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Abstract Redshift drift is a tool to directly probe the expansion history of the uni-
verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve-
locity drift and deceleration factor for several cosmological models using observa-
tional H(z) data from the differential ages of galaxies and baryon acoustic oscillation
peaks, luminosity distance of Type Ia supernovae, cosmic microwave background shift
parameter, and baryon acoustic oscillation distance parameter. They can, for the first
time, provide an objective and quantifiable measure of the redshift drift. We find that
reconstructed velocity drift with different peak values and corresponding redshifts can
potentially provide a method to distinguish the quality of competing dark energy mod-
els at low redshifts. Better fitting between models and observational data indicate that
current data are insufficient to distinguish the quality of these models. However, by
comparing with the simulated velocity drift from Liske et al, we find that the Dvali-
Gabadadze-Porrati model is inconsistent with the data at high redshift, which origi-
nally piqued the interest of researchers in the topic of redshift drift. Considering the
deceleration factor, we are able to give a stable instantaneous estimation of a transition
redshift of zt ∼ 0.7 from joint constraints, which incorporates a more complete set of
values than the previous study that used a single data set.
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1 INTRODUCTION

The accelerating expansion of the universe is an extraordinary discovery in modern cosmology that
followed Hubble’s discovery of universal expansion. A number of independent cosmological probes
over the past decade have supported this phenomenon. Examples include observations of Type Ia
supernovae (SNeIa) (Riess et al. 1998), studies of large scale structure (Tegmark et al. 2004), and
measurements of cosmic microwave background (CMB) anisotropy (Spergel et al. 2003). By con-
trast, Einstein’s theory of general relativity suggests that there is a deceleration in the universal
expansion caused by gravitational attraction from matter in the universe. Ironically, the cosmolog-
ical constant, discarded by Einstein in his later years, is generally accepted as a theoretical expla-
nation for this acceleration and has become a pillar of the modern standard cosmological model.
In addition to the cosmological constant, there exist some other models that describe quite exotic
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types of matter, such as quintessence (Peebles & Ratra 1988), K-essence (Armendariz-Picon et al.
2000), tachyon (Padmanabhan & Choudhury 2002), phantom (Caldwell et al. 2003), ghost conden-
sate (Piazza & Tsujikawa 2004) and quintom (Feng et al. 2005). Regretfully, the origins of these
dark energy variants so far have not been revealed within the standard model of (particle) physics.
Instead of introducing a new mass-energy component, a number of new models try to explain the
acceleration by replacing general relativity with a different theory of gravity, called modified gravity
(see Nojiri & Odintsov 2007 for an introduction).

However, observations mentioned above are basically geometric in nature, because we usually
extract the information on the expansion history from the angular diameter distance of the last scat-
tering surface (CMB) and the luminosity distance (SNeIa), which require a prior on spatial curvature
and hence a specific cosmological model (Liske et al. 2008b). Additionally, current probes are lim-
ited in terms of discriminating these dark energy models (Maor et al. 2001). In describing dark
energy, an important parameter which links its pressure p and energy density ρ is the equation of
state (EoS), w(z) ≡ p(z)/ρ(z). For the most competitive candidate of dark energy, the cosmologi-
cal constant, it gives w = −1. However, the latest Planck 2013 results (Planck Collaboration et al.
2013) show a deviation from –1. Moreover, the EoS can also be a function of redshift, such as in
the Chevallier-Polarski-Linder (CPL) model. Hence, Maor et al. (2001) pointed out that a precise
measurement of w today and its time variation w′ ≡ dw/dz|z=0 is appealing for distinguishing
between the two possibilities and to provide important clues about the dynamical properties of dark
energy. A direct and model-independent measure of the cosmic expansion history should clear up
this confusion.

