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Abstract Using a non-local and time-dependent theory of convection,we have cal-
culated the linear non-adiabatic oscillations of the radial and low-degree F-p39 modes
for evolutionary models from the main sequence to the asymptotic giant branch for
stars with solar abundance (X = 0.70, Z = 0.02) in the mass range of 0.6–3.0M⊙.
The results show that low luminosity cool stars tend to be solar-like oscillators, whose
low-order modes are stable, but intermediate and high orderp-modes are pulsationally
unstable; their unstable modes have a wide range in frequency and small values for
amplitude growth rates. For stars with increasing luminosity and therefore lower tem-
perature, the unstable modes shift towards lower orders, the corresponding range of
frequency decreases, and the amplitude growth rate increases. High luminosity red gi-
ant stars behave like typical Mira-like oscillators. The effects of the coupling between
convection and oscillations on pulsational instability have been carefully analyzed
in this work. Our research shows that convection does not simply act as a damping
mechanism for oscillations, and the complex nature of the coupling between convec-
tion and oscillations makes turbulent convection sometimes behave as damping, and
sometimes as excitation. Such a picture can not only naturally account for the red edge
of the instability strip, but also the solar-like oscillations in low luminosity red stars
and Mira-like ones in high luminosity red giants.

Key words: convection — stars: oscillations — stars: late-type — stars: evolution

1 INTRODUCTION

The great discovery of solar five-minute oscillations (Leighton et al. 1962) made it possible for the
first time to directly study the internal structure and motion of the Sun through observations and
analysis of oscillations on the solar surface. The big leap forward in helioseismology encouraged
astronomers to apply the same method to other stars. With continuous efforts in past decades, solar-
like oscillations were eventually discovered in solar-like and sub-giant stars near the main sequence
(MS) (Brown et al. 1991; Bouchy & Carrier 2002; Guenther et al. 2005; Bedding & Kjeldsen 2007)
and red giants (Barban et al. 2007; Frandsen et al. 2002; Buzasi et al. 2000; De Ridder et al. 2009).
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NASA’s Kepler mission, with an accuracy higher than all other similar ground or space based observ-
ing missions, has collected stellar oscillation data for thousands of MS stars and red giants, which
have enabled great progress in the field of asteroseismology(Chaplin et al. 2011a,b; Huber et al.
2011; Hekker et al. 2011).

It is popularly accepted that the five-minute oscillations of the Sun are excited by the stochastic
effect of turbulence (Goldreich & Keeley 1977a,b; Kumar et al. 1988; Goldreich & Kumar 1988;
Kumar & Goldreich 1989; Goldreich et al. 1994; Belkacem et al. 2008). As a natural extension,
solar-like oscillations of stars have also been consideredto be due to the same stochastic excitation
of turbulence (Samadi & Goupil 2001; Samadi et al. 2003; Samadi et al. 2008). However, when
Dziembowski et al. (2001) attempted to understand the observations of a red giant,α UMa, they
discovered that such a mechanism is unable to explain the observed frequency spectrum and the
amplitude ofα UMa. The observed frequency dependence of the amplitude does not agree with the
one expected from stochastic excitation. This mechanism predicts an amplitude of the fundamental
mode, which may correspond to one of the largest observed amplitude modes, about two orders
of magnitude smaller than the amplitudes of modes withn ≥ 5. These luminous red giants can
better be interpreted as Mira-like oscillators, instead ofsolar-like ones. By using our non-local and
time-dependent theory of convection (Xiong 1989; Xiong et al. 1997), we have calculated the linear
non-adiabatic oscillations of the Sun and red giants. Our results showed that all the g-modes and low-
frequency F- and p-modes are pulsationally stable, but the intermediate- and high-frequency modes
(with periods of≈ 3 − 16 min) are all unstable for the Sun (Xiong & Deng 2010). For luminous
red giants, oscillation happens in the fundamental, low-order modes, and all the high-order modes
are stable (Xiong et al. 1998a). The unstable mode shifts to higher orders with decreasing stellar
luminosity (Xiong & Deng 2007). The successful interpretations of the oscillations of the Sun and
red giants suggest that there is no distinct difference between solar-like and Mira-like oscillations
in stars; both are naturally due to the interactions betweenconvection and oscillations. This work
aims to verify such a conjecture by detailed numerical modeling and analysis. A short description of
our stellar convection theory, and the treatment of convection in our studies are given in Section 2.
The results of our calculations are presented in Section 3. Section 4 is a thorough discussion of
the excitation mechanism for low temperature stars. Conclusions of this work and discussions are
presented at the end.

2 THEORETICAL TREATMENT OF CONVECTION

In a conventional HR diagram, the Cepheid instability stripcrosses the plot from the upper-right to
the lower-left, and includes all well-known classical pulsating variable stars, such as population I
and II Cepheids, RR Lyrae,δ Scuti and pulsating white dwarfs. All of these classical pulsators are
due to the radiativeκ-mechanism. For the low-temperature stars located to the right of the strip,
the ionization zones of hydrogen and helium that powers theκ-mechanism have already become
fully convective. Obviously, convection overtakes radiation and becomes the major excitation and
damping mechanism for oscillations. In a fluid medium with huge dimensions, such as in stellar
interiors, convection usually becomes fully developed turbulence, whose properties and laws are
not yet well understood. Therefore, it is not currently possible to have a complete theory describing
convection. The pulsational stability of low-temperaturestars having extended convective envelopes,
such as the Sun and red giants, sensitively depends on the treatment of convection (Ulrich & Rhodes
1977; Antia et al. 1982; Antia et al. 1988; Gabriel 1988; Samadi et al. 2002; Dupret et al. 2006;
Houdek 2008; Balmforth 1992). The most popularly applied theory of convection in calculations
of stellar structure, evolution and oscillations is still the mixing-length theory (MLT, Böhm-Vitense
1958) and its various revisions, such as time-dependent MLT(Unno 1967; Gough 1977; Stellingwerf
1982; Grigahcène et al. 2005) and non-local MLT (Spiegel 1963; Ulrich 1970a,b).



Solar-like and Mira-like Oscillations of Stars 1271

For the study of stellar structure, MLT is still a very usefulapproximation. The reason is that
convective energy transport is very efficient in deep stellar interiors. The temperature gradient in
such conditions is very close to being adiabatic and is independent of the convection theory used.
The depth of the outer convective zone of a star only depends on the structure of the so called super-
adiabatic convection zone at the top, and is adjustable by tuning the mixing-length parameter.

The most obvious advantage of MLT is that it has a straightforward physical picture, and is very
simple to apply. This is why MLT is widely used in current stellar modeling even though it still has
quite an obvious problem. In fact, MLT does not follow from the hydrodynamic equations and tur-
bulence theory, but is instead a phenomenological treatment. The fundamental shortcoming of MLT
is that it cannot provide an accurate description for the dynamic behavior of turbulent convection.
When dealing with dynamical problems of turbulent convection, such as time-dependent and non-
local convection, this shortcoming becomes prