a2~
¢ B

Here and in what follows, an overhead dot denotes ordindigrdntiation with respect te

The spatial volume for the model (1) is given by
V3 = ABC. (10)
We definea = (ABC)% as the average scale factor so that Hubble’s parametersstespic and
may be defined as
a 1(A B C

The DPg, the scalar expansiah the shear scalar?, and the average anisotropy parametgy are
defined by

¢ = -2 (12)
a
A B C
9—Z+E+6, (13)
1(< 1
2 1 2 _ 1p2
o2 = 2(;5{1 39), (14)
3 2
1 AH;
an =33 (57) (15

whereAH; = H, — H(i = z,y, 2).
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3 SOLUTIONS OF THE FIELD EQUATIONS

Integrating Equation (9), we obtain
C =B, (16)

where/ is a constant of integration. Now if we put the value of Equa{i16) in (7) and subtract the
result from Equation (6), we obtain that the skewness pateimialong the; andz axes are equal,
i.e.d =1.

Therefore, Equations (5)—(9) are reduced to

B B> 1
2E+§+F = —wp, 17
A B AB 1
1T tag = Wt (18)
AB B> 1

The field Equations (17)—(19) are a system of three lineadgpendent equations with five unknown
parametersi, B, w, p and~. Two additional constraints relating these parameterseqgeired to
obtain explicit solutions of the system.

In literature, it is common to use a constant DP (Akarsu &nGI2010a,b; Amirhashchi et al.
2011c; Pradhan et al. 2011b; Kumar & Yadav 2011; Yadav 2044l ), duly gives a power law for
the metric function or corresponding quantity. The motvato choose such a time dependent DP
is behind the fact that the universe shows accelerated sigraat present as observed in recent
observations of SNe la (Riess et al. 1998; Perlmutter et®9;1 Tonry et al. 2003; Riess et al.
2004; Clocchiatti et al. 2006) and CMB anisotropies (Beheeal. 2003; de Bernardis et al. 2000;
Hanany et al. 2000), but there was decelerated expansidreipast. Also, the transition redshift
from decelerated expansion to accelerated expansion igt &% Now for a universe which was
decelerating in the past and is accelerating at the preisemtthe DP must show signature flipping
(see the Refs. Padmanabhan & Choudhury 2003; Amendola R et al. 2001). So, in general,
the DP is not a constant but rather is variable in time. Thisivates us to choose a scale factor
which yields a time-dependent DP. At this juncture, it skicug stated that some authors first choose
the scale factors as a power law, exponential or in anothier,fand then calculate other variables
with some conditions under these solutions.

In this paper, following Saha et al. (2012) and Pradhan & Awashchi (2011), we take the
following ansatz for the scale factor, where the increase in the term of tinoduéion is

a(t) = Vinet, (20)

wheren is a positive constant. Saha et al. (2012) and Pradhan & Asslithi (2011) examined the
relation (20) when studying a two-fluid scenario for DE madelan FRW universe and accelerating
DE models in Bianchi type V space-times, respectively. Hmsatz generalized the one proposed
by Amirhashchi et al. (2011b). If we put= 0 in Equation (20), it is reduced @(t) = V¢, i.e. an
exponential law of variation for the scale factor. This a®oof scale factor yields a time-dependent
DP (see Eq. (30)) such that before the DE era, the correspgsdiution gives the inflation and
radiation/matter dominated era, with subsequent tramsftom deceleration to acceleration. Thus,
our choice of scale factor is physically acceptable.

It is worth mentioning here that one can also select manyrahsatzes than Equation (20)
which mimic an accelerating universe. However, one sholdd lae careful to check the physical
acceptability and stability of their corresponding salas, otherwise they do not prove any relation
of such solutions with the observable universe. Equatioh ylds physically plausible solutions.
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Secondly, we assume that the expansi®nig proportional to shearo{). This condition and
Equation (16) lead to

1 (A B A B

(=2 = —4+2= 21

H(G-5)-w(5p) @)
which yields

A B
wherem = 21(’_0(17\/5%1 andqg are arbitrary constants. The above equation, after intiegraeduces
to ’
A=p(B)", (23)

where 3 is a constant of integration. Here, for simplicity and with@ny loss of generality, we
assume? = 1. Hence we have
A= (B)™. (24)

Collins et al. (1980) have pointed out that for a spatiallynogeneous metric, the normal congruence
with the homogeneous expansion satisfies the conditiorfitietonstant.

