Research in Astron. Astrophys2013Vol. 13No. 11, 1269-1294

R hi
http: //mww.raa-journal.org  http://mwww.iop.org/journals/raa Agzﬁigcm)’,na nd
Astrophysics

Solar-like and Mira-like oscillations of stars — A uniform
excitation mechanism*

Da-Run Xiond and Li-Cai Dend

L Purple Mountain Observatory, Chinese Academy of Sciertasjing 210008, China;
xiongdr @pmo.ac.cn

2 Key Laboratory for Optical Astronomy, National Astronomi®©bservatories, Chinese Academy
of Sciences, Beijing 100012, Chinlégai @bao.ac.cn

Received 2013 May 12; accepted 2013 June 18

Abstract Using a non-local and time-dependent theory of convectienhave cal-
culated the linear non-adiabatic oscillations of the realia low-degree F-p39 modes
for evolutionary models from the main sequence to the asgtigpgiant branch for
stars with solar abundanc& (= 0.70, Z = 0.02) in the mass range of 0.6-3M.
The results show that low luminosity cool stars tend to barslite oscillators, whose
low-order modes are stable, but intermediate and high graeodes are pulsationally
unstable; their unstable modes have a wide range in freguart small values for
amplitude growth rates. For stars with increasing lumityesnd therefore lower tem-
perature, the unstable modes shift towards lower ordegesgdiresponding range of
frequency decreases, and the amplitude growth rate ireseldgh luminosity red gi-
ant stars behave like typical Mira-like oscillators. Thieefs of the coupling between
convection and oscillations on pulsational instabilitwédeen carefully analyzed
in this work. Our research shows that convection does noplgimct as a damping
mechanism for oscillations, and the complex nature of thgpling between convec-
tion and oscillations makes turbulent convection sometitvehave as damping, and
sometimes as excitation. Such a picture can not only ndg@etount for the red edge
of the instability strip, but also the solar-like osciltatis in low luminosity red stars
and Mira-like ones in high luminosity red giants.

Key words: convection — stars: oscillations — stars: late-type — stawelution

1 INTRODUCTION

The great discovery of solar five-minute oscillations (lbéan et al. 1962) made it possible for the
first time to directly study the internal structure and motaf the Sun through observations and
analysis of oscillations on the solar surface. The big leap/drd in helioseismology encouraged
astronomers to apply the same method to other stars. Witincmus efforts in past decades, solar-
like oscillations were eventually discovered in solaelénd sub-giant stars near the main sequence
(MS) (Brown et al. 1991; Bouchy & Carrier 2002; Guenther e28l05; Bedding & Kjeldsen 2007)
and red giants (Barban et al. 2007; Frandsen et al. 2002;sBatzal. 2000; De Ridder et al. 2009).
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NASA's Kepler mission, with an accuracy higher than all atsienilar ground or space based observ-
ing missions, has collected stellar oscillation data faugands of MS stars and red giants, which
have enabled great progress in the field of asteroseism@@uggplin et al. 2011a,b; Huber et al.
2011; Hekker et al. 2011).

Itis popularly accepted that the five-minute oscillatiohthe Sun are excited by the stochastic
effect of turbulence (Goldreich & Keeley 1977a,b; Kumar etl@88; Goldreich & Kumar 1988;
Kumar & Goldreich 1989; Goldreich et al. 1994; Belkacem et28l08). As a natural extension,
solar-like oscillations of stars have also been considerda due to the same stochastic excitation
of turbulence (Samadi & Goupil 2001; Samadi et al. 2003; Shragal. 2008). However, when
Dziembowski et al. (2001) attempted to understand the whtens of a red gianiy UMa, they
discovered that such a mechanism is unable to explain thenadxs frequency spectrum and the
amplitude ofa UMa. The observed frequency dependence of the amplituderimieagree with the
one expected from stochastic excitation. This mechanigdipis an amplitude of the fundamental
mode, which may correspond to one of the largest observeditadg modes, about two orders
of magnitude smaller than the amplitudes of modes withr 5. These luminous red giants can
better be interpreted as Mira-like oscillators, insteadadéar-like ones. By using our non-local and
time-dependent theory of convection (Xiong 1989; Xiongle1897), we have calculated the linear
non-adiabatic oscillations of the Sun and red giants. Gaulte showed that all the g-modes and low-
frequency F- and p-modes are pulsationally stable, butriteerhediate- and high-frequency modes
(with periods of~ 3 — 16 min) are all unstable for the Sun (Xiong & Deng 2010). For Inous
red giants, oscillation happens in the fundamental, lodeomodes, and all the high-order modes
are stable (Xiong et al. 1998a). The unstable mode shiftsgioeh orders with decreasing stellar
luminosity (Xiong & Deng 2007). The successful interprietas of the oscillations of the Sun and
red giants suggest that there is no distinct difference éetwsolar-like and Mira-like oscillations
in stars; both are naturally due to the interactions betveggwection and oscillations. This work
aims to verify such a conjecture by detailed numerical miadelnd analysis. A short description of
our stellar convection theory, and the treatment of comvedh our studies are given in Section 2.
The results of our calculations are presented in Sectioresti@ 4 is a thorough discussion of
the excitation mechanism for low temperature stars. Camhs of this work and discussions are
presented at the end.

2 THEORETICAL TREATMENT OF CONVECTION

In a conventional HR diagram, the Cepheid instability stripsses the plot from the upper-right to
the lower-left, and includes all well-known classical @ileg variable stars, such as population |
and Il Cepheids, RR Lyraé, Scuti and pulsating white dwarfs. All of these classicalsptibrs are
due to the radiative:--mechanism. For the low-temperature stars located to gie df the strip,
the ionization zones of hydrogen and helium that powersstmeechanism have already become
fully convective. Obviously, convection overtakes raithatand becomes the major excitation and
damping mechanism for oscillations. In a fluid medium witlg@wimensions, such as in stellar
interiors, convection usually becomes fully developedtlgnce, whose properties and laws are
not yet well understood. Therefore, it is not currently glolesto have a complete theory describing
convection. The pulsational stability of low-temperatstar's having extended convective envelopes,
such as the Sun and red giants, sensitively depends on #tea&et of convection (Ulrich & Rhodes
1977; Antia et al. 1982; Antia et al. 1988; Gabriel 1988; Sdine al. 2002; Dupret et al. 2006;
Houdek 2008; Balmforth 1992). The most popularly appliegbtly of convection in calculations
of stellar structure, evolution and oscillations is stilétmixing-length theory (MLT, Bohm-Vitense
1958) and its various revisions, such as time-dependent(dbho 1967; Gough 1977; Stellingwerf
1982; Grigahcene et al. 2005) and non-local MLT (Spiegé3t ¥lrich 1970a,b).
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For the study of stellar structure, MLT is still a very usefipproximation. The reason is that
convective energy transport is very efficient in deep stefieeriors. The temperature gradient in
such conditions is very close to being adiabatic and is ieddpnt of the convection theory used.
The depth of the outer convective zone of a star only depemtissostructure of the so called super-
adiabatic convection zone at the top, and is adjustablerigduihe mixing-length parameter.

