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Abstract As we now know, there are at least two major difficulties with general rel-
ativity (GR). The first one is related to its incompatibility with quantum mechanics,
in the absence of a consistent, widely accepted theory that combines the two theo-
ries. The second problem is related to the requirement of the dark sectors−inflaton,
dark matter and dark energy by the energy-stress tensor, which are needed to explain
a variety of astronomical and cosmological observations. Research has indicated that
the dark sectors themselves do not have any non-gravitational or laboratory evidence.
Moreover, the dark energy poses, in addition, a serious confrontation between funda-
mental physics and cosmology. Guided by theoretical and observational evidences, we
are led to an idea that the source of gravitation and its manifestation in GR should be
modified. The result is in striking agreement with not only the theory, but also the ob-
servations, without requiring the dark sectors of the standard approach. Additionally,
it provides natural explanations to some unexplained puzzles.
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1 INTRODUCTION

Einstein’s theory of general relativity (GR), which provides the current description of gravitation in
modern physics, ranks as one of the crowning intellectual achievements of the twentieth century. It
is a geometric theory of gravitation which describes gravity not as a ‘force’ in the usual sense but
as a manifestation of the curvature of spacetime. In particular, the curvature of spacetime is directly
related to the energy-stress tensor Tµν through the Einstein field equations defined by

Rµν − 1
2
R gµν = −8πG

c4
Tµν , (µ, ν = 0, 1, 2, 3) . (1)

It should be noted that Equation (1) attributes the source of curvature entirely to matter, as the
tensor Tµν does not include the energy, momenta or stresses associated with the gravitational field
itself (since a proper energy-stress tensor of the gravitational field does not exist), though it does
incorporate all the candidates of material fields including dark energy.

Although GR is not the only relativistic theory of gravitation, it is the simplest theory that has
survived the tests of nearly a century of observational confirmation ranging from the solar system to

? Expanded version (with new findings added) of the essay (arXiv:1206.2795) awarded ‘Honorable Mention’ of the year
2012 by the Gravity Research Foundation.
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the largest scales, including the universe itself. However, this success is achieved provided we admit
three completely independent new components in the energy-stress tensor − inflaton, dark matter
and dark energy, which are believed to play significant roles in the dynamics of the universe during
their turns. However, there has been, until now, no non-gravitational or laboratory evidence for any of
these dark sectors. Additionally, the mysterious dark energy, which has been evoked primarily to fit
the observations of type Ia supernovae (SNeIa), poses a serious confrontation between fundamental
physics and cosmology.

Despite the remarkable success of GR, many researchers interpret the observations supporting
the requirement of the dark sectors as a failure of the theory. This reminds us of Einstein’s ‘biggest
blunder’ when he forced his equations to predict the unstable static universe (by imposing the cos-
mological constant) though a more natural implication of GR – the expanding universe – was already
known to him. It appears that we have encountered a similar situation when we are trying to explain
the observations in terms of the dark sectors. Though there have been other simpler explanations,
they have not been paid proper attention. For example, it has been known since the first generation
of SNeIa observations that the data are consistent with the ‘vacuum’ Friedmann-Robertson-Walker
model (Ωm = 0 = Λ).

While Einstein’s blunder was perhaps motivated by his religious conviction that the universe
must be eternal and unchanging, in the present case it is one’s deep-rooted conviction that space
would remain empty unless it is filled with Tµν . But what are the reasons to doubt this obvious and
well-established notion? We shall see in the following that expressions derived from Equation (1)
do not necessarily represent an empty space in the absence of Tµν and the sources of gravitation
do exist there in the form of the geometry itself. Although this may appear orthogonal to the usual
understanding, it is strongly supported by observations, ranging from the solar system to the largest
scales, which seem to favor Equation (1) without Tµν , implying that the tensor is not needed.

Then, let us first see how the ‘vacuum’ field equations are supported by observations. What are
the observations/experiments which have directly tested the complete Einstein’s Equation (1)? The
classical tests of GR consider Tµν = 0. The same is true for the more precise tests of GR made
through the observations of radio pulsars, which are rapidly rotating strongly magnetized neutron
stars. The pulsar tests assume the neutron stars to be point-like objects and look for the relativistic
corrections in the post-Keplerian parameters by measuring the pulsar timing. The tests do not even
require knowledge of the exact nature of the matter that pulsars and other neutron stars are made of.
As Tµν = 0 implies T = 0 = R in which case Equation (1) reduces to

Rµν = 0, (2)

all we can claim is that it is only Equation (2) which has been verified by the classical tests of GR.
As these tests have only been limited to our galaxy, let us see how this equation fairs against the
cosmological observations. For this purpose, let us first solve Equation (2) for a homogeneous and
isotropic spacetime, as is expected on a large enough scale. Obviously, the considered symmetry of
homogeneity and isotropy requires the metric to be the Robertson-Walker one given by

ds2 = c2dt2 − S2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dφ2

)
, (3)

where S(t) is the scale factor of the universe. For the metric (3), expressions derived from
Equation (2) yield

R0
0 =

3
c2

S̈

S
= 0 , (4)

R1
1 = R2

2 = R3
3 =

1
c2

(
S̈

S
+ 2

Ṡ2

S2
+ 2kc2 1

S2

)
= 0 , (5)
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which uniquely determine
S = ct with k = −1, (6)

so that the final solution reduces to

ds2 = c2dt2 − c2t2
(

dr2

1 + r2
+ r2dθ2 + r2 sin2 θ dφ2

)
. (7)

2 SUPPORT FROM THE COSMOLOGICAL OBSERVATIONS TO Rµν = 0

2.1 Observations of SNeIa

In order to study the compatibility of Equation (7) with the cosmological observations, let us first
consider the observations of SNeIa. The solution given in Equation (6) is efficient enough to define
uniquely, without requiring any inputs from the matter fields, the luminosity distance dL of a source
with redshift z by

dL = cH−1
0 (1 + z) sinh[ln(1 + z)], (8)

where H0 represents the present value of the Hubble parameter H = Ṡ/S. It is already known
that this model, albeit non-accelerating (and not decelerating), is consistent with the observations
of SNeIa without requiring any dark energy. As early as 1998, the Supernova Cosmology Project
team noticed from the analysis of their first-generation SNeIa data that the performance of the empty
model (Ωm = 0 = ΩΛ) is practically identical to that of the best-fit unconstrained cosmology with
a positive Λ (Perlmutter et al. 1999). Let us consider a newer dataset1, for example, the ‘new gold
sample’ of 182 SNeIa (Riess et al. 2007), which is a reliable set of SNeIa with reduced calibration
errors arising from the systematics. The model (8) provides an excellent fit to the data with a value
of χ2 per degree of freedom (DoF) = 174.29/181 = 0.96 and a probability of the goodness of fit
Q = 63%. Obviously the standard ΛCDM model has an even better fit as it has more free parameters:
χ2/DoF = 158.75/180 = 0.88 and Q = 87% obtained for the values Ωm = 1−ΩΛ = 0.34± 0.04.
The best-fitting model given in Equation (8) and the ΛCDM model have been compared with this
data sample in Figure 1.

2.2 Observations of High-Redshift Radio Sources

Let us now consider the data on the angular size and redshift of radio sources compiled by Jackson &
Dodgson (1997), which have 256 sources with their redshift in the range 0.5–3.8. These sources are
ultra-compact radio objects with angular sizes of the order of a few milliarcseconds (mas), deeply
embedded in galactic nuclei and have a very short lifetime compared with the age of the universe.
Thus they are expected to be free from evolutionary effects and hence may be treated as standard
rods, at least in the statistical sense. These sources are distributed into 16 redshift bins, with each
bin containing 16 sources. This compilation has recently been used by many authors to test different
cosmological models (Banerjee & Narlikar 1999; Vishwakarma 2000; Vishwakarma & Singh 2003;
Vishwakarma 2007). In order to fit the data to the model, we derive the Θ−z relation in the following.
The angle Θ subtended in a telescope, by a source with the proper diameter d, is given by

Θ(z) =
0.0688dh

H0dA
mas, (9)

where d is measured in pc, h is the present value of the Hubble parameter in units of 100 km s−1

Mpc−1, and the angular diameter distance dA = dL/(1 + z)2.

1 Although various newer SNeIa datasets are available, however, the way they are analyzed has left little scope for testing
a theoretical model with them. This issue has been addressed in Vishwakarma & Narlikar (2010).
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Fig. 1 The ‘new gold sample’ of 182 SNeIa from Riess et al. (2007) is compared with some best-
fitting models. The solid curve corresponds to the model (8) and the dashed curve corresponds to the
spatially-flat ΛCDM model Ωm = 1− ΩΛ = 0.34± 0.04.

Fig. 2 The data on the ultra-compact radio sources compiled by Jackson & Dodgson (1997) are
compared with some best-fitting models. The solid curve corresponds to the model represented by
Equation (7) and the dashed curve corresponds to the spatially-flat ΛCDM model Ωm = 1− ΩΛ =
0.21± 0.08.

We find that the present model has a satisfactory fit to the data with χ2/DoF = 20.78/15 = 1.39
and Q = 14%. In order to compare, we find that the best-fitting ΛCDM model has a slightly better
fit: χ2/DoF = 16.03/14 = 1.15 and Q = 31% obtained for the values Ωm = 1−ΩΛ = 0.21±0.08.
These models are shown in Figure 2.

2.3 Observations on H0 and the Age of the Oldest Objects

The age of the universe t0, in big bang-like theories, is the time that has elapsed since the big bang.
It depends on the expansion dynamics of the model and is given by

t0 =
∫ ∞

0

H−1(z)
(1 + z)

dz. (10)
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Table 1 Magnitudes, with Uncertainties, of 13 HII Starburst Galaxies

Galaxy z µ± σ

Q0201-B13 2.17 47.49+2.10
−3.43

Q1623-BX432 2.18 45.45+1.97
−3.07

Q1623-MD107 2.54 44.82+0.31
−1.58

Q1700-BX717 2.44 46.64+0.31
−1.58

CDFa C1 3.11 45.77+0.31
−1.58

Q0347-383 C5 3.23 47.12+0.44
−0.32

B2 0902+343 C12 3.39 46.96+0.71
−0.81

Q1422+231 D81 3.10 48.81+0.38
−0.40

SSA22a-MD46 3.09 46.76+0.56
−0.51

SSA22a-D3 3.07 49.71+0.43
−0.41

DSF2237+116a C2 3.32 47.73+0.25
−0.25

B2 0902+343 C6 3.09 45.22+1.38
−1.76

MS1512-CB58 2.73 47.49+1.22
−1.57

Hence, the Hubble parameter controls the age of the universe, which in turn depends on the free
parameters of the model. For example, in the standard cosmology, H(z) = H0{Ωm(1 + z)3 +
ΩΛ + (1 − Ωm − ΩΛ)(1 + z)2}1/2. Although t0 is a model-based parameter, a lower limit is put
on it by requiring that the universe must be at least as old as the oldest objects in it. This is done
through tGC, the age of globular clusters in the Milky Way which are among the oldest objects we
know so far. The parameter H0 can be estimated in a model-independent way, for example, from
the observations of the low-redshift SNeIa, in which case the predicted magnitude does not depend
on the model-parameters. One can use this value to calculate the age of the universe in a particular
theory which can be compared with the age of the oldest objects. Thus the measurements of H0 and
tGC provide a powerful tool to test the underlying theory.

For example, by using the current measurements of H0 = 71 ± 6 km s−1 Mpc−1 from the
Hubble Space Telescope Key Project (Mould et al. 2000), Equation (10) gives t0 for the Einstein-de
Sitter model (Ωm = 1, Λ = 0) as 9.18 Gyr. This cannot be reconciled with the age of the oldest
globular cluster estimated to be tGC = 12.5± 1.2 Gyr (Gnedin et al. 2001) and the age of the Milky
Way as 12.5± 3 Gyr coming from the latest uranium decay estimates (Cayrel et al. 2001). However,
for the concordance ΛCDM model with Ωm = 1− ΩΛ = 0.27 (as estimated by the WMAP project
(Larson et al. 2011)), Equation (10) gives a satisfactory age of the universe as t0 = 13.67 Gyr which
is well above the age of the globular clusters. The age of the universe in the present model is given
by t0 = H−1

0 , as can be checked from Equation (6). For the above-mentioned value of H0, this gives
t0 = 13.77 Gyr which is even higher than the value from the concordance model.

2.4 Observations of Starburst Galaxies

Let us now consider the data on the apparent magnitude and redshift of starburst galaxies. Recent
work has indicated that HII starburst galaxies might be considered as standard candles because of a
correlation between their velocity dispersion, H luminosity and metallicity (see, for example, Mania
& Ratra (2012) and references therein). Siegel et al. (2005) compiled a sample of 15 HII-like star-
burst galaxies with redshifts in the range 2.17–3.39 (by using the data available in the literature) in
order to constrain Ωm. Mania & Ratra (2012) modified this sample by excluding two HII galaxies
(Q1700-MD103 and SSA22a-MD41) that show signs of a considerable rotational velocity compo-
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Fig. 3 The HII-like starburst galaxy data (Mania & Ratra 2012) are compared with some best-fitting
models. The solid curve corresponds to the model represented by Equation (8) and the dashed curve
corresponds to the ΛCDM model with Ωm = 0.19 and ΩΛ = 0.98.

nent and used the resulting sample (shown in Table 1) to constrain the cosmological models of dark
energy.

For this sample, the present model provides the minimum value of χ2/DoF = 53.54/12 = 4.46
with Q = 3.4 × 10−7, whereas the standard ΛCDM model gives the minimum χ2/DoF = 53.32/10
= 5.33 with Q = 6.5× 10−8 for the values Ωm = 0.19 and ΩΛ = 0.98. It would not be fair to claim
that any of these models fit the data well. Perhaps the inherent scatter of the data is large, and a large
sample size is required to perform the test and to get any meaningful constraint on the cosmological
parameters. However, it is clear from the fitting results that compared to that of the standard model,
the performance of the present model is better. The results are shown in Figure 3.

3 EVASION OF THE PROBLEMS OF STANDARD COSMOLOGY

The field equation Rµν = 0 registers success, not only on the observational front, but also on the
theoretical front. As we shall see in the following, the theory circumvents the long-standing problems
of standard cosmology, for example, the horizon, flatness and the cosmological constant.

3.1 Horizon Problem

The (particle) horizon distance, given by

dH(t) = S(t)
∫ t

0

cdt′

S(t′)
, (11)

sets a limit on the observable or causally connected part of the universe at time t. As a finite value
exists for dH in the standard cosmology, this means that the universe has a horizon in this theory.
This is in conflict with the observed smoothness of the cosmic microwave background (CMB) at
the largest scales in all directions, indicating that even the parts of the universe outside the horizon
have been in causal contact. Since no physical process propagating at or below light speed could have
brought them into thermal equilibrium, it appears that the universe required special initial conditions,
which are supposed to be provided by inflation. This problem does not exist in the present theory as
dH = ∞ at any time, as can be checked from Equations (6) and (11). Hence, the whole universe is
always causally connected, which explains the observed uniformity of CMB without invoking the
hypothetical inflaton field.
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3.2 Flatness and Cosmological Constant Problems

The flatness problem of standard cosmology requires the initial density of matter (represented by the
energy-stress tensor) to be extremely fine-tuned to its critical value (corresponding to a spatially flat
universe). Even a tiny deviation from this value would have had drastic effects on the nature of the
present universe. This problem is evaded in the present model owing to the fact that the matter tensor
does not explicitly appear in the dynamical equations and all the fields are represented through the
geometry.

The cosmological constant problem is circumvented for the same reason because its origin lies in
a conflict between the energy-stress tensor and the vacuum expectation values derived from quantum
field theory. Let us recall that the cosmological constant is represented by the energy-stress tensor
of a perfect fluid (through a particular equation of state) and hence it is absent in the present theory.
Hence, any other candidate of dark energy also does not exist in the present theory.

4 GRAVITY OF THE ‘VACUUM’ FIELD EQUATION Rµν = 0

It thus seems that equation Rµν = 0 gets strong support not only from the observations but also from
the theory. One may ignore this as chance happenings. However, we adopt the view that it is unlikely
to have so many coincidences happen together and the theoretical as well as observational evidence
supports equation Rµν = 0 at all scales; these perhaps point towards some missing link of the theory,
unnoticed so far. Let us then see if equation Rµν = 0 can describe the real universe with matter, as
the observations suggest. As the source of curvature is invariably matter, there have already been
evidences available since the very inception of the theory, from a variety of solutions of equation
Rµν = 0, which indicate that the space described by these equations does not necessarily need to be
empty. For example, let us consider the following well-known solutions of equation Rµν = 0 which
have non-vanishing curvature.

4.1 Curved Solutions of Rµν = 0

Schwarzschild Solution:
Discovered by Karl Schwarzschild in 1915 immediately after GR was formulated, the solution forms
the cornerstone of GR. It is believed to represent the spacetime structure outside an isotropic mass
in an empty space (Hawking & Ellis 1973)

ds2 =
(

1 +
K

r

)
c2dt2 − dr2

(1 + K/r)
− r2dθ2 − r2 sin2 θ dφ2, (12)

where K is a constant of integration. In fact, all the experiments which have so far been carried out
to test GR are based on the predictions by this solution (except the Gravity Probe B experiments,
which are based on the predictions of the Kerr solution).

Kerr Solution:
Discovered by Roy Kerr in 1963, the solution describes the spacetime surrounding a spherical mass
m spinning with angular momentum per unit mass = α (so that its total angular momentum = mcα).
In the Boyer-Lindquist coordinates (Hawking & Ellis 1973), the solution takes the form

ds2 =
(

1− rSr

ρ2

)
c2dt2 − ρ2

∆
dr2 − ρ2dθ2 −

(
r2 + α2 +

rSrα2

ρ2
sin2 θ

)
sin2 θ dφ2

+
2rSrα

ρ2
sin2 θ dφ cdt, (13)

where ρ2 = r2 + α2 cos2 θ, ∆ = r2 − rSr + α2 and rS = 2Gm/c2 is the Schwarzschild radius.
When α = 0, the solution reduces to the Schwarzschild solution.



1416 R. G. Vishwakarma

It may be mentioned that solutions (12) and (13) cannot be transformed to the flat Minkowski
metric by any possible coordinate transformation, as the Riemann-Chistoffel curvature tensor
Rλµνδ 6= 0 in these cases. Let us decipher the source of curvature in these solutions.

4.2 Sources of Curvature in Rµν = 0

As Equation (2) is devoid of the source term Tµν , one may wonder from where the solution (12)
derives its curvature. It is believed that the mystery of the presence of this curvature is related to
the central singularity of the spherically symmetric space represented by (12) (which is associated,
through a correspondence between the Newtonian and Einsteinian theories of gravitation in the case
of a weak field, with an isotropic mass sitting at the center r = 0). Thus, the source of curvature in
Einstein’s theory is regarded to be either Tµν or a singularity in gµν . However, it should be noted
that the metric (12) represents space exterior to the central mass at r = 0 and not the point r = 0
itself, where the metric breaks down. So, how can a mass situated at the point r = 0 (which is not
even represented by the metric) curve the space of (12) at points for which r > 0? Obviously, one
cannot expect the Newtonian theory of action-at-a-distance to work in the framework of GR which
is a local theory.

A little reflection suggests that the agent responsible for the curvature in (12) at the points for
r > 0 must be the gravitational energy, which can definitely exist in an empty space. However, if
this is true, one should be able to calculate the gravitational energy from the metric (12). We can
certainly do this by the following two simple observations:

(1) The metric (12) departs from flat spacetime in the term K/r, implying that this term must be the
source of curvature.

(2) We have shown that the source of curvature in (12), at the points r > 0, must be the gravitational
energy.

Taken together, these two points imply that K/r must be the gravitational energy (in the units with
c = 1) in (12). This is in perfect agreement with the way the value of the constant K is determined.
Let us recall that the constant K in Equation (12) is specified in terms of the Newtonian gravitational
potential energy (by requiring that in the case of a weak gravitational field, Newton’s law should
hold) giving g00 = 1 + 2ψ/c2 where ψ = −Gm/r is the gravitational energy (per unit mass) at a
distance r from the central mass m producing the field. It is thus established that the source of the
curvature of spacetime in (12) is the energy of the gravitational field present at the points exterior to
r = 0.

However, the fact remains that no formulation of the gravitational energy has been incorporated
in equation Rµν = 0 (or in Eq. (1)). This implies that the gravitational energy already exists there
implicitly in the geometry, through the non-linearity of the field equations, and no additional incor-
poration thereof is needed. This fits very well in the story of the failure to discover an energy-stress
tensor for the gravitational field2. As mentioned earlier, the energy-stress tensor of the gravitational
field is not included in Tµν in Einstein’s field Equation (1), as this tensor does not exist. Here we find
the answer to this mystery - the energy-stress tensor of the gravitational field does not exist simply
because the tensor is not needed in the geometric framework of GR; it already exists there inherently
in the geometry of equation Rµν = 0. We should note that in the weak-field approximation, the
GR equations do reduce to the usual Newtonian dynamical equations; gravitational energy, force,
etc. do emerge respectively from the metric tensor, the Christoffel symbol, etc., without adding any
formulation of the gravitational field energy to the Einstein equations.

2 It may be mentioned that despite the century-long dedicated efforts of many luminaries, the attempts to discover a
unanimous formulation of the gravitational field energy in GR have failed. This is primarily because of the non-tensorial
character of the energy-stress pseudotensors of the gravitational field and the lack of a unique agreed-upon formula for it.
Secondly, this is because of the inherent difficulty in the localization of the gravitational energy.
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The insight gained above about the futility of the energy-stress tensor of the gravitational field
is also corroborated by the Kerr metric given in Equation (13) wherein the angular momentum also
contributes to its curvature. This is an entirely new occurrence for GR. It may be mentioned that
there is no place for the angular momentum in Tµν in the framework of Einstein’s theory, which
needs to be extended to non-Riemannian curved spacetime with torsion (as in the Einstein-Cartan
theory) to support asymmetric Ricci and metric tensors, so that an asymmetric energy-stress tensor
of spin can appear on the right hand side of the field equations. (However, when the right hand side
is vanishing, the Ricci tensor need not be asymmetric and the Einstein-Cartan ‘vacuum’ equations
reduce to Rµν = 0.)

One may not show much inhibition to agree that expressions given by Equation (2) do contain
energy of the gravitational field (by leveraging the controversial nature of the subject, as has been
done), despite the monumental works of Tolman, Papapetrou, Landau-Lifshitz, Møller and Weinberg
on the (pseudo) energy-stress tensors of the gravitational field. However, one would maintain that
although expressions defined by Equation (2) contain energy of the gravitational field, they describe
spacetime structures in an otherwise empty space. Further, the source of curvature in the solutions
of Equation (2) must be the singularity which fuels the gravitational energy. Let us now consider
another curved solution of Equation (2), which may not fit this interpretation very well.

Kasner Solution:
This important cosmological solution of equation Rµν = 0 was discovered by Edward Kasner in
1921. Later it was rediscovered by V. V. Narlikar and K. R. Karmarkar in 1946 and again by Abraham
Taub in 1951. The solution, which is a curved Bianchi type I metric, describes a model universe
which is homogeneous but anisotropic. The solution is given by

ds2 = c2dt2 − t2p1dx2 − t2p2dy2 − t2p3dz2, (14)

where the constants p1, p2 and p3 satisfy

p1 + p2 + p3 = 1, p1p2 + p2p3 + p3p1 = 0.

It should be noted that the metric admits a singularity3 at t = 0 (note that all of the exponents p1, p2

and p3 are not positive).
The usual interpretation provided to (14) is that it represents an empty homogeneous universe

in which the space is expanding and contracting (anisotropically) at different rates in different direc-
tions (for example, for p1 = p2 = 2/3 and p3 = −1/3, the space is expanding in two directions
and contracting in the third). As we have noted, the solution (14) contains a singularity at t = 0
but not at any other time. However, a past singularity, which does not exist now, fueling the grav-
itational energy now without any other source, does not seem compatible with the understanding
of the gravitational energy. Further, the curvature in (14) is expected to have contributions from the
net non-zero momentum resulting from the anisotropic expansion/contraction of the homogeneous
space. However, it does not make much sense to imagine momentum resulting from the expand-
ing/contracting empty space with no matter. It does not make sense, in the first place, to think of
expanding/contracting ‘homogeneous’ space without matter.

3 The form of the Kasner metric discovered by Narlikar & Karamarkar (1946) is

ds2 = c2dt2 − (1 + nt)2p1dx2 − (1 + nt)2p2dy2 − (1 + nt)2p3dz2, (15)

where n is a constant. We note that by the use of the transformations nt = 1 + nt̄, x = np1 x̄, y = np2 ȳ and z = np3 z̄,
the metric (14) takes the form (15) in the new coordinates. As the singularity in (15) now appears at t = −1/n, it seems
that it can be avoided with a positive n. However, as the average scale factor (= spatial volume1/3 = 1 + nt) has the same
behavior in the interval −1/n ≤ t ≤ 0 as it has for 0 ≤ t (i.e., no bouncing behavior at t = 0), this feature to push the
singularity back before the time t = 0 just appears as a rescaling of time.
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As has been shown above, expressions from equation Rµν = 0 do reveal gravitational energy,
through geometry, in its curved solutions (12) and (13). Hence, the third curved solution (14) is also
expected to contain the gravitational energy. However, unlike the solutions expressed in Equations
(12) and (13) (which represent space outside the source mass), the cosmological solution (14) cannot
be expected to have any ‘outside.’ Since the ultimate source of the gravitational field is matter, this
implies that the source matter fields (together with the resulting gravitational field) must also be
inherently contained in solution (14). Does it then mean that, like the gravitational field, the matter
field is also inherently present in equation Rµν = 0? Let us postpone this question until its answer
emerges as a natural consequence from the following issue.

4.3 On the Flatness of Solution (7)

It would be natural to ask why solution (7) is flat while the other solutions (12)−(14), of the same
equation Rµν = 0, are curved. [It should be noted that, by the use of the transformations t̄ =
t
√

1 + r2 and r̄ = ctr, metric (7) can be brought to manifestly Minkowskian form in the coordinates
t̄, r̄, θ, φ (Narlikar 2002).]

One may argue that solution (7) is Minkowskian simply because Tµν is zero in (2). However, if
this is so, why do we get curved solutions (12)−(14) from the same equation Rµν = 0? If expressions
from equation Rµν = 0 contain a gravitational field that acts as the source of curvature present in
solutions (12)−(14), they must also do so in solution (7)4.

Obviously, solutions (12)−(14) have singularities to fuel the gravitational field, but solution (7)
does not. However, what is there to stop the singularity from occurring in (7)? The only difference
between the solutions (7) and (12)−(14) is that they have different types of symmetries in their
spacetime structures. While metric (7) is homogeneous and isotropic, metrics (12)−(14) are either
inhomogeneous or/and anisotropic. However, how a relaxation in the homogeneity and isotropy can
result in a singularity cannot be answered by conventional wisdom. A possible explanation to the
present situation leads us to the following two possibilities.

(1) Equations arising from Rµν = 0 represent an empty spacetime structure and can support curved
as well as flat spacetime solutions. However, they are unable to explain how a solution acquires
curvature or flatness. For instance, solutions (14) and (7) represent similar spacetime structures
with the only difference being that while the homogeneous space in (14) is expanding and con-
tracting in different directions at different rates, the same space is expanding or contracting
isotropically in (7). How this difference accounts for their curved and flat states, and controls
the appearance of the singularity, cannot be explained by equations from Rµν = 0.

(2) The geometry of equation Rµν = 0 does contain impressions of the gravitational as well as the
matter fields. The structure of the geometry, of a chosen matter distribution, is determined by
the net contribution from the material and the gravitational fields which, if non-zero, may be
manifested in the guise of a singularity (which may be considered a general-relativistic analog
of the ‘source’).

Though the second possibility appears baffling and orthogonal to usual understanding, it pro-
vides not only a sensible meaning to the Kasner solution (14) in the absence of the energy-stress
tensors of the gravitational or the matter fields, but also a reasonable explanation to the flatness of
solution (7), as we see in the following. If we believe that Equation (2) inherently contains ma-
terial and gravitational fields, solution (7) would then represent homogeneously distributed matter

4 Equations from Rµν = 0 are not competent enough to decipher the source term m in the Schwarzschild and Kerr
solutions (12) and (13), just from their symmetries. Rather, this is done through an additional constraint that GR should
reduce to Newtonian gravitation in the case of a weak stationary gravitational field, as has been mentioned earlier. Hence,
taken on face value, the other two solutions of Rµν = 0, viz. (7) and (14), must also have the same status and it is also quite
probable to assign fields to them, in a manner consistent with their symmetries.
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throughout the space at all times. As the positive energy of the matter field would be exactly bal-
anced, point by point, by the negative energy of the resulting gravitational field (contrary to the case
of the Schwarzschild solution where there is only the gravitational energy and no matter at the points
represented by the metric), this would provide a net vanishing energy. There would also not be any
momentum contribution from the isotropic expansion/contraction of the material system (contrary
to the case of the Kasner solution). Hence, in the absence of any net non-zero energy, momentum or
angular momentum, the spacetime of (7) would not have any curvature.

This implies that it is the symmetry of the chosen spacetime structure which determines whether
a solution of Rµν = 0 will be curved (may have a singularity) or flat (without a singularity). This
is in perfect agreement with the appearance of different kinds of singularities, in accordance with
the chosen symmetries in the solutions: while the Schwarzschild solution (describing the spacetime
structure exterior to a point mass) has a point singularity, the Kerr solution (describing the spacetime
structure exterior to a rotating mass) has a ring singularity; the Kasner solution (in which the t
= constant hypersurfaces are expanding and contracting at different rates in different directions)
presents an oscillating kind of singularity at t = 0.

The discovery of the net vanishing energy-momentum-angular momentum in a homogeneous
distribution of matter expanding/contracting isotropically, appears to be consistent with several in-
vestigations and results which indicate that the total energy of the universe is zero. Thus, a flat
spacetime solution, which has so far been a notion of special relativity (SR), can be achieved in the
real universe in the presence of matter, which dynamically originates from the field equations, and
is not assumed a priori (or just added by hand) as in SR. This new result also seems consistent with
the theories of inflation which predict a nearly flat universe after expanding it by a factor of 1078

in just 10−36 seconds, leaving a nearly flat spacetime. Further, the appearance of a flat spacetime
in the presence of matter is also not impossible in the conventional approach. For example, it has
been shown by Ayón-Beato et al. (2005) that conformally coupled matter does not always curve
spacetime.

It may be mentioned that solution (7) is generally considered as the Milne model, which is not
quite correct when taken in the traditional context of the empty universe. Although the evolutionary
dynamics of the Milne universe (based on Milne’s kinematical relativity with foundations different
from those of GR) are the same as those given by the empty Friedman model, it is not empty. Rather
the Milne model assumes the Minkowskian spacetime filled with matter wherein the matter does not
interact with the geometry due to some unknown reasons. The present theory, governed by the field
equation Rµν = 0, not only explains why the homogeneous, isotropic universe is Minkowskian, but
also predicts when a curved solution is also possible.

Thus the conclusion is that the spacetime already contains the ‘field,’ which must not be inserted
again in the field equations of gravitation through the formulation of, for example, Tµν . It should
be noted that being a geometric theory of gravitation, GR eliminates any possibility to represent
gravitation in terms of a force. Rather the theory replaces the effects of the force through geometry.
Similarly, the effects of stresses, momenta, angular momenta and energy are also revealed through
geometry. Though this surprising discovery may appear too revolutionary to digest, it is in striking
agreement with and corroborated by the recent studies on the relativistic formulation of matter which
indicate that, like the energy-stress tensor of the gravitational field, a flawless energy-stress tensor of
the matter fields also does not exist. This issue is discussed in brief in the next section.

4.4 On the Formulation of Matter by Tµν

We have seen above that the appearance of the gravitational energy through the geometry of equa-
tion Rµν = 0, without adding any formulation of the energy-stress tensor of the gravitational field
to this equation, is vindicated by the absence of a proper energy-stress tensor of the gravitational
field. Do we have any similar evidence from the energy-stress tensor of the matter fields? Yes we
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do. Recently, it has been shown (Vishwakarma 2012) that a critical analysis of the formulation of
matter given by Tµν reveals some surprising inconsistencies and paradoxes. Corrections have been
discovered to rectify the problems, which however render the theory incompatible with many ob-
servations (Vishwakarma 2012). This implies that the relativistic formulation of matter fields given
by the energy-stress tensor Tµν is not consistent with the geometric description of GR. In fact, the
relativistic formulation of matter in terms of Tµν has some more fundamental inconsistencies (be-
sides those discovered in Vishwakarma 2012) which have not been realized earlier. We mention the
following two.

(1) The general expression of the energy-stress tensor Tµν is obtained by deriving it first in the
absence of gravity, i.e., in SR. It is then imported to the actual case in the presence of gravity, by
making use of an inertial observer, which exists admittedly at all points of spacetime (by cour-
tesy of the principle of equivalence). Formulating a tensor representation of the fluid element
in a small neighborhood of the observer, the expression of the tensor in the presence of gravity
is imported, from SR to GR, through a coordinate transformation. This is the standard way to
derive Tµν (Vishwakarma 2012). However, the simple point which has not been noticed, which
makes this derivation questionable, is that an inertial coordinate system is valid only at a point,
and not in a neighborhood, however small it is (Christoffel symbols can be made vanishing only
at a point, and not in a neighborhood). However, because a fluid element cannot be defined at a
point, we do need a neighborhood. Hence, at best, the tensor Tµν may approximate a dust (with
vanishing pressure) but cannot represent a fluid (with non-zero pressure) which requires more
than one particle to generate pressure.

(2) As the derivation of Tµν assumes its validity in the absence of gravitation (in a flat spacetime),
this becomes contradictory to the very notion of Tµν being the source of curvature. To exemplify
this, let us note that in a flat spacetime, the left hand side of Equation (1) vanishes automatically,
but not the right hand side which has to be made equal to zero by hand. That is, the source
of curvature can exist there without producing any curvature. Although Equation (1), being a
geometric formulation of gravitation, is expected to be valid in a curved spacetime, it must also
consistently reduce to the no-gravitation case. This provides another reason why Tµν should not
appear in the field equations of gravitation.

It should be noted that the relativistic description of the matter given by the energy-stress tensor
Tµν has never been tested in any direct experiment. As has been mentioned earlier, the classical tests
of GR consider Tµν = 0 and test only the geometric aspect of GR given by equation Rµν = 0. The
above-mentioned theoretical crisis in the relativistic formulation of matter acquires a new meaning in
the present context and implies that the concept of the energy-stress tensor (be it of a matter field or
a gravitational field) is not compatible with the geometric formulation of gravitation, simply because
it is already inherently included in the geometry.

A similar view was expressed about four decades ago by J. L. Synge, one of the most distin-
guished mathematical physicists of the 20th Century: “The concept of energy-momentum tensor is
simply incompatible with general relativity.”

5 DISCUSSION AND CONCLUSIONS

In spite of various observational verifications of GR, deep mysteries continue to haunt our theoretical
understanding of the ingredients of the energy-stress tensor in the form of the dark sectors−inflaton,
dark matter and dark energy, which do not have any non-gravitational or laboratory evidence and
remain unidentified.

Motivated by this fact and guided by strong observational support for the so called ‘vacuum’
field equations expressed as Rµν = 0, we develop an understanding that the energy-stress tensor is
perhaps a redundant part of the Einstein field equations and the source of gravitation is the geometry
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itself. A critical analysis of the different solutions of equation Rµν = 0 supports this view indicating
that equation Rµν = 0 does not represent an empty spacetime and impressions of the gravitational
as well as material fields are inherently present in the equations (though they do not play a direct
role in the dynamics), which are revealed through the geometry. Einstein believed that “On the basis
of the general theory of relativity, space as opposed to ‘what fills space’, has no separate existence”
(Einstein 1920). If this is true, considering a spacetime structure (conditioned by the equation Rµν =
0) must be equivalent to considering the accompanying fields (material and gravitational) as well,
and there should be no need to add any extra formulation thereof to the field equations.

The fact that the sources of gravitation are implicitly present in equations defined by Rµν = 0
and must not be added again is vindicated by the failure to obtain a proper energy-stress tensor of the
gravitational field. It is further supported by a number of paradoxes and inconsistencies discovered
recently in the relativistic formulation of matter given by the energy-stress tensor Tµν implying that,
as in the case of the gravitational field, a flawless proper energy-stress tensor of the matter fields also
does not exist (Vishwakarma 2012). This, in fact, leaves equation Rµν = 0 as the only possibility
for a consistent field equation of gravitation in the existing framework of GR. One may argue that a
consistent field equation of gravitation is expected to reduce to Poisson’s equation ∇2ψ = 4πGρ in
a weak stationary gravitational field. However, this requirement, which is already compromised in
the concordance ΛCDM cosmology, no longer seems obligatory. It should be noted that the Einstein
field equations with a non-zero5 Λ do not fulfill this requirement (Weinberg 1972).

Although this entirely new insight about the geometry serving as the source of gravitation in
the metric theories of gravity may appear orthogonal to the usual understanding, it is not only in
striking agreement with the theory and observations, but also provides natural explanations to some
unexplained puzzles. Additionally, it removes the long-standing problems of standard cosmology,
viz., the horizon, the flatness and the cosmological constant.

It was Einstein’s obsession that the vibrant geometrical part of GR is ‘marble’ and matter is
‘wood,’ and that all attempts should be directed to turn wood into marble. It finally turns out that the
‘wood’ is a redundant part of the theory whose departure enhances the beauty of the ‘marble’ in the
true field equation of gravitation Rµν = 0 due to its extreme simplicity.

It may be mentioned that any proposed theory of gravitation, supplying a model of the universe,
is expected to explain the observations of the CMB radiation and the baryon acoustic oscillations
(BAO). Though a detailed discussion on this subject would require further study, it may be mentioned
for the time being that, taken at face value, the only unanimous prediction of the CMB observations
is a flat spatial geometry (Vishwakarma 2003; Blanchard 2005; Larson et al. 2011). As has been
mentioned earlier, Equation (7) can be transformed to the Minkowskian form, by using suitable
transformations, which does have a flat spatial geometry.

Additionally, we have shown that the universe is not empty in the present theory, though the
matter fields do not play a direct role, hence providing full leverage for the parameters Ωm, Ωb, etc.,
to fit the observations of CMB and BAO which indicate that Ωm ≈ 0.3 (Komatsu et al. 2011; Blake
et al. 2011).

Finally, it would be worthwhile to mention an interesting interpretation (which is due to an
anonymous referee) of the present findings. In terms of the standard picture, the gravitating sources
can be viewed as a discrete distribution of point particles seen at a microscopic level (in a restricted
sense). Although this interpretation would not hold in the case of the scalar fields or the cosmo-
logical constant, it would not create any real problem. The only obligatory scalar field required by
the standard paradigm, to explain the horizon and flatness problems, is the inflaton field, which is
however not required by the new theory, as we have seen earlier. While the horizon problem does
not exist in the new theory as the whole universe is always causally connected, the flatness problem
is averted due to the absence of the matter tensor. The cosmological constant or any other candidate

5 It would not be correct to claim that Λ is negligible in the concordance cosmology, in order to give any advantage to this
theory. In fact, the mass density associated with Λ, say, ρΛ = Λc2/8πG, is comparable with the matter density.
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of dark energy is absent in the new theory, due to the same reason, as has been explained earlier.
Thus the alternative interpretation appears promising and worth exploring further.
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