Using Equations (16), (20) and (24) in (11), we obtain theregpions for metric functions as
follows

B(t) = £y (t"e") T, (25)
C(t) = La(tmet) =, (26)
A(t) = l5(tmet) T, 27)

wherely = k~ ) , Lo = 0y, ¢35 = (7" andk is a constant of integration.
Hence the model (1) reduces to

ds? = —dt? + (") T da? + (1" )T dy? + (1" et) T d22. (28)
4 PHYSICAL ASPECTS OF THE DARK ENERGY MODEL

The expressions for the Hubble parameféj,(scalar of expansiord}, shear scalars), the spatial
volume (), and the average anisotropy parametgy, ] for the model (28) are given by

3 n
9:3H:§(1+?), (29)
2n
q = m -1, (30)
3/m-1 2 n\ 2
=3 <m—+2> (1+3) 3D
Vo= (t"e)3, (32)
m—1 2
Ay = 2 (m—+2) . (33)

From Equations (29)(33), it is observed that @ = 0, the spatial volume vanishes and the other
parameterd], o andH, diverge. Hence the model starts with a big bang singulatity= 0. This is
a point type singularity (MacCallum 1971) since directiswale factorA(¢), B(t) andC(t) vanish

at the initial time. Sinceg—z # 0 except form = 1, the model is anisotropic for all values of
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except form # 1. The dynamics of the mean anisotropy parameter depend orathe ofm. We
observe that whem = 1, A,, = 0 (i.e. the case of isotropy). Thus, the observed isotropyef t
model can be achieved in the region of a cosmological cohi&as Fig. 2).

The energy density of the fluid can be found by using Equaii@ssand (27) in (19)

9 /2m+1 n\ 2 _ _3m _
= 14+ =) —flo(thel)" D 34
o 4<m+2>(+t) oftnet) T, (34)

wherely = 715 Using Equations (25), (27) and (34) in (17), the EoS parameis obtained as
3

n\2 n n —am

_ 1z 13— G +lo(tne!) T

- _ _3m 2
foltme) T 4§ (2 ) (14 %)

(35)

Using Equations (25), (27), (34) and (35) in (18), the skessrgarameters (or ) (i.e. deviations
from w along they andz axes) are computed as

b= = H(5m) {(1+%)2_%}_2£0(t"et)7(£—%). -

__3m m n 2
foltnet) T~ § (2) (14 %)

From Equation (35), it is observed that the EoS parameisrtime dependent, and it can also be a
function of redshift: or scale factor. (as already discussed in Setk.

So, if the present work is compared with experimental regilhop et al. 2003; Tegmark et al.
2004b; Hinshaw et al. 2009; Komatsu et al. 2009), then onecacdlude that the limit af provided
by Equation (35) may accommodate the acceptable range &dBearameter. Also it is observed
that att = t., w vanishes, where. is a critical time given by the following relation

LB CURA N @)
mror L) Ty e '
Thus, for this particular time, our model represents a dustyerse. We also note that at the earlier
time, whent < t. andw > 0, the universe was dominated by real matter, but latér:att., and
w < 0, the phase dominated by DE begins.

From Equation (34), we note that energy density of the fh(ij is a decreasing function of

time andp > 0 when
n\ 2 £y 3m 400  m+2
— n (m+2) > —— .
(1+t) (te) e = 5 (2m—|—1) (38)

Figure 1 is the plot of energy density for the flujg ¢ersus time in the accelerating mode of the
universe. Here we observe thats a positive decreasing function of time and it approaclkees as
t — 00.

Figure 2 depicts the variation of E0S paramet&r\ersus cosmic timet) in the evolution of
the universe, as a representative case with an approphiaiteecof constants of integration and other
physical parameters using reasonably well known situatiparameters are given in the Figure
caption). Form = 1, we obtain the isotropic model that is studied here as a septative case.
From Figure 2, we observed that at the initial time there isiatgssence. > —1) region and at a
late time it approaches the cosmological constant(—1) scenario. This is a situation in the early
universe where a quintessence dominated universe (Calgd@@2) may be playing an important
role for the EoS parameter. Sinceapproaches-1 for sufficiently large time, its value is consistent
with the range of all the three observations (Knop et al. 20@8mark et al. 2004b; Hinshaw et al.
2009; Komatsu et al. 2009).
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n=05
=1
—— n=2

Fig.1 The plot of energy densipyversust. Here
lo =0.1andm = 1.