The most obvious advantage of MLT is that it has a straightéod physical picture, and is very
simple to apply. This is why MLT is widely used in current $aelmodeling even though it still has
quite an obvious problem. In fact, MLT does not follow fronethydrodynamic equations and tur-
bulence theory, but is instead a phenomenological tredatiiae fundamental shortcoming of MLT
is that it cannot provide an accurate description for theadyic behavior of turbulent convection.
When dealing with dynamical problems of turbulent conwattisuch as time-dependent and non-
local convection, this shortcoming becomes prominent.sigtaring such issues, a time-dependent
and non-local theory of convection was then developed basdtie hydrodynamic equations and
theory of turbulence (Xiong 1981, 1989; Xiong et al. 1997 nthared with MLT, our theory has a
more solid foundation in hydrodynamics, therefore it caovjte a more precise treatment for the
dynamics of turbulence. The simple physical picture in M&®bsent from our theory. In addition,
it becomes more complicated than MLT in applications. Thginal MLT is described by a set
of algebraic equations, but our time-dependent and noal-tbeory of convection is composed of
three (for chemically uniform media) or six (for chemicatign-uniform media) partial differential
equations, each of which is second order in space. As a rélsalequations of stellar envelope
structure cover 10 orders, compared to four orders for thal IBILT. For stellar evolution, at least
17 independent variables are needed (the exact numberdteparthe number of chemicals par-
ticipating). Due to intrinsic singularities and stiff preyies of the equations, numerical calculation
becomes slightly difficult. That is the reason why such atheannot be generalized and widely
applied in the community, and it is only used in a relativetyal community of authors and their
collaborators. Nevertheless, this community has enjogedticcessful application of such a theory
to a number of studies in stellar problems, such as the stricf the solar convective zone (Unno
et al. 1985), the depletion of lithium in the atmosphereshef $un and solar-type stars (Xiong &
Deng 2009), the structure and evolution of massive stamsn@il985; Xiong 1986) and both radial
and non-radial oscillations of stars (Xiong et al. 1998aXimng & Deng 2001a; Xiong & Deng
2007; Xiong & Deng 2010). Our studies have reproduced gélyevhaserved characteristics. For
instance, reproducing the adiabatic sound speed insid8uhdrom inversion of helioseismic data
by using our non-local convection model as the referenceainmgins out to be much better than
that from the standard solar model. (Zhang et al. 2012)st e#produces the observation of lithium
abundance in the atmospheres of the Sun and solar-like(3tiarsy & Deng 2009). Moreover, our
theory not only offers a correct explanation for the red enfghe instability strip for RR Lyr (Xiong
et al. 1998a,b) and Scu stars (Xiong & Deng 2001b), but also predicts the inBtalstrip for Mira
variables outside the Cepheid instability strip (Xiong &Mge2007). The same theory also explains
the observations and primary properties of small amplitedievariables (Xiong & Deng 2007).

The goal of the current work is to study the stability of radiad non-radial p-mode oscilla-
tions for solar-like stars and red giants. The energy géingraore of a star has very little effect on
p-mode oscillations, therefore our survey of pulsatiomability for stars can be simplified to cal-
culate the linear non-adiabatic oscillations of stellaredope models. The structure and oscillations
of stellar envelopes can be described by a set of seven egsafour of which are used to treat
the conservations of mass, momentum and energy, and mdiatinsfer processes, therefore they
are not very different from the traditional equations disig stellar structure. The only exceptions
are that a Reynold tensor term of turbulence appears in thatieq of momentum conservation,
and turbulent thermal flux and turbulent kinetic energy t®are included in the equation of energy
conservation. The other three equations describe the antbeross-correlations of turbulent veloc-
ity and temperature fluctuations, with all being second opaetial differential equations. After a
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simplification is applied to the third order correlatiorfg$e seven equations are then transformed to
a consistent and closed set of dynamic equations for ssthacture and oscillations (Xiong 1989;
Xiong et al. 1997). The linear stability analysis for theseletionary models is divided into two
steps:

(1) Calculations of the non-local convective envelope nobte stars:
If we set all the terms containing time derivatives and sp@ele zero, we can derive the
equations for calculating the model of a static envelopenfowr original ones. The complete
set of equations and corresponding boundary conditionbeaaferred to in our previous work
(Unno et al. 1985; Xiong & Deng 2001b).

(2) Calculations of linear non-adiabatic oscillationsgsihe envelope models:
Setting all variable quantitiegr, t) be the sum of their equilibrium value and oscillation com-
ponentsyo(ro) + v/ (ro)e’?, and taking a linear expansion around the equilibrium posit
we can have a set of linear equations that describe nonatdiascillations. For stellar radial
oscillations, the equations have 10 dimensions; but fornaaiial oscillations, there are 14 di-
mensions. The equations representing linear oscillatoidsboundary conditions can be found
in our previous work (Xiong et al. 1998a; Xiong & Deng 2007pron-radial oscillations, a
concise description can be found in a recent paper (Xiong &2010).

Being different from the usual theoretical scheme of stadcillations, the completely non-
local treatment of convection is used either in equilibriomodels or pulsation calculations. This is
a key point because, for low temperature stars having egtbodnvective envelopes, the dynamical
coupling between convection and oscillations is as impbr@a the thermodynamic coupling, and
is sometimes more important. Non-local convection is Witalgnificant for the stability of low
temperature stars. This is why the results of our theorataaulations are so different from those
that use normal MLT.

3 THE NUMERICAL RESULTS

With the algorithm discussed in the previous section, weuwated the radial and low-degree=
1—4) non-radial, non-adiabatic oscillations for stars from KS up to the red giant and asymptotic
giant branch (AGB) phases in the mass rafigie— 3.0 M. The upper boundary is placed at the
optical depth ofr = 1073, and the lower boundary at an arbitrarily deep enough radiys~

8 x 10°K for MS, sub-giant and low luminosity red giant starsygf Ro ~ 0.01 for more luminous
red giants, wher&;, andry, are respectively the temperature and radius of the bottamdery. The
equation of state (Hummer & Mihalas 1988; Daeppen et al. 1888 OPAL opacity (Rogers &
Iglesias 1992) have been used in this work. For the low teatpes regime, the opacity has been
supplemented with the low temperature table of Alexandee&gBson (1994). Linear non-adiabatic
oscillations of the fundamental up to the 39th p-mode areeteat]

3.1 Pulsationally Stable and Unstable Modes in the H-R Diagim

Figure 1(a) and (b) shows respectively the distributionstable (small solid dots) and unstable
(open symbols and crosses) radial modes in the H-R diagtasclearly shown from Figure 1(a)
that the unstable modes with a lower degree form two welbss#pd groups, i.e. the one for well-
known ¢ Scuti stars located in the central part of the diagram, amdh&n one on the upper right
part for pulsating red giants, including Miras, semi-regwnd irregular variables. As demonstrated
in Figure 1(a) and (b), all the low luminosity stars locatedtte right of the) Scuti instability strip
are stable in lower order modes, but are unstable in intelateecand high-order modes. These stars
have solar-like oscillatory properties. On the contraltythee high luminosity red giants are unstable
in low-degree modes, while at the same time being stablet@rrirediate- and high-order modes.
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Fig. 1 Pulsationally stablesfnall dots) and unstabledpen symbols andcrosses) radial modes on the
H-R diagram. Panel (a): the low-order (pO—p5) modes. Pdmettfe intermediate- and high-order
(p16—p25) modes. The dashed- and solid-lines are, regplctihe theoretical blue and red edges
of thed Scuti instability strip.

They are typical Mira-like oscillators. On Figure 1(b), tw@ar-like instability strip has already been
connected with thé Sculti strip. In fact, these two classes of variable stare histinctly different
characters.

Thed Scuti stars are mainly excited by the radiatiemechanism, and the solar-like oscillators
in the right hand side of thé Scuti instability strip are excited by convection. The&cuti stars
oscillate in intermediate- and low-order modes, but tharslike stars with low-temperatures and
about the same luminosities are oscillating in intermediahd high-order modes. We are going to
show that the normalized frequency (or radial order) of tlaximum unstable mode for solar-like
oscillations depends primarily on stellar luminosity andakly on temperature. For example, for
a low temperature star located outside the instabilitpstith M = 2 Mg, log(L/Le) =~ 1.45
andlogT, ~ 3.69, its maximum unstable mode is p15. However, faF &cuti star with similar
luminosity, its maximum unstable mode is p4.