Sandage (1962) proposed a promising survey named redshift drift in order to directly probe the
dynamics of the expansion. However, theoretical calculation indicates that it is difficult to detect
because of its extremely weak magnitude. For example, the redshift drift ∆z within an observa-
tional time interval of 10 yr for a source at this redshift coverage is of the order of only 10−9 in
a standard ΛCDM model. The corresponding velocity drift ∆v is also incompatible since it is only
several cm s−1. Fortunately, a possible scheme was later suggested from the wavelength shift of Lyα
absorption lines in quasars (Loeb 1998). Nevertheless, continuous and extremely stable long term
observations are required. The European Extremely Large Telescope (E-ELT) will be equipped with
a high resolution, extremely stable, ultra high precision spectrograph named the COsmic Dynamics
EXperiment (CODEX) that is designed to be able to measure such a small cosmic signal in the near
future. Simulations that test the performance of this instrument have demonstrated its feasibility.
Based on the power of CODEX, three sets of data (eight points) for the velocity drift were generated
by Monte Carlo simulations of quasar absorption spectra with the assumption of a standard cosmo-
logical model (ΛCDM) (Liske et al. 2008a,b, 2009). Meanwhile, some other groups also produced
similar data from this simulation method to study cosmological models. These corresponding data
have been applied to constrain parameters in holographic dark energy (Zhang et al. 2007), modified
gravity models (Jain & Jhingan 2010) and new agegraphic and Ricci dark energy models (Zhang
et al. 2010), and found a better constraint on these models. In addition, Balbi & Quercellini (2007)
investigated the redshift drift for a lot of dark energy models, and presented a valuable evaluation of
them. An interesting aspect of the redshift drift not only comes from analyzing dark energy models,
but also testing the Copernican Principle (Uzan et al. 2008). Recently, Darling (2012) showed a set
of observational redshift drifts from the precise HI 21 cm absorption line by primarily using digital
data from the Green Bank Telescope. This measurement lasted 13.5 yr for ten objects spanning red-
shift z = 0.09 − 0.69. Results listed in table 1 of Darling (2012) show that redshift drift is of the
order of 10−8 yr−1, which is about three orders of magnitude larger than the theoretical values. The
author ascribes this discrepancy to the lack of knowledge on peculiar acceleration in absorption line
systems and the long-term frequency stability of modern radio telescopes.

Although the available observations have some limitations, they also make a strong contribution
to the analysis of dark energy, such as EoS (Wright 2007), the deceleration factor (Cunha 2009) and
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so on. Therefore, the main purpose of this paper is to understand redshift drift using the available
observational data.

This paper is organized as follows. In Section 2 the basic theoretical background of the redshift
drift is introduced. The reconstruction method of the objective functions and relevant data are shown
in Section 3. Reconstruction results for specific cosmological models are provided and discussed in
Section 4. Our final conclusion and discussion are presented in Section 5.

2 THE REDSHIFT DRIFT

Redshift drift is the first method related to a direct measurement of the cosmic expansion history,
which does not require any cosmological priors whatsoever. Previous observations, for instance the
CMB, SNeIa, weak lensing and baryon acoustic oscillation (BAO), are essentially geometric in
nature, or a prior on spatial curvature is assumed in advance. However, the most remarkable trait
of a redshift drift experiment is its direct probe of the global dynamics of the metric, as described
by Liske et al. (2008a). Although many targets like masers and molecular absorptions have been put
forward, the most promising candidate rests in the Lyα forest in the spectra of high-redshift quasars
(Pasquini et al. 2006). These are not only far away from the noise of the peculiar motions relative
to the Hubble flow, but also possess the useful aspect of having a large number of lines in a single
spectrum. Above all, the E-ELT, which will host CODEX, is designed to have the necessary photon
collecting power to observe redshift drift by stably monitoring the redshifts of quasar absorption
lines over a timescale of ∼20 yr. Fortunately, Pasquini et al. (2005) have checked that 25 quasars are
presently known at redshift z = 2− 4 with magnitude brighter than 16.5.