Fig. 2 The plot of EoS parameter versust. Here
o =0.1andm = 1.

Inthe absence of any curvature, matter energy defisitand DES2, are related by the equation

Q + Qp =1, (39)
wheref?,,, = 3% andQy = 3H2 Thus, Equation (39) reduces to
P A
3H2+3H2 =1 (40)
Using Equations (29) and (34) in (40), the cosmological tamtss obtained as
3 5m + 1 n 2 ty— 3m__
= —= — n (m+2)
A 4<m+2)(1+t) + () . (41)
From Equation (41), we observe thiais a decreasing function of time and is always positive when
4y (( m+2
net) i .
(1+3) wereten < 2 (555) “2

In general relativity, the Bianchi identities for EinstsiriensorG;; and the vanishing covariant
divergence of the energy momentum terisgrtogether imply that the cosmological tetinis con-
stant. In theories with a variable-term, one either introduces new terms (involving scalddgie
for instance) in the left hand side of the Einstein field etunatto cancel the non-zero divergence
of Ag;; (Bergmann 1968; Wagoner 1970) or interpieas a matter source and move it to the right
hand side of the field equations (Zel'dovich 1968), in whiek&energy momentum conservation is
understood to medﬁ’*” = 0, whereT}; = T}; — (A/87TG)gw It is here that the first assumption
that leads to the cosmolog|cal constant problem is madetht the vacuum has a non-zero energy
density. If such a vacuum energy density exists, Lorentariamnce requires that it have the form
(T,1) = —(p) g, This allows the definition of an effective cosmological smt and a total effec-
tive vacuum energy density.s = A+ 87G{p) or pvac = (p) + A/87wG. Note at this point that only
the effective cosmological constant,g, is observable, nak, so the latter quantity may be referred
to as ‘bare.’ The two approaches are of course equivalera fven theory (Vishwakarma 2000).
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Fig. 3 The plot of cosmological constantversus Fig. 4 The plot of DPq versust.
t. Heredyp = 0.1 andm = 1.

For detailed discussions, readers are advised to see éremeés (Carroll et al. 1992; Abdussattar &
Vishwakarma 1996; Peebles & Ratra 2003; Sahni & Starobi@éky; Padmanabhan 2003, 2008).

Figure 3 is the plot of cosmological constanversus time. We observe that the cosmological
parameter is a decreasing function of time and it approa&isesall positive value at late time (i.e.
at the present epoch). Recent cosmological observatiaiB(tter et al. 1998, 1999; Riess et al.
1998, 2004; Tonry et al. 2003) suggest the existence of aiy@sbsmological constamt with the
magnitudeA (Gh/c?) ~ 107123, These observations of magnitude and redshift in SNe laesigg
that our universe may be accelerating with induced cosnidbdensity through the cosmological
A-term. Thus, the nature df in our derived DE model is supported by recent observations.

Figure 4 is the plot of DRy versus time. From Figure 4, it is observed thatdecreases very
rapidly and reaches valuesl, then afterwards it remains constantat (like a de Sitter universe).
From this figure, we observe that the DE model,Gox n < 1.5, evolves from the matter dom-
inated era to a quintessence era and ultimately approacbensmological constant era, whereas
forn > 1.5, the universe evolves from the quintessence to the cosiicalagpnstant era. It is worth
mentioning here that for < 1.5, transition of the universe takes place from the early dgaéhg

phase to the recent accelerating phase, whereasXot .5, the expansion of the universe is always
accelerating.

From these analyses, we conclude that it is the choice oé daator that makes the model
inflationary at the early stages of the universe and a radiatiatter dominated phase before the
DE era. From Equation (29), we observe that when 0, the expansion scalé@rbecomes infinity,
which indicates the inflationary scenario. Also from Figdrave observe that befotex~ 1, ¢ > 0
and this indicates the radiation/matter dominated era@iithiverse. However, aftér~ 1, ¢ < 0
which indicates the DE dominated era. The solution in ourehistable at any given epoch for the
choice of theansatz (20). Hence our derived model is physically acceptable.

The CMB is also considered to be major experimental evidsnpgorting the present mod-
els of the observed universe and from CMB observations aksgeientists found the signature of
anisotropy. Based on these studies and observations, op@ahareclude the possibility that our
universe is anisotropic. We have already discussed thisasicein the Introduction.
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5 STABILITY OF THE CORRESPONDING SOLUTIONS

A rigorous analysis on the stability of the correspondinlgisons can be done by invoking a per-

turbative approach. Perturbations of the fields in a grawital system against the background evo-
lutionary solution should be checked to ensure the stglufithe exact or approximate background
solution (Chen & Kao 2001). Now we will study the stabilitytbe background solution with respect

to perturbations of the metric. Perturbations will be cdesid for all three expansion factarsvia

a; — ap; + 5ai = aBl-(l =+ 51)1) (43)

We will focus on the variablesb; instead oféa; from now on for convenience. Therefore, the
perturbations of the volume scale factgs = II3_; a;, directional Hubble factorg; = Z— and the
mean Hubble factaf = 37, & = % can be shown to be
1
V—>VB+VB;5bi, 01-—>931-+;6bi, 9—>93+§;6bi. (44)

One can show that the metric perturbatiobg to the linear order indb;, obey the following equa-
tions

> 6bi+2> 0pidb; =0, (45)
6b; + @56-+Z56-9 ;=0 (46)

i VB i - jVBi — Y,
> b =0. (47)

From the above three equations, we can easily find
. Ve .
ob; + —Bébi =0, (48)
Vs
whereVj is the background volume scale factor. In our cageijs given by
Vp = t3"eit (49)

using the above equation in Equation (6) and after integmatie get

: : . 1
ob; = cit*E"e*Et WittakerM (—%n, —gn + 3 gt) , (50)

wherec; is a constant of integration. Therefore, the “actual” flattons for each expansion factor
da; = ap;0b; are given by

_n ot 3 3 13
da; — c;t” 1e” 1 WittakerM (—Zn, 1" + o 515) . (51)

From the above equation we see thatiioe- 1, da,; approaches zero. Consequently, the background
solution is stable against the perturbation of the gramiteld.
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6 OTHER DARK ENERGY MODELS

Now we take the followingnsatz for the scale factor, where the increase in terms of timeugiani is

a(t) = —% +t2. (52)

The above choice of scale factor yields a time dependent DRtecorresponding solutions are
stable. The motivations for selecting such a type of scaltofa for finding solutions were already
described in SectioB. We define the DR as usual

aa a

=@ T am 3)
Using (52) in (53), we find
B-1)\
=-2(——1 . 54
1 <2t3 ¥ 1> (®4)
Using Equations (16), (24) and (52) in (11), we obtain thereggions for metric functions as follows
| N
B(t) =44 (_E + t2> : (55)
()
C(t) = ts (—% + t2) : (56)
1 =)
A(t) = lg (—; + t2> , (57)

wherel, =1~ () , Us = ULy, Lg = L7 andl is a constant of integration.
Hence the model (1) reduces to

6m 6
1 (m+2) 1 (m+2)
ds? = —dt* + (2 (—; + t2) da® + 03 (—; + t2> dy*

6
1 (==
+ £2 <—¥ + t2) dz?. (58)

The expressions for the Hubble parametah),(scalar of expansiord), shear scalarq(), spatial
volume (/) and the average anisotropy parametgy, § for the model (58) are given by

3 /2341
o - =3 () (59)
s m—1\ 23 +1)]°
7= 3[<m+2> (t3—1)t} ’ (60)
3
V= (—%th?) : (61)
m—1 2

From Equation (59), we observe that when 0, § — oo and this indicates the inflationary scenario
at early stages of the universe. Sin‘ge # 0 for all values ofm except form = 1, the model is
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anisotropic except fom = 1. The dynamics of the mean anisotropy parameter depend ol
of m. The mean anisotropic parameter is constant. We obsera¢dvtienm = —2, A,, — oo
and form = 1, A,, = 0. Thus, the observed isotropy of the universe can be achieveghantom
model (see Fig. 6).

The energy density of the fluid can be found by using Equai{dssand (57) in (19)

6m
9(2m +1) (263 +1)? 1 L\
= —ly| —— +t 63

mr22 @1 O\T7 " ’ (63)

wherely = giz Using Equations (55), (57) and (63) in (17), the EoS paremets obtained as

PR )l it Vi A ) M i Vil

__6m m 3 5
éo (—% + t2) (m+2) + 9((314»_2*_)12) ((t23t,1_)12)t2

3 2 6 3_ __6m
27 (2t°4+1) 6 (2t°+8t 1)+g0 (—%—i—t?) (m+2)

(64)

Using Equations (55), (57), (63) and (64) in (18), the skessrgarameters (or ) (i.e. deviations
from w along they andz axes) are computed as

m—1 b2t __em__
6 6 (z;%) % - 2£0 (—% + t2) (m+2) (65)
== 6m .
1 ~ mt2) 9(2m41) (2t341)2
fo (_? +t2) - (m+2)2 (3—1)22

So, if the present work is compared with experimental resfdihop et al. 2003; Tegmark et al.
2004b; Hinshaw et al. 2009; Komatsu et al. 2009), then onecaadlude that the limit of> provided
by Equation (64) may be accommodated with an acceptablefanghe EoS parameter. Also, it is
observed that at= t., w vanishes, wherg. is a critical time given by the following relation

6m
27 (263 4+ 1)? 6 (28 +8t3 1) 1\

- - PR bo | —— +t =0. (66
mr2r@E—1p2 (mt2) G- o\t (66)

Thus, for this particular time, our model represents a dusiyerse. We also note that the earlier
baryonic matter dominated phasetat ¢., wherew > 0, is converted to the DE dominated phase
of universe, at time > t., wherew < 0.
From Equation (63), we note that energy density of the fh(ij is a decreasing function of
time andp > 0 when
@F+1? (1, (o o bo(m +2)°
(13 —1)2¢2 < > ~9@2m+1)°

t
Figure 5 shows the variation of energy densjiy\(ersus timeg. Here we observe thatis a positive
decreasing function of time and it approaches zerb-asc.

Figure 6 displays parametes)versus cosmic time) in the evolution of the universe, as a rep-
resentative case with an appropriate choice of constaimsegfration and other physical parameters
using reasonably well known values (parameters are giveheifrigure caption). From Figure 6, we
observe the following:

(67)

(i) for m < 0.5, the evolution of the universe starts from the quintessemae(v > —1) and
approaches a phantom regian€ —1).
(ii) for 1 < m < 2, the universe evolves from a phantom regien< —1), then crosses PDL and
ultimately approaches a quintessence regiop-(—1).
(iii) for 2 < m < 3, the evolution of the universe commences from the phantgiomngw < —1),
crosses PDL and then skips over to a non-dark region.
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(iv) for 3 < m, the evolution of the universe begins from the quintessemmae(v > —1) and
ultimately passes over to a non-dark region.

(v) form =1, we getw = —0.65, which is consistent with SN la datal .67 < w < —0.62 (Knop
etal. 2003).

(vi) for m = 0.5, we getw = —1.1 which is reproducible with the current observational realm
(Knop et al. 2003; Tegmark et al. 2004b; Hinshaw et al. 20@9nHKtsu et al. 2009).

Using Equations (59) and (63) in (40), the cosmological tamss obtained as

A:

3(4m? +10m + 13) (2t3 +1)?
G

1 2 sy -
(m + 2)2 (t3 —1)212 ol > ' (68)

From Equation (68), we observe thatis a decreasing function of time and it is always positive
when

@+ (1, ) o b(m+2?
(13 — 1)212 3(4m2 +10m + 13)°

t
Figure 7 is the plot of cosmological constahtversus timet. It is observed that in all cases the
cosmological parameter is a decreasing function of timeiteagproaches a small positive value at
late time (i.e. at the present epoch). Thus, the naturk iofthis derived DE model is also in good
agreement with recent observations (Perlmutter et al. 19989; Riess et al. 1998, 2004; Tonry
et al. 2003).

Figure 8 is the plot of DR versus time. From the figure we observe that the expansion of the
universe starts from the accelerating phase and the ratepahsion decreases with time but then
stops, and again starts accelerating to appreath, which is very close to the values( —0.7)
predicted by the observations (Riess et al. 2004; Virey.€1G05).

A convenient method to describe models closa {6DM is based on the “cosmic jerk” param-
eterj, a dimensionless third derivative of the scale factor wibpect to the cosmic time (Chiba
& Nakamura 1998; Sahni 2002; Blandford et al. 2005; Vissed£®005). A deceleration-to-
acceleration transition occurs for models with a positigtig of j, and negativey,. Flat A CDM

(69)

700 m=0.5
——-- m=1
N e m=2
6001 il =3
osy
i/
500 it
i
4!
400 \
| :
P ® \
300 | by— T T T T T T -
-154 1)
‘ v
200
100+ 0 (
T T T T T T T
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Fig.5 The plot of energy density versust. Here Fig. 6 The plot of EoS parameter versust. Here
o =0.1. Lo = 0.1.
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100

-0.54

g 17

- 1.5

Fig. 7 The plot of cosmological constant ver- Fig. 8 The plot of DPq versust.
sust. Herely = 0.1.

models have a constant jejk= 1. We obtain the jerk parameter as

2542 27—t -2

i) = (t+1)(1 +t2) (70)

This value is consistent with observational value: 2.16 obtained from the combination of three
kinematical data sets: the gold sample of SNe la (Riess @084), the SNe la data from the SN
Legacy Survey (SNLS) project (Astier et al. 2006), and theaj{-galaxy cluster distance measure-
ments (Rapetti et al. 2007) for= 1.50.

7 STABILITY OF THE CORRESPONDING SOLUTIONS

The method to study the stability of the background solutigtin respect to perturbations of the
metric was already given in SectiGnFrom Equations (45)(47), we can easily derive

6b; + @5@ =0, (71)
Vs

whereVp is the background volume scale factor. In our caseijs given by
Vg = t5. (72)
Using the above expression in Equation (71), after intégnate get
6b; = it °, (73)

wherec; is a constant of integration. Therefore, the “actual” flattons for each expansion factor
da; = ap;6b; are given by
5@1' — Cit_3, (74)

whereap; — t2. From the above equation it is obvious that approaches zero as— oo.
Consequently, the background solution is stable agaiegi¢iturbation of the graviton field.
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8 CONCLUDING REMARKS

A new class of anisotropic B-¥IDE models with a variable EoS parametehas been investigated
by using a time-dependent DP. In the literature, it is comrmonse a constant DP. Now, for a

universe which was decelerating in the past and is accilgrdtring the present epoch, the DP

must show signature flipping, as discussed in Secidrherefore our consideration of defining DP
as variable is physically justified.

The main features of the models are as follows:

— DE models present the dynamics of the EoS paramepepvided by Equations (35) and (55)
whose range is in good agreement with the acceptable rantieelngcent observations (Knop
et al. 2003; Tegmark et al. 2004b; Hinshaw et al. 2009; Kometsl. 2009).

It can be easily seen thatin both DE models, the mean aosofparameter vanishesrat= 1.
Thus, both our anisotropic models approach isotropy at 1.

We obtain a cosmological constant dominated universeiraegpsence and phantom fluid dom-
inated universe (Chevallier & Polarski 2001), represantire different phases of the universe
throughout the evolution process for different cosmic 8nehese fits suggest that> —1 for

a long (quintessence-like) period in the past, and at the dene they suggest that the universe
has just entered a phantom phase —1 near our present era.

Unlike the Robertson-Walker (RW) metric, Bianchi type rest can admit a DE that has an
anisotropic EoS parameter according to the charactevisticerefore, one cannot rule out the
possibility of the anisotropic nature of DE in the framewoflB-VI, space-time.

In the first case, the observed isotropy of the universe earchieved in a model that incorpo-
rates a cosmological constant (see, Fig. 2) whereas in tondease, the observed isotropy of
the universe can be achieved in a phantom model (see, Figh6$, Bianchi type Vipreferable
in terms of academical interest.

Our DE models are of great importance in the sense that theenaf decaying vacuum energy
density A(t) is supported by recent cosmological observations (Petémet al. 1998, 1999;
Riess et al. 1998, 2004; Tonry et al. 2003).

Though there are many candidates, such as the cosmologitsthnt, vacuum energy, the scalar
field, the brane world model, cosmological nuclear-eneatyy, as reported in the vast literature
for DE, the proposed models in this paper favor the EoS paaras a possible suspect for DE.
The cosmic jerk parameter in our derived models is alsoddorbe in good agreement with
the recent data from astrophysical observations, namelgafd sample of SNe la (Riess et al.
2004), the SN la data from the SNLS project (Astier et al. 2086d distance measurements of
the X-ray gas in galaxy clusters (Rapetti et al. 2007).

For a different choice of, we can generate a class of DE models in Bianchi typgsylce-
time. It is observed that such DE models are also in good haymdth current observations.
Our study is continuing and we shall generate some othearistiag physically viable models
for other values ofr.

Our corresponding solutions have an inflationary scerzitioe early stages of the universe and
also a radiation/matter era before the DE era.

— Our corresponding solutions are physically acceptaldelaam solutions are stable.

Thus, the solutions demonstrated in this paper may be usefoetter understanding the charac-

teristics of anisotropic DE in the evolution of the univevgthin the framework of Bianchi type V!
space-time.
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