3.2 Pulsationally Stable and Unstable Modes in thibg L/ L — n, Plane

Atrend has been demonstrated in Figure 1(a) and (b): foeasing stellar luminosity, the oscillation
instability tends to shift from high order modes to lower@rdnes.

Figure 2 shows the distribution of the stable (small solitsfland unstable radial modes (open
circles) in thelog L/ L — n, plane for evolutionary models of awW = 1.0 M, star, wheren,. is
the radial order of the modes. The size of the circles in tl¢ iplproportional to the logarithm of
amplitude growth ratéog n, wheren = —27w;/w,, andw; andw, are respectively the imaginary
and real parts of the complex circular frequency= w, + w;i. As clearly shown in Figure 2,
for increasing stellar luminosity, oscillations proceednfi high-order modes towards lower order
modes, and the number of unstable modes decreases, whilmfiitude growth rates increase.
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Fig. 2 Pulsationally stablestnall dots) and unstablegpen circles) radial modes on thivg L /L —
n, plane for the evolutionary models of &d = 1.0 M, star, wheren,. is the radial order of modes.
The size of the circles is proportional to the logarithm & #mplitude growth rate of the oscillation
modes.

3.3 The Dependence of Pulsation Amplitude Growth Rate ohand v

The classical giant variables, such as Cepheids and RR kyaeg are usually oscillating in the ra-

dial fundamental mode, or sometimes in a few low order ovegowith large amplitudes. The most
obvious characteristics of the solar five-minute oscilasi and solar-like oscillations of stars are
simultaneous excitation of multiple modes, both radial aad-radial. The amplitudes are tiny. For

the oscillations of the Sun, oveéd” modes with from 0 to~ 1000 have been observed. Individual

modes have amplitudes ranging from a few millimeters peosgap to about 20 centimeters per
second. Our studies show that the theoretical amplitudethraates of the oscillations only depend

on the oscillation frequencies not on the degrekof the spherical harmonics; this is true at least
for the intermediate- and low-degree modes &f 25 (Xiong & Deng 2010). Through the current

work, we have learned that the same fact also holds for the punmode oscillations of stars other

than the Sun.

Figure 3 shows the amplitude growth rate$ ¢f the non-radial modes with= 1 — 4 as a
function of frequency (= w,./2m) for the solar model. Such a theoretical result has been coadir
by observations of solar oscillations (Libbrecht & Zirin88& Libbrecht 1988; Libbrecht & Woodard
1991).

3.4 The Maximum Unstable Mode

As shown in Figure 3, the amplitude growth rates for solee-lbscillations vary as a function of
frequency of the oscillation mode. In this work, the maximumnstable mode is defined as the mode
whose amplitude growth rate is the largest for a given stelladel. Because the oscillatory ampli-
tude of any individual mode is always extremely small forasdike oscillators, the non-linearity
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Fig. 3 The amplitude growth rates= —27w; /w. versus frequencies for the Solar model.

has little effect on selection of modes. Therefore we exfieat the theoretical prediction for the
maximum unstable mode should correspond to the mode of nuewiamplitude observed, when
the coupling between convection and oscillations is teatehe right way.

Figures 1 and 2 show a trend: towards higher luminosity, gadllation instability shifts from
high- or intermediate-orders to lower ones, and the ang#itgrowth rate also increases at the same
time.

Figures 4 and 5 demonstrate respectively the radial argdgr and its amplitude growth rate
Nmax Of the maximum unstable mode as functions of luminosity far low temperature stars of
1.0 to 3.0M, located to the right hand side of the instability strip. ligdrie 4, the open symbols
represent the radial modes, while the small solid symbadtee non-radial modes éf= 1 — 4.

It can be seen that the radial orders of the maximum unstabtierdecrease almost linearly with
increasindog L/ L, for stars with the same mass. It is also shown in Figure 5 tr@maitmplitude
growth rate hardly depends on stellar mass and the sphiedcalonic degreé instead it depends
exclusively on luminositylog n increases almost linearly withg L/ L.

Similar to the pulsation constaft, we define the normalized oscillation frequency as the fol-
lowing,

— . /Pe
vl =v 5" (1)

By using linear pulsation stability analysis, we found ttet normalized frequency of the maximum
unstable mod@/| can be approximately expressed as,

T 7. 12 M
108 [Vanax] = 1.510g —= — 6.5 |log == | — 0.1log —— + 3.47. 2
0g [Vmax] o8 7 {Og Tc@} % 31 + (2)

Figure 6 shows the terfog [vmax] + 0.1 M /My, as a function of effective temperature, from
which one can see that Equation (2) is validated for all tlikafeand non-radial modes for low-
temperature stars of 0.6—3)0,, located to the right hand side of the instability strip.
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Brown et al. (1991) argued thaf,... < Cs/Hp, whereC is the sound speed atfh «x T'/g is
the pressure scale height of the stellar atmosphere, ancctibrated such a rigid relation using a
solar model and derived the following semi-empirical rielafor the maximum unstable frequency,

(M/Mo) (T./5777)"
Vmax = L/L@ Vmax® » (3)

wherevy.xo = 3021 + 27 uHz is the frequency of the maximum unstable mode of the Sun.
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From Equations (1) and (2), the frequency of the maximumalbistmode predicted by our
theoretical calculations of non-adiabatic oscillatiofstars can be transformed to,

e

Teo

log Vmax = 4.51og

T, 1° L
—6.5 {log } —0.751og - + 0.41og +3.47. 4)
©)

M
Teo Mo
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In Figure 7, a comparison is presented between the thealigtiredicted (from Eq. (4)) fre-
guency of the maximum unstable mode in our non-adiabatiitl@tson theory to that of Stello et
al.'s equation (3). A very good match has been reached, asmnated in the plot.

4 THE EXCITATION MECHANISM OF OSCILLATIONS FOR LOW-TEMPERA  TURE
STARS ON THE RIGHT HAND SIDE OF THE INSTABILITY STRIP

It is well known that warm pulsating variable stars such apheéls, RR Lyrae and Scuti are
excited by the radiative-mechanism. For cooler stars located to the right hand didleecinsta-
bility strip, the major mechanism for energy transportaiiothe envelope is convection, instead of
radiation. Naturally, convection should become the prinmaechanism of excitation and damping
for oscillations in these cool stars. For a long time, pedyiee thought that the coupling between
convection and oscillations is solely a damping againsiggeroscillations of stars, which results in
the red edge of the instability strip. The oscillations ia 8un and all low-temperature stars located
to the right hand side of the instability strip are damped lmuiconvection, therefore these stars
should be pulsationally stable (Balmforth 1992). Solar-fiviaute oscillations and the solar-like os-
cillations of stars are excited by stochastic excitatiotuobulent convection (Goldreich & Keeley
1977a,b; Kumar et al. 1988; Goldreich & Kumar 1988; Kumar &deich 1989; Goldreich et al.
1994; Belkacem et al. 2008; Samadi & Goupil 2001; Samadi 20813; Samadi et al. 2008). Such an
idea was supported by the finite line width of solar p-modéellasions (Libbrecht 1988). However,
this idea is rather superficial. Even if the turbulent staticaexcitation can explain the five-minute
oscillations fairly well and also explain the solar-likecdkations in MS stars and sub-giant stars,
there are great difficulties in applying the same mechangisotar-like oscillations observed in
intermediate- and high-luminosity red giants, suclwvddMa (Dziembowski et al. 2001) discussed
in Section 1. It is impossible to explain the huge pulsatiopltudes and the frequency spectra of
unstable mode in Miras, semi-regular and irregular vaeiabdrs. Convection affects the stability of
stars in three ways: turbulent thermal convection, tuntiybeessure and turbulent viscosity. We will
see below that turbulent viscosity and turbulent thermaleation play a damping effect against
oscillations, however turbulent pressure is usually aatsliting effect. The aspect ratios among the
three factors actually change with the structure of stasdyactions of luminosity, effective tem-
perature and metallicity) and the mode of oscillations. 8tmes convection overall behaves as a
damping mechanism, and sometimes as an excitation. Theuesyign for exploring the pulsational
stability of low-temperature stars is that one needs a vetditdished non-local and time-dependent
theory of convection to handle the coupling between comyeeind oscillations.