A signal emitted by a source at tem can be observed at time t0. Because of expansion of the
universe, the source’s redshift should be given through the scale factor

z(t0) =
a(t0)
a(tem)

− 1 . (1)

Over the observer’s time interval ∆t0, the source’s redshift becomes

z(t0 + ∆t0) =
a(t0 + ∆t0)

a(tem + ∆tem)
− 1 , (2)

where ∆tem is the scale representing the time interval when the source emitted the other signal. It
should satisfy ∆tem = ∆t0/(1 + z). The observed change in redshift of the source is thus given by

∆z =
a(t0 + ∆t0)

a(tem + ∆tem)
− a(t0)

a(tem)
. (3)

A further relation can be obtained if we keep the first order approximation

∆z ≈
[
ȧ(t0)− ȧ(tem)

a(tem)

]
∆t0 . (4)

Clearly, the observable ∆z is a direct change in the expansion rate during the evolution of the uni-
verse. In terms of the Hubble parameter H(z) = ȧ(tem)/a(tem), it can be simplified as

∆z

∆t0
= (1 + z)H0 −H(z) . (5)

This is also well known as the McVittie Equation (McVittie 1962). Obviously, redshift drift is
associated with cosmological models through the Hubble parameter H(z).

Figure 1 shows the theoretical redshift drift for different standard cosmological models. We find
that redshift drift at low redshift generally tends towards negative behavior with the predominance of
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Fig. 1 Redshift drift in different standard cosmological models with space being flat.

the dark matter parameter Ωm. This feature is often regarded as a means to distinguish dark energy
models from Lemaitre-Tolman-Bondi models at z < 2 (especially at low redshift) (Yoo et al. 2011).
Unfortunately however, CODEX would not be able to measure this drift at low z, since the Lyα
forest can be measured from the ground only at z ≥ 1.7 (Liske et al. 2008a). Therefore, acquisition
of ∆z at low z is required. Moreover, elimination of redshift drift (∆z = 0) at a certain redshift is
also our intention. It is usually expected to occur at z ≈ 2. Observationally, this change in redshift
can also be expressed as a spectroscopic velocity drift

∆v

∆t0
=

c

1 + z

∆z

∆t0
. (6)

It can usually be detected at an order of several cm s−1 yr−1.
In the field of cosmology research, a criterion of acceleration is the deceleration factor q(z) ≡

−ä/(aH2(z)). Through a series of calculations, we derive the following equation

q(z) =
1

E(z)
dE(z)

dz
(1 + z)− 1

=
1−

(
∆z
∆t0

)′

1− 1
1+z

∆z
∆t0

− 1 , (7)

where the prime denotes derivative with respect to z. In the calculation, redshift drift is in units of
H0. We find that the deceleration factor not only depends on the redshift drift ∆z, but is also related
to its slope (∆z)′. Considering Equation (5), we obtain the slope

(
∆z

∆t0

)′
= H0

[
1− E′(z)

]
, (8)

where E(z) ≡ H(z)/H0 is the dimensionless expansion rate. Obviously, the slope is positive for
E′(z) < 1 and negative for E′(z) > 1. For a standard cosmological model, the expansion rate ȧ(z)
behaves like a quadratic curve. We investigate the relation between deceleration factor and redshift
drift, and find that the former focuses on the rate of change ȧ(z), while the latter concentrates on
the variation of ȧ(z) during the time interval for observations ∆t0. In the period of decelerating
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expansion, the redshift drift changes from negative to positive. The location of the transition changes
in different cosmological models. In the period of accelerated expansion, redshift drift is always
positive.

In the following section, we will focus our attention on reconstructing the velocity drift and the
deceleration factor using some current observational data. We also perform some comparisons with
the simulated data from Liske et al. (2008a,b, 2009).

3 REDSHIFT DRIFT CONSTRUCTION

3.1 Observational Data

To derive a better constraint on cosmological parameters, one often makes a joint analysis with dif-
ferent combinations of observational data sets. Recently, Su et al. (2011) found that the combination
of SNeIa, shift parameter R based on CMB data, distance parameter A based on BAO data, and ob-
servational H(z) data (OHD) is a better choice using the criterion which estimates the constraining
power of cosmological data. In this paper, we adopt this scheme.

3.1.1 Hubble parameter

The available OHD are found through differential ages of galaxies (Jimenez & Loeb 2002; Simon
et al. 2005; Stern et al. 2010) and the BAO peaks (Gaztañaga et al. 2009; Moresco et al. 2012). Data
used in this paper are listed in table 2 of Zhang et al. (2012), which incorporates 21 published values
of H(z) with associated errors.

Using the OHD, best-fitting values of the parameters are determined by minimizing the formula

χ2
OHD(H0, z, p) =

∑

i

[H0E(zi)−Hobs(zi)]2

σ2
i

, (9)

where p stands for the parameter vector of each dark energy model and Hobs represents the obser-
vational data. In the calculation, we use H0 = 74.3± 2.1 km s−1 Mpc−1 (Freedman et al. 2012) as
the prior from the calibration of Cepheids published by the Carnegie Hubble Program.

3.1.2 Luminosity distance

Owing to their rich abundance of data, SNeIa are another widely used tool. In this paper, we will use
the latest sample, the Union2.1 data set (Suzuki et al. 2012), which contains 580 SNeIa. They are
usually presented as tabulated distance moduli with errors. Physically, the difference between the
apparent magnitude m and the absolute magnitude M is estimated through

µth(z) = m(z)−M = 5log10DL(z) + µ0 , (10)

where µ0 = 42.38− 5log10h, and h is the Hubble constant H0 in units of 100 km s−1 Mpc−1. The
corresponding luminosity distance function DL(z) can be expressed as

DL(z) =
1 + z√
|Ωk|

sinn
[√

|Ωk|
∫ z

0

dz′

E(z′;p)

]
, (11)

where the sinn function is defined by

sinn(x) =





sinhx , Ωk > 0 ,

x , Ωk = 0 ,

sinx , Ωk < 0 .

(12)
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In this definition, the dimensionless Hubble parameter E(z′;p) is independent of the parameter h.
The parameters in theoretical models are determined by minimizing the expression

χ2
SN(H0, z, p) =

∑

i

[µobs(z)− µth(z)]2

σ2
i (z)

, (13)

where µobs represents the observed distance moduli and σi is the uncertainty in the distance moduli
given by the data. The expression for the theoretical distance moduli µth is defined in Equation (10).
Generally, the nuisance parameter µ0 can be marginalized. However, an alternative way can be car-
ried out following previous work (Nesseris & Perivolaropoulos 2005; Perivolaropoulos 2005; di
Pietro & Claeskens 2003). The χ2 of Equation (13) with respect to µ0 can eventually be transformed
into a modified expression (Su et al. 2011)

χ̃2
SN(z, p) = A− B2

C
, (14)

where

A(p) =
∑

i

[µobs(z)− µth(z;µ0 = 0,p)]2

σ2
i (z)

,

B(p) =
∑

i

µobs(z)− µth(z;µ0 = 0,p)
σ2

i (z)
,

C =
∑

i

1
σ2

i (z)
. (15)

Due to the equivalence between Equations (13) and (14), we can instead minimize χ̃2
SN to obtain

the best-fit parameters. This approach has commonly been used in calculations of the parameter
constraint (Wei 2010), reconstruction of dark energy (Wei et al. 2007), etc.

3.1.3 Cosmic microwave background

Besides SNeIa, shift parameter R, obtained from acoustic oscillations in the CMB temperature
anisotropy power spectrum (Hinshaw et al. 2009; Komatsu et al. 2009), is also widely used to con-
strain cosmological models. The complete expression is

R =

√
|Ωm|√
|Ωk|

sinn
[√

|Ωk|
∫ zs

0

dz′

E(z′;p)

]
, (16)

where zs = 1091.3 is the redshift of recombination (Hu & Sugiyama 1996). The observational value
of R is adopted from WMAP7 (Komatsu et al. 2011). In this case the corresponding χ2 is defined as