4.1 Accumulated Work

In the above discussions, a qualitative picture of the doggdbetween convection and oscillations
is presented. In the following, we are going to start fromhlgdrodynamic equations (the conser-
vation equations of energy and momentum of mean motiond)dgnamic equations for turbulent

correlations, to derive the expressions for the accumdilatak done by stellar oscillations, and to
guantitatively describe the excitation and damping of l&@ns due to the radiation and the cou-
pling between convection and oscillations. Without losgeferality, all the mathematics of stellar
convective motions follow Reynold’s method. Due to the giiascale of stars, stellar convection
occurs in fully developed turbulence, therefore all thegitgl quantitiesX will be expressed as the

sum of its averaged valug and its turbulent fluctuatiof’,

X=X+X" (5)

Inserting Equation (5) into the dynamic equations for flu@sd expanding a Taylor series f&r
and saving only the first order &f’, then averaging all the equations, we can have the hydradigna
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equations for average motion. The equations describingerwation of energy and momentum, for
instance, can be transformed into the following averagatgjus of the corresponding conservation
laws after Reynold’s decomposition and the averaging m®ce

Dui 1 o o

ST EW (glkP + puzu’“) +g*Vid =0, (6)
_pf _DP 1 D—u —

Cp— — B— S P ) 23 /kv m

PEP Dy Dt T aPpptitt T euTuE VR

= pen — Vi (FE+ FE + F), (7)

where Fk, Fk = Cppu/*T' and F;k = pu'kulu’® are respectively the radiative, convective and
turbulent kinetic energy fluxes, and

D 0 —
= - = k
Di 8t+u Vi (8)

is the Lagrangian differential operator, apdT’, P, ey andu’ are respectively the density, tem-
perature, pressure, nuclear energy generation rate pianass and théh covariant component of
the velocity of the gasp is the gravitational potential;r is the specific heat at constant pressure,
B = —(8lnp/0InT), is the expansion coefficient of gas afifl is thek component of radiative
flux.

Itis shown in Equations (6) and (7) that, when convectiorpleas, a turbulent Reynold’s stress
term pu’iu’* emerges in the equation describing momentum conservatiftuid motion, turbulent
thermal fluxF,. and turbulent kinetic energy fluk;. The Reynold’s stress can be expressed by the
sum of the isotropic componegit* 52> and anisotropic componept**,

pu'u't = p(g*a® +x") . 9)
By subtracting the average Equations (6) and (7) from thggroal conservation equations of momen-
tum and energy, one can get the dynamic equations of turbeséscity »'* and relative temperature
fluctuation7’/T, and then the dynamic equations for the auto- and crosglations of turbulent
velocity and temperature fluctuation. The resulting equestj together with the equations for aver-
age motion of a fluid, form a complete, closed and consistetnbfsdynamic equations for stellar
structure and oscillations (Xiong 1989; Xiong et al. 199#)e dynamic equations for the isotropic

component? and the anisotropic one of turbulent Reynold’s stress caxpeessed in the following
(Deng et al. 2006):

Dz 2, . . . 2 " T7 ( Dy, _
T (2@t 4+ V) — cButh = (S v
pr T3 (VR EXTViE) - gBut o | S5 4 ko
1, ) 4
- 59 IV (pzlVga*) = ~3 @?, (10)
Dy . . . 9
gt + ot (glkvkﬂj + g7 V' — §9UV’“ﬂk>

_ _ _ 9
+ X"V 43V — 29X Vatg
e e A S AN ST _
— B ¢*ui— JkgriZ_ 2 gk L v
(g“ 7O T3 T)(Dt+ k9
(

4(1 .
;C?’)Xw’ (11)

1 «@ = 1]
-5 PV (p21Vpx"7) = — 37
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where .
cir°P
= 12
e T 078G M, pr (12)
is the decay timescale of turbulence due to viscosity, and
)
P
| = QCQHP — @ (13)
4 AGM,p

is the characteristic scale length of the turbulent diffasi; , co andcs are the convection parameters
related respectively to turbulent viscous dissipatiom-focal diffusion and anisotropy of turbulence
(Xiong 1989; Xiong et al. 1997; Deng et al. 2006).

The anisotropic component of Reynold’s strgss is a symmetric {7 = y7%) second order
tensor, which contains, in general, six independent coraptsn However, for static convection or
radial oscillations in stars, only three components in tlagahaly!!, 22 andy?? are non-zero due
to spherical symmetry; all the other non-diagonal comptare zero, i.ex'? = 23 = 3! = 0.
Moreover, agj;;x*/ = 0, only one of the non-zero components is independent,

gux" =x1 = —2x3 = —2x3. (14)

Using Equation (14), one can prove that, for stellar rad&tiltations, Equation (6) can be
simplified as,

Du, s 0 = dr 0 ,_ 4 4 GM,
Dy + 47y 0L, (P—i—pa:)—i——W(pr X1)+ . =0, (15)
and Equations (10) and (11) can be simplified to,
Da? 2 [ 22Dp 1 0 Uy
Dr 3 {__E T Xign, (7)}
B EB T’ Du,  GM,
3 Dt r2
1 0 (4, 022\ 4 ,
Dyt 4( 5 9 [uy o sa. 3ty
Dt 3{x81nr(r)+X1 61nr(r)+2r
4 17 (Da,  GM, 10 ([, ox
_ = - = [t
3 TT ( Dt i 72 > pr2 or <T P2 o
4 (1 + Cg) 1

= ——X1- 17

37

Now, linearizing Equation (15) gives,

Wbr = 2[5 45 (pa?)] +

: 5 ()

73

L
dr

d 1
JGM: 3 d(pr 1] (18)

r3 pT3

Multiplying Equation (18) bydr*dM,., and integrating from 0 td/, with respect taii,., the left
hand side becomes,

Mo w? w;
/ W2srér*dM, = 2 <1 +—5+ 2i—1> Ey, (19)
0 w w

T T
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where
1 My
EK = wa/ 67’5T*dM7«, (20)
0
is the total kinetic energy of the corresponding mode, @ndndw, are respectively the imaginary
and real parts of the complex circular frequency of the tegoity modev = w,. + iw;. With simple
manipulation, the accumulated work can be expressed as,

Wy = —27—

M, = _
T 0 oP Q0x | op* . d or*
_ 2EK/0 Im{ [ﬁ iy I} Lo () A @

4.2 Radiativex-Mechanism and Radiative Modulation Excitation

Equation (21) is the proper expression for the accumulatadt imvolved in stellar radial oscilla-
tions. The second and third terms in the integral represamributions due to the isotropid?)
and anisotropic{y}) components of the Reynold’s stress, in other words, theuhjcal coupling
between convection and oscillations. The first term inclgdiP is the gas pressure component in

the accumulated work,

My D S~

Wp, = — - / Im {5—]3 op ]dMT. (22)
2Ek Jo pp

Linearizing the equation of energy conservation given bydtipn (7), for radial oscillations we
have,

_ - )
0P _ e Lsc 1{px2 (6—p—36—$)
p P

1 d
T2 dr (0L, + 6L, + 5Lt)] } . (23)
The first term on the right hand side of Equation (23) is duedialzatic variation of gas pressure
which has no contribution to the accumulated work as dematest in Equation (22). The second
term is for the non-adiabatic variation of gas pressure fiiclvthe termy (pey ) is the contribution
to gas pressure due to generation of nuclear energy. Gngwahbking, it is much less than the last
term in the bracket for normal pure p-mode oscillations. \\ereot going to discuss the details at
this point due to limited spacéL,, 6 L. andd L, are responsible for variations in gas pressure due
to radiative and convective (enthalpy and turbulent k)ethergy transfer. Inserting Equation (23)
into Equation (21), the accumulated work (Eq. (21)) can bigevr as,

M by
o oy L20x0p* ;. d [orF
Way = —2Ek/0 {Im [(31“3 5)x"— -+ (5

d
Is—1 6p* d
— Re |:747T7’2ﬁwr 75 (6LT + (SLC + §Lt):| }

- Wt + ins + WPgr + Wch- (24)

r
dw

The first set of square brackets under the integral is theibotibn to accumulated work due to
Reynold’s stress, also referred to as the dynamic coupktgden convection and oscillations. The
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second set of square brackets is that of the radiation angective (enthalpy and turbulent kinetic)
energy transfer.

My —x
T op
Wp,r = — I

Pg 2EK 0 m{ 0

{r3_1 1 d(aLT)HdMT

p wp 4rr?  dr
- /ORO Re {(Fg ~1) %d(gf’”)} dr, (25)
W ﬁ /OM0 . { 5;* {sz_ﬁl 47Tlr2 d (6Lcd:- 6Lt):| } M.

Equations (25) and (26) are the precise formulae for theraatated work done by radiative
and convective energy transfer respectively, in whih andd L. can be written as,

0L, d oT 6T 5P or
L —m(?)“‘*‘“)?‘m’?”? @7
L. 5P 6T oV _or

whereV = u/T"/T is the turbulent velocity-temperature correlatioh,= (91np/01n P),. and
B = —(0lnp/0ln T)p are respectively the compression coefficient and thermaérsion co-
efficient of gas,K andCp are the radiative opacity of gas and specific heat at conptassure
respectively,

Kp=(0lmK/OInP),,
Kr=(0@WnK/0InT)p ,
Cp,p = (61nCp/6lnP)T

and
OpyT = (3 In Op/a In T)P

are the corresponding partial derivatives with resped?tand7'. Considering that oscillations in
stellar interiors are normally very close to being adiahatie can use the following adiabatic rela-
tions when calculating the accumulated work in Equatio$ éhd (26),

5p* __oT* 6P

I —1
(s )ﬁ T' P

5T
~ ?/ Vad- (29)

Inserting Equations (27)—(29) into Equations (25) and (#&) following approximate expres-
sions for the accumulated work can be derived,

Ry Tk
T oT
Wp . &~ Re< L,—
P N S B /0 e{ T

d 6T d 6T or
T {(KT BNV =) T <?> ‘47]

dL, 6T* oT d 6T or
+d’]" T |:(KT+KP/vad—4)?—m<?> —4 7:|}d’l°, (30)
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Ry T
T oT
Wp.~ — L.—
Py %, Ex /0 Re{ T

A+Cpp 6T 1% or
Bt ST I S
Vod > Trv T ]

dL. oT* A+Cpp 6T oV or
_|(1-B SO RP) 2| Var. 31
o K +Cpr + » >T +3 + T”r (31)

d
X — [(1—B+CP7T+
dr

The first term in the outermost braces of Equation (30) is ingtbut the well known radiative-
mechanism, on which there are very rich discussions intdeture. No more follow up in this work
is needed. The second term is what we have called the raglimtbdulated excitation mechanism
(Xiong et al. 1997). Although also being linked to radiatgacity, it is an excitation mechanism
for stellar oscillations that is completely different frahe radiatives-mechanism, and it only exists
in the radiative zone where there is a gradient in the fluxim@uthe course of stellar oscillations,
such a static variation in radiative flux can be modulateddmjliatory motion, and causes transfor-
mation between radiative energy and oscillatory kinetiergy. The underlying driving mechanism
is somewhat similar to blowing a gentle laminar wind onto ecpi of paper, and making the paper
vibrate. That is why we call it the radiation modulated exti@dn mechanism. For the sake of clarity,

we will ignore the last two, relatively small, ter% (%) and4%) in the brackets, and we can
deduce from Equation (30) that, when

dL,
K K ad — 4
(Kr 4+ Kp/Vaa —4) I

>0, (32)

this process acts as an excitation, otherwise it is a dampiachanism. In the zone that has a
gradient in radiative flux at the top of a convective zoRe, + Kp /Vq — 4 > 0, dL,./dr > 0 and
Equation (32) holds, but in the bottom of the radiative zomere there is a gradient in flux, in a
deep enough convective zone, one Ags+ Kp/V.q — 4 < 0 anddL, /dr < 0, and Equation (32)
holds as well. Therefore, the radiative modulated excdtathechanism behaves as an excitation in
both radiative zones that have a gradient in flux at the topkattbhm of a convective zone. This
is exactly the reason why all stars located to the right ofitis¢ability strip are unstable, and no
red edge of the instability strip can be defined when ignottegcoupling between convection and
oscillations.

Figure 8 shows the variation in the accumulated work of tinelffumental mode as a function of
depth, for a low temperature star located to the red sidesafistability strip. The coupling between
convection and oscillations is not taken into account hieis.clearly demonstrated in this plot that
the major excitation comes from the radiative modulatiooitexion at the top and bottom of the
convective zone. Therefore, we can understand why the taid ® the right hand side of the HR
diagram are pulsationally unstable and no red edge of thakiisy strip can be found when the
convection coupling is ignored.

4.3 Thermodynamic Coupling between Convection and Osciltions

Equation (31) is the component of the accumulated work thiates from transfer of convective en-
ergy, which represents the thermodynamic coupling betwerwection and oscillations. Convection
absolutely dominates the energy transfer inside the coieezone (far from both boundaries) for
stars having extended convective envelopes, so that welhage L., L. ~ LanddL./dr ~ 0. The
first term under the integral in Equation (31) is much larpantthe second term. Due to the inertia of
convective motion, the variations 6¥/V lag slightly behind those of7’/T', thereforéiVp, . < 0,

i.e. the thermodynamic coupling between convection andlatens works as a damping mecha-
nism within the deep interior of the convective zone. Furtih@re, Equation (31) demonstrates that



1284 D. R. Xiong & L. Deng
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Fig. 8 The accumulated workl/p, (solid line) versus the depth for a low-luminosity red giant star
with M = 1.0 M, log L/ L = 0.0830 andlog T. = 3.7523. The fractional radiation fluxdotted
line) is also drawn. The coupling between convection and osidifia is not taken into account here.
The two rising parts on the curve at the bottom and top of tihwective zone are due to radiative
modulation excitation.

Wp,. is inversely proportional to the oscillation frequeneyThis means that the damping of ther-
modynamic coupling between convection and oscillatiostr@nger for low order modes, therefore
it is the major factor for stabilizing oscillations of thedeorder modes in low temperature stars.

In the radiative zones that have a gradient in flux at the upperlower boundaries of the
convective layer, the second term of the integral in Equai8d) becomes substantial and cannot be
ignored. We refer to this factor as convective modulatioecitexion, which is distinct from radiative
modulated excitation. At the bottom of the convective zateehaves as a damping, whereas in the
upper boundary it becomes an excitation.

4.4 Dynamic Coupling between Convection and Oscillations

In the following, we are going to discuss the dynamical cogpbetween convection and oscilla-
tions, i.e. the contributions of turbulent Reynold’s s&r@ghich are precisely expressed by the sec-
ond and third terms under the integral in Equation (31)anddy} can be derived from linearizing
Equations (16) and (17). Equations (16) and (17) both coraalifferential term, therefore accurate
solutions foréx andéx} can only be made through numerical integrations for thealireguations
describing a non-adiabatic oscillation. The last termsherieft hand side of Equations (16) and (17)
come from the third order correlations representing naalloonvection transport. Specifically, the
term /37“2961%—””: in Equation (16) is the turbulent kinetic energy flux, whishsmall compared with
other terms in the deep interior of the convective zone famfthe boundaries. For simplicity, we
will ignore all the third order terms in Equations (16) and)for the moment. Linearizing these
two equations, we produce the explicit approximate sohgir iz anddy1,

2 1 op d or
2 2t ). 200 1 or
ou” 31+ wra {WTCl {x p M <7° ﬂ
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GM,BV 1, [§V w2\ or
+T_7_(2+GMT i (33)
4 1 d or 3 ,or
IR S 2, 1y_@ [or Q. 1907
o~ 31+ twTeo { 1Te2 [(x +X1) dlnr <7° ) * 21 r]
GM,BV 1. [6V w2\ or
+T_7_(2+9MT —lr (34)

The second and third terms under the integral in Equatioh 24 respectively the isotropic
and anisotropic components of the turbulent Reynold'sstréhe first set of square brackets on the
right hand side of Equations (33) and (34) represents thisaege of energy between turbulence and
oscillation motions resulting from shear and deformatibthe fluid, therefore it reflects turbulent
viscosity in the accumulated work; the second square btackeresent the gain of turbulent en-
ergy induced by buoyant force. It represents the transfbomaetween thermal energy and kinetic
energy of turbulence, thus it acts as the component of terbydressure in the accumulated work.
Putting Equations (33) and (34) into Equation (21), andrafteane manipulations, the integrations
of the second and third terms can be approximated as theviatidform,

2 ¢ [Mo 5-3T3 wr? 6p

Wp ~ =— R e
Pt 3EK/ e{{ 4 1+w2ry p

wr?, d (M* )} GM,BV

x {57‘/ - (2+ GMT) ir]}er, (35)
M, _
Wis = _2%/0 e {1—1—%171 [xz%p _X%dlir (6_:)}
x 5_43F3 65 i 14:0322732 [(I2 1) dlcflr (5_:)

3 ,or d or*
+§ _} dlnr ( r )}dMT’ (36)

4( 1+c ) Te-

Equations (35) and (36)3express respectively the effedisrbéilent pressure and turbulent vis-
cosity on the stability of stellar oscillations. Noticingat5 — 3I's > 0 andoV//V always slightly
lags behind the density variations, the following four @weristics can be concluded:

r

wherer.; = 27'0, Teo =

(1) Generally speakingVp; > 0, i.e. turbulent pressure is an excitation against osiliat This is
due to the fact that turbulent pressure normally slightiyslbehind density variations due to the
inertia of turbulent convective motion. Therefore, on eV (= 1/p) plane, a positive Carnot
cycle is formed, so that the kinetic energy of turbulenceisverted into that of oscillation.

(2) Contrary to the turbulent pressure comporiéh;, Wy < 0. The physical meaning of that is
also very clear: viscosity converts the kinetic energy ellat oscillations into turbulence due to
shear motions. Such a process primarily happens in the loxe wamber range of the turbulent
spectrum. Through the cascading process of turbulendmilant kinetic energy gradually shifts
from low wave numbers to higher ones, and is eventually adedento the thermal energy of
gas by molecular viscosity. If there were no convection,dbetribution of molecular viscos-
ity to stellar oscillations could be ignored. However, wioamvection sets in, the viscosity of
fluid motion will greatly increase. In fact, Equations (1@)da(17) are the expressions for the
conservation of turbulent kinetic energy. In those equntiohe first terms describe the rate of
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®)

variations for turbulent kinetic energy, the second ongsegent the transformation between
kinetic energy of the average motion and turbulent one; hivel terms are the work done by
buoyant force, i.e. transformation between thermal enargyturbulent kinetic energy; while
the fourth terms are for a turbulent kinetic energy flux repraging the non-local convective
diffusion process that makes turbulent kinetic energy gonfone place to another. The right
hand sides of Equations (16) and (17) are turbulent viscms$péhtion terms. Therefore, these
two equations actually describe the equilibrium of energieen the pulsating, turbulent and
thermal motions. Our non-local and time-dependent thebiyrbulent convection is developed
based on fluid dynamics and turbulence theory. This can itbestite dynamic behaviors of
turbulent convection more accurately than MLT.
The maximum unstable modes: Equations (35) and (36)ge@perspective on the dependence
of the dynamic coupling between turbulent convection antlllatons on frequency. When
wTe1 = 1 0orwre.s = 1, the two frequency dependent factors in Equations (35) a6ireach
their maximum. The dynamic coupling between convection@suillations peak under such a
condition. Therefore the frequency of the maximum unstabtgllatory mode can be estimated
aSvmax &~ 1/277.1. Taking the Sun as a reference, it follows from Equation (ha)
M (Ro\’Ts a
Vmax ~ M—@ (?) ?%Vmax,Q

MLy [ T. \° z
= —— — . 37

Mg L (Te,e) o Yma© (37)
Within the convective zone of low temperature red starsraldétive flux is much smaller than
the convective flux k. ~ oT.). It can be shown thak. o« px?, therefore,

() () (2 ()
R _ (M L . (38)
ze (PTé Mg Lg Teo

Inserting Equation (38) into Equation (37), one will have

MN\S (L\7?( T\
e (32) () (25) e 9

The properties of the maximum unstable mode as estimatedbgtten (39) are similar to those
given by Equation (3). Itis then predicted that for higheitlat luminosities and lower effective
temperatures, the maximum unstable mode is shifting tosvasder frequencies.

(4) Estimating the width in frequency for unstable osditlatmodes: For the frequency of the max-

imum unstable mode calculated using Equation (37), thefact.; / (1 + w27'021) decreases to-
wards both higher and lower frequencies. The width in freqyef the unstable modes can be
measured by locating the points where.; / (1 + w%-fl) decreases by half. Itis trivial to prove
that the low frequency half power point is:at = (2 — \/5) Vmax, While the high frequency one
is 2 = (2 + V/3) Vmax. The frequency width of unstable mod&s = vy — 11 = 2v/3v1ax. It
can be seen from Equation (39) that both,, andAv decrease with increasing luminosity and
decreasing effective temperature of stars.

Figure 9 illustrates the general frequency charactertid’p, ., Wp; andW,;s. Through the

above analysis and discussions, it is straightforward ttetstand the properties of low temperature
oscillators given in Section 3.

(1) For all faint low-temperature stars located to the rigftihe instability strip shown in Figure 1(a),

the main cause for them to be stable in low order p-modes ighenodynamic coupling
between convection and oscillations. Equation (31) atelyrdescribes the effects of convective
energy transport on the stability of pulsation in stars.
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Fig.9 A sketch showing the frequency dependence of the effecteotonvective flux dashed
line), turbulent pressuresglid line) and turbulent viscositydptted line) on the pulsational stability
of stars. The arrows indicate the directions of movemenhefieak foll », andW.;s when stellar
luminosity L increases.

(2) As shown in Figure 1(b), the intermediate- and high-opdeodes are unstable for all the faint
low-temperature stars located to the right hand side ofrik&bility strip. They are excited by
turbulent pressure. Figure 9 illustratés, ., Wp; andW.;, as functions of frequency. It can be
noticed that the maximum excitation due to turbulent pressginot at the same frequency; in-
stead it changes with the luminosity and effective tempeeatf stars, as given by Equation (39).
For low luminosity red stars, the maximum excitation is & fitequency of the intermediate or-
der modes. This can explain why the Sun, quasi-solar statdomnluminosity red giants are
stable in low-order p-modes, but are unstable in intermednd high-order p-modes, while
possessing a relatively wide frequency width for unstaldeles (see Figs. 1 and 2).