χ2
R =

(
R− 1.725

0.018

)2

. (17)

3.1.4 Baryon acoustic oscillation

The distance parameter A is another effective constraint on parameters. It is the measurement of the
BAO peak in the distribution of SDSS luminous red galaxies (Eisenstein et al. 2005). Its form is
(Guo et al. 2006)

A =
√

Ωm

z1

{
z1

E(z1)
1
|Ωk| sinn2

[√
|Ωk|

∫ z1

0

dz′

E(z′;p)

]}1/3

, (18)
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where z1 = 0.35. The corresponding χ2 suggested by WMAP7 is as follows

χ2
A =

(
A− 0.472

0.017

)2

. (19)

With these definitions, the parameters in theoretical models are determined from the total χ2

χ2 = χ2
OHD + χ̃2

SN + χ2
R + χ2

A . (20)

This group can generally also be found in analyzing the criterion of observational data (Su et al.
2011), model parameterizations (Lazkoz & Majerotto 2007) and other related work.

3.2 Construction Scheme

Undetermined parameters in p for models and their errors at different confidence levels can be
estimated by the joint constraints from observational data. With the estimation of parameters in
p, the objective function F can be reconstructed by error propagation. In this paper, we adopt the
method proposed by Lazkoz et al. (2012). Generally, joint constraints can provide an estimation of
the ith parameter pi = p0i

+σiu−σil
, where p0i is the best-fit value, and σiu, and σil are the upper bound

and lower bound, respectively. For sufficiently small errors, errors of the objective function F are
therefore estimated by

δFu =

√√√√∑

i

[
max

(∂F

∂pi
σiu,−∂F

∂pi
σil

)]2

,

δFl =

√√√√∑

i

[
min

(∂F

∂pi
σiu,−∂F

∂pi
σil

)]2

, (21)

where δFu and δFl are its upper limit and lower limit, respectively. In Gaussian situations, the
estimations above finally reduce to the standard error propagation formula δFu = δFl. The objective
function F considered in our paper incorperates the velocity drift and the deceleration factor. What
deserves special mention is that the objective function F in Equation (21) is a general form of the
reconstructed parameter. In the present paper, the function F should be interpreted as the velocity
drift ∆v and the deceleration factor q(z) that we will reconstruct in following sections. Therefore,
errors of the reconstructed ∆v and q(z) can be calculated according to Equation (21).

4 RESULTS IN DIFFERENT COSMOLOGICAL MODELS

The number of proposed candidates for dark energy is huge. For simplification, we mainly perform
analysis in the present paper on four common models, the ΛCDM model, XCDM model, CPL model
and Dvali-Gabadadze-Porrati (DGP) model.

4.1 ΛCDM Model

The simplest model for dark energy is the ΛCDM model, which states that the cosmological constant
is the impetus of the accelerating expansion. The Hubble parameter in such a model is given by

E2(z) = Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ . (22)

Using the normalization condition on space curvature Ωk = 1 − Ωm − ΩΛ, two free parameters
are determined from the joint constraints formulated in Equation (20). By minimizing the total χ2,
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Fig. 2 Reconstruction of velocity drift for different cosmological models. (a) ΛCDM; (b) XCDM;
(c) CPL; (d) DGP. The shaded regions are reconstructed results from observational data with 1σ.
The solid curves in regions are the best-fit velocity drift. Eight points with errorbars are simulated
velocity drift data from Liske et al. (2008a,b, 2009), which are in units of cm s−1 yr−1.
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Fig. 3 Reconstruction of the deceleration factor for different cosmological models.
(a) ΛCDM; (b) XCDM; (c) CPL; (d) DGP.
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we obtain the matter component Ωm = 0.2750+0.0164
−0.0133 and dark energy ΩΛ = 0.7290+0.0113

−0.0136 with
χ2

min =584.5358. With estimation of the parameters, we can respectively reconstruct the velocity
drift and deceleration factor by performing the method described by Equation (21). The velocity
drift profile is shown in the top left of Figure 2. We find it increases with the decrease of redshift,
and turns down at z = 0.78 with a peak value of 0.35. Within a 1σ confidence level, the result
indicates that transition from ∆z > 0 to ∆z < 0 happens at redshift in the range [2.28, 2.61],
which, among these models, is the earliest to arrive at the transition point. We also compare the
result with the simulated data. We find that the ΛCDM model agrees the best with the simulated
data.

For further study, we also reconstruct the deceleration factor in Figure 3. We find that the tran-
sition from deceleration to acceleration happens at approximately redshift z = 0.75. The current
deceleration factor is estimated to be q0 = −0.6 which acts as a small error in the standard cosmo-
logical model.

4.2 XCDM Model

Specializing to a non-flat Friedmann-Robertson-Walker universe, the expansion rate with a constant
EoS w is given by

E2(z) = Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ(1 + z)3(1+w) . (23)

The dark energy models can be distinguished by their different EoSs. In addition to the case where
cosmological constant w = −1, this class of models also includes quiessence with −1 < w < 0,
quintessence with −1 < w < 1, and phantom with w < −1. Joint constraints give dark matter
density parameter Ωm = 0.2760+0.0145

−0.0149, dark energy parameter ΩΛ = 0.7325+0.0130
−0.0136 and w =

−1.125+0.2115
−0.2627 with χ2

min =583.4215. Estimation of the fitted EoS suggests that the dark energy
behaves like a phantom at the 1σ level.

Reconstruction of velocity drift in the top right panel of Figure 2 shows a peak value of 0.5,
which is maximal among these models. The result with the 1σ confidence level indicates a tran-
sition occurs in the range [2.32, 2.72], which is slightly later than that in the standard model.
When compared with the simulated data, a better agreement with the standard model is obtained.
Reconstruction of the deceleration factor in Figure 3 provides the same transition as the ΛCDM
model but with a bigger error estimation at low redshift. To a degree, constant w over the whole
redshift space may be unsuitable for explaining the observational data.

4.3 CPL Model

Besides dark energy models with constant EoS, more dynamical models have been proposed. If the
EoS of dark energy is time dependent, the corresponding equation for the rate of expansion is

E2(z) = Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛexp
[
3

∫ z

0

1 + w(z)
1 + z

dz

]
. (24)

The most commonly used form of EoS is the CPL parametrization w = w0 + w1z/(1 + z)
(Chevallier & Polarski 2001; Linder 2003). According to the joint analysis, the parameters are listed
as: dark matter Ωm = 0.2774+0.0227

−0.0184, dark energy ΩΛ = 0.7250+0.0114
−0.0161, w0 = −1.06+0.1350

−0.1062 and
w1 = 0.3+0.6608

−0.8335 with a moderate χ2
min =584.2995. Although the current EoS w0 approaches the

cosmological constant, rate of change w1 significantly deviates from zero.
With these estimations, the velocity drift is also reconstructed. Its error is bigger than those of

the above models in the whole region. The transition is estimated to occur at redshift in the range
[1.87, 2.8]. By comparing the reconstructed ∆v with the simulated data, we find that the former is
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consistent with the latter. The reconstructed ∆v within 1σ confidence level is mainly in the region
allowed by the simulated data. Moreover, the reconstructed deceleration factor shows that q0 is in
[–0.8 –0.5], which is a wider range than the ΛCDM model but narrower than the XCDM model.