(3) The maximum unstable mode shifts toward low-order maef at the same time, the fre-
guency width of unstable modes also decreases with theaseref luminosity and decrease
of an effective temperature of the star, as indicated bywatia Figure 9. This explains why
luminous red giants pulsate at only a few low-order modes E$gs. 1 and 2).

Figure 10(a) and (b) shows accumulated works as functiorgepth (inlog P) for the ra-
dial fundamental mode (a) and 20th overtone mode (b) for #meslow luminosity red star as
in Figure 8, but with the coupling between convection andliasions taken into account. The gas
pressure s, ), turbulent pressure{p;) and turbulent viscosityl{’;s) components of the accu-
mulated work, as well as the fractional radiative flux/ L are plotted. The gas pressure component
of accumulated work includes the contributions of both aidé flux and convective flux as shown
by Equations (22) and (23). In the deep interior of the cotiwaczone, far from the convective
boundary, convection dominates, naméfy, ~ Wp, .. As shown in Figure 10(a) and 10(b), once
the coupling between convection and oscillations has beesidered, the fundamental mode (and
low-order p-modes) becomes stable, but the intermediatehiah-order p-modes are still unstable.
Convective energy transfer now works as a damping mechatigtmurbulent pressure acts as an
excitation mechanism.
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Fig. 10 The accumulated worl/.;y = Wr, + Wp: 4+ Wy (solid ling) and its gas pressureid(p,
dashed line), turbulent pressured{ ¢, long dashed line) and turbulent viscosityW..:s, dotted line)
components versus the depth for the same low-luminositgiaut star as in Fig. 8. The fractional
radiation flux fashed-dotted line) is also shown. The panel (a) the fundamental mode, the glanel
p20-mode. The sharp increaself, is due to radiative and convective modulated excitation.

Fig. 11 The same as Fig. 10, but for a luminous red giant star with= 1.0 M, log L/Les =
2.1905 andlog T, = 3.5855.

Figure 11(a) and (b) depicts the accumulated works as fumetf depth of the fundamental and
20th overtone mode for a luminous red giant. In contrasteédtthaviors in Figure 10(a) and (b), the
fundamental mode is now unstable, but the 20th overtone medemes stable. Turbulent thermal
convection and turbulent viscosity are the major dampinghmeisms in this case, and turbulent
pressure is always an excitation mechanism for oscillation
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The discussions on the accumulated work, including Eqoat{®5)—(36), are all concentrated
on radial oscillations of stars. For non-radial oscillatio stars, modifications to the above for-
malisms have to be applied (Xiong & Deng 2010). However, ffects of convective flux, turbulent
pressure and turbulent viscosity on instabilities in atedlscillation, together with the conclusions
drawn about the frequency dependence are all also quaditatiorrect for non-radial oscillations.
In fact, stellar radial oscillations can be regarded asqddr cases of non-radial oscillations when
I = 0. It follows from Figures 3—-7 that the main properties of eddind non-radial oscillations
are very similar; amplitude growth rates of oscillationgyatepend on oscillation frequeney and
have nothing to do with the degréef spherical harmonics. This is true at least for intermiedia
and low-degree oscillations &< 25 in stars (Xiong & Deng 2010).

5 DISCUSSION

This work is one in a series of papers on turbulent conve@iahpulsation stability. In this work,
we present the numerical results of the radial and low-defjre 1 — 4) non-radial, non-adiabatic
oscillations from zero age main sequence to AGB stars wihastmasses ranging from 0.6 to
3.0 M. The results show that the low-luminosity, low-temperatstars behave as solar-like oscil-
lators, whereas the luminous red giants possess Mira-tik#ation properties.

For low-temperature stars with extended convective epesgthe coupling between convection
and oscillations serves as the major mechanism for exaitathd damping. Convection acts on
stellar stability through convective energy transferbtuent pressure and turbulent viscosity. We
have carried out very careful analysis of the effects of imva-mentioned factors on stellar stability,
and the results of our studies show that, in the deep intedabthe convective zone far away from
the boundaries, thermal convection works as a damping mérhaand the damping is inversely
proportional to oscillation frequency. Thermodynamicgling between convection and oscillations
is the reason for the existence of the red edge of the Cephsidhility strip. On the contrary,
turbulent pressure is usually an excitation of oscillagidmecause of the fact that turbulent pressure
P, always slightly lags behind variations in gas density duth&inertia of convective motions in
the course of stellar pulsations.

As a result, a positive Carnot cycle is formed in tRe-V (V' = 1/p) plane, i.e. turbulent
kinetic energy is converted into that of pulsation, yietflam excitation mechanism. Turbulent vis-
cosity tends to convert pulsation kinetic energy into tlghtkinetic energy in the low-wave number
regime, and eventually into heat at high wave numbers thramagcading processes of turbulence.
Therefore turbulent viscosity is always a damping agaisstllations. The excitation of turbulent
pressure and the damping of turbulent viscosity reach ttaitesponding maxima respectively at
3wr./4 ~ 1 and3wr./4(1 + ¢3) ~ 1 (w is the circular frequency and. = ¢172P/0.78G M, .px
is the dynamic time scale of convective motions). For loveenperature and higher luminosity,
increases, therefore the most unstable mode in a stariedtafvards lower order. This is the reason
why low-luminosity, low-temperature stars usually showasdike oscillations, but the luminous red
giants display Mira-like oscillations.

Our theory of non-local and time-dependent convection sedeaon the hydrodynamic equa-
tions and the theory of turbulence. Compared with the phemmogical mixing-length theories,
ours is more physically sound and more accurate in desgribi@ dynamic behaviors of turbulent
convection in stars. Our theory can be regarded as a systetyneimic equations of auto- and
cross-correlations, which contain twa @ndc, in the approximation of quasi-isotropic turbulence)
or three (plus:z describing anisotropy of turbulence) adjustable parareete ¢, andcs describe
respectively the turbulent dissipation, the turbulentudiion and the anisotropy of turbulent con-
vection. Explaining a problem by tuning a parameter in athé&oa usual practice in astrophysical
research. In our case, by using the same set of convectigegéers ¢, —cs3) that were calibrated by
solar observations, we successfully reproduced a varfedglar and stellar observations, including
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Fig. 12 The amplitude growth rates = —27w;/w, versus frequencies for four solar envelope

modes with different connection parameters,= 0.7 (circles), 0.8 griangles), 0.9 (nverse trian-
gles) and 1.0 gquares), wherecz = ¢; /2. The small solid symbols and large open symbols are used
for the stable and the unstable modes respectively.

the structure of the solar convective zone (Unno et al. 198&ng & Deng 2001b; Zhang et al.
2012), the atmospheric lithium abundances of the Sun aradl-sgde stars (Xiong & Deng 2009),
evolution of massive stars (Xiong 1986), RR Lyrae and dHgcuti instability strip (Xiong et al.
1998b; Xiong & Deng 2001a), and the general observatiorigties of oscillations in Mira stars
and red giants (Xiong et al. 1998a; Xiong & Deng 2007). Allgbavorks served as a demonstration
that our theory is rather robust in stellar physics. We wdiklel to emphasize here that the results
of non-adiabatic oscillations of stellar models hardly eleghon the tuning of the parameters (Xiong
et al. 1998hb). The results of solar convective envelope tsardculated using four sets of param-
eters,c; = 0.7,0.8,0.9,1.0, andce = ¢;1/2, are presented in Figure 12, in which the amplitude
growth rate as a function of frequency for the non-radialgdmof! = 1 is drawn. It can be made
clear from the plot that by changing the parameter by almdat®r of 1.4 times (far larger than
the range of its uncertainty), the stability of the p-mod&/amaries by a small amount. Therefore,
we are rather confident to conclude that the main resultseo€tinrent work are not compromised
by any choice of the convective parameters in the theoryclddimg from the work done for very
different stellar convection problems, our theory desngtstellar convection is robust in handling
the dynamic behaviors of stellar convection.