4.4 DGP Model

The DGP brane world model (Dvali et al. 2000) is a well-known modification to general relativity for
the accelerated explanation. Unlike other theories, the DGP model arises from the brane world theory
in which gravity leaks out into the bulk at large scales, which eventually leads to the possibility of
an accelerated expansion of the universe (Guo et al. 2006). In such a model, the rate of expansion is
determined by

E2(z) = Ωk(1 + z)2 +
[√

Ωrc +
√

Ωrc + Ωm(1 + z)3
]2

, (25)

where the subscript rc is the crossover scale beyond which the gravitational force follows the five-
dimensional 1/r3 behavior. The bulk-induced term Ωrc is defined as

Ωrc
≡ 1

4r2
cH2

0

. (26)

The joint constraint from observational data shows a slightly smaller dark matter density parameter
Ωm = 0.2142+0.0143

−0.0121 than other models. Furthermore, the bulk-induced density parameter Ωrc =
0.1455+0.0041

−0.0050 is obviously less than the dark energy density in other models and has a crude χ2
min =

612.5485.
The bottom right panel of Figure 2 shows a slender profile of the velocity drift for the DGP

model. The result has a peak value of 0.25, which is the smallest among these models. It is worth
stating that the profile appears to be quite similar to that of the standard cosmological model at
redshift z . 3 when compared with the simulated velocity drift. However, it is obviously inconsistent
with the data towards higher redshift. Estimation of today’s deceleration factor q0 is about –0.5 with
a very small error.

5 CONCLUSIONS AND DISCUSSION

In this paper, motivated by interest in the redshift drift, we reconstruct the velocity drift and deceler-
ation factor using some observational data. The data used here are respectively observational H(z)
data from the differential ages of galaxies and BAO peaks, luminosity distances from the Union2.1
sample of SNeIa, shift parameter R from WMAP7 and BAO distance parameter A from SDSS.

Velocity drifts are reconstructed for the standard cosmological model, XCDM model, CPL
model and DGP model. They are shown in Figure 2. We find that they give a similar profile but
with different peak values. The difference among peak values may provide a potential test of various
cosmological models. We also investigate the transition of velocity drift from negative to positive at
the 1σ confidence level. Estimations are different from each other. For the standard model, it occurs
at z < 2.61. When compared with the simulated velocity drift from Liske et al. (2008a,b, 2009), we
find that the DGP model behaves similarly to the standard model at redshift z . 3, but deviates from
the simulation at higher redshift.

Figure 2 shows that behaviors of the reconstructed velocity drift are similar at high redshift.
However, they can be distinguished at low redshift with different peak values and different cor-
responding redshift. Therefore, detection at low redshift is required. This is also demonstrated by
Moraes & Polarski (2011) from the comparison between SNeIa and redshift drift for oscillating dark
energy models. Unfortunately, redshift drifts at low redshift (z = 0.09− 0.69) measured by Darling
(2012) from the precise HI 21 cm absorption line primarily using the Green Bank Telescope are
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about three orders of magnitude larger than the theoretically expected values. Therefore, improving
the long-term stability in frequency or developing a new scheme are feasible directions for this work.

An important criterion of the expansion history of the universe is the deceleration factor q(z),
an instantaneous estimation of the expansion at cosmic time. The transition from decelerating ex-
pansion to accelerating expansion is most important. Investigations of it with different observations
have been controversial. For example, the latest estimation from a list of 28 independent measure-
ments of OHD is zda = 0.74 ± 0.05 (Farooq & Ratra 2013), but evaluation from SNeIa provides a
lower transition at zt = 0.60+0.28

−0.11 (Cunha & Lima 2008). Our reconstructions of q(z) are shown in
Figure 3. Joint constraints on the transition generally happen at redshift zt ∼ 0.7, which agrees well
with estimation from only using OHD (Farooq & Ratra 2013). Furthermore, our results demonstrate
that the deceleration factor now generally has a value of q0 ∼ −0.6 except in the DGP model.

Although our reconstructions are restricted to specific models, they provide an objective and
quantified understanding of the redshift drift for the first time. Our results reveal the importance
of the redshift drift, especially at low redshifts. Different peak values and corresponding redshifts
provide insight on this issue. Moreover, transition of q(z) is usually estimated using a single data
set. However, reconstructions in this paper are based on the joint constraints. Certainly, our results,
by contrast, provide a more complete estimation. On the other hand, quantitative evaluation on the
power of redshift drift and the relation between q(z) and ∆z will also be investigated in our future
work.
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