We are certain that the turbulent stochastic excitatiomd®ikcitation that is responsible for high-
degree/order mode oscillations in the Sun and in low-lusiilgplow-temperature stars. Comparing
the line width of solar p-modes (Libbrecht 1988; Chaplin etl®97) and the amplitude growth
rates calculated by us, one can easily see that it is nothdess have observed amplitudes in
high frequency modes/(> 4000 Hz) with the coupling between convection and oscillatiolase.
However, for the solar p-modes with intermediate frequefaecyl000 uHz< v < 3500 puHz),
the excitation of the coupling between convection and tadiwhs is powerful enough to compen-
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sate the damping indicated by the line widths in those magteshat those modes can be excited.
Therefore we would argue that five-minute solar oscillagioannot be a result of one single mecha-
nism; instead they are driven by the combination of turbudémchastic excitation and the “regular”
convective coupling. For intermediate- and low-frequemodes, the coupling between convection
and oscillations dominates, while in high-frequency modebulent stochastic excitation takes over
(Xiong & Deng 2010).

No doubt, the assessment on the excitation mechanism af fagdaminute oscillations dis-
cussed above is solely based on a number of theoreticalmiegso and it definitely needs obser-
vations to back it up. Using 200 day solar radial velocityadttken by GOLF onboard SOHO,
Garcia et al. (2001) discovered a pealvat 284.67 uHz in the power spectrum with 98% confi-
dence. Later in 2002, Gabriel et al. independently confirswexh an observation using a statistical
approach, verifying the signal at 96% confidence. Coindaln the theoretical modeling of solar
non-radial and non-adiabatic oscillations also showstltiegil mode of/ = 1 is unstable, which has
a theoretical oscillation frequency of~ 284.1 uHz. Meanwhile, all other g- and p-modes having
similar frequencies are stable (Xiong & Deng 2012). If thecdvery of Garcia et al. and Gabriel
et al. were both correct, it can serve as solid support fotteeory.

Restricted to solar oscillations, the turbulent stocleasttitation mechanism is more developed
and successful compared to our theory, due to its clarity,cam be strongly supported by observa-
tions in the following two aspects.

(1) With a certain choice of convection parameter, the alesbline widths of solar p-mode oscil-
lations can be reproduced fairly well (Balmforth 1992; Libbht 1988; Chaplin et al. 1997);

(2) Under some specific assumptions on the spectra of turbejethe observed amplitude in
velocity of solar five-minute oscillations can be approxieia reproduced (Libbrecht 1988;
Balmforth 1992; Goldreich & Kumar 1988; Samadi et al. 2008lkBcem et al. 2008).

One of the fundamental ideas of the turbulent stochasti¢aian mechanism is that solar oscil-
lations are pulsationally stable, and are damped by coimredVhether solar oscillations are stable
or unstable has been a rather disputed theoretical problensénsitively depends on the treatment
of convection (Ulrich & Rhodes 1977; Antia et al. 1982; Anéhal. 1988; Samadi et al. 2002;
Balmforth 1992). Suddenly after the measurement of thedidnine widths of solar p-mode oscilla-
tions, the damped solar five-minute oscillations becamendisputed fact in the community. Is that
really completely unchallengeable? Of course, a linedlst@ode must have a limited width, but on
the other hand, one may conclude differently going backwardimited width may not necessarily
be the result of linear stability. For a straightforward mde, a chain of quasi “monochromatic”
light waves, with limited length or with its amplitude/plakeing modulated, will always be ob-
served as having limited width. This is because in most cagesannot observe the true profile of
a spectral line. This is not solely due to restrictions oneoiational techniques; even if observa-
tions were perfect, the true line profile still could not besetved due to the limited lifetime of the
oscillation mode that puts a limit on the resolution of thedpum. That is why we say that “ob-
servations give a seemingly limited line width.” For classivariables with small amplitudes such
asd Scuti ands Cephei, observations will also show limited line widthseféare no observations
that confirm this behavior, simply because no attempts haga lmade so far. Nevertheless, we can
never conclude that the oscillations in all red giants aredrly stable by extrapolating the turbulent
stochastic excitation mechanism established in solaregubh fact, Mira, semi-regular and irregular
variables cannot be explained at all using turbulent stetahaxcitation; instead it is widely accepted
that the coupling between convection and oscillationsag tiriving mechanism. Itis hard to believe
that a mechanism having such a major effect happens all afdesuin luminous red giants. A more
logical reasoning will be that such a mechanism alreadyt&kislow-luminosity, low-temperature
stars, and it becomes stronger with higher luminosity. Thia rather gradual process of change.
Although it is not possible to define the exact location in th&® diagram and the exact frequency
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where the transition between these two competing mecharfistppens, the transition point must
still exist as nature obeys physical laws. In this senses¢hies of work done so far using our theory
has provided a unified approach to a number of connectedgmslnamely the red edge of the
Cepheid instability strip, solar-like oscillations in lewminosity cases, and Mira-like oscillations
in luminous red giants. That is not to say that the theoryfitsalready perfect; instead much more
still needs to be done in order to further improve it.

Our non-local, time-dependent theory of convection is atgp statistical theory of correla-
tions, or more precisely, it is composed of a set of dynamimégns of squared turbulent velocity,
temperature fluctuations and turbulent velocity-tempeesfluctuation correlations related by some
statistical average. Such a statistical average is maluereit a characteristic length shorter than the
wavelength of standing waves and on a spherical surface éargugh compared to the characteristic
dimension of turbulent elements in space, or shorter tham4gillation period and longer than the
characteristic time scale of turbulence in time. As a reslét theory we developed is only suitable
for static convection and modes with low-frequency (lovgiag® and low-order) oscillations. For
modes with high frequency oscillations, the wavelength filtation and the characteristic scale
length of turbulent eddies is compatible; the oscillati@mnipd and the characteristic time scale of
turbulent elements are also of the same order, and thetis@itiaveraging method embedded in
our theory is no longer appropriate, therefore the conshssivill no longer be valid. Therefore, it is
problematic to apply in modes with high frequency. For higdred higher frequencies, the stochastic
nature of turbulence overwhelms this process. To conclhudestatistical theory of turbulent convec-
tion is a good approach for static stellar convection andyaisgof low-frequency oscillations, and
the turbulent stochastic mechanism should work betterifgr-Frequency (high-order/high-degree)
oscillations in stars. Unfortunately, the developmentteflar convection theory still has to over-
come obstacles, since there is currently no good way to bardblems in both low-frequency and
high-frequency domains.

When turbulence is propagating in inhomogeneous mediaydsmaves may be scattered or
refracted by turbulent eddies, causing energy loss andemtafis. Both damage the coherence of
the standing waves (Gough 1980). The shorter the sound eraythl is, the stronger these effects
become. In the current work, we completely ignored the &ffet scattering and refractions due to
turbulence. As a result of such a treatment, damping at higduency is underestimated for solar
and solar-like oscillations. Such a problem has already Is®wn in the numerical results. For
instance, the theoretical prediction is that the most Umstanode falls at/,.c ~ 3800 uHz (see
Fig. 3), but the observed one is located/gt, ~ 3020 uHz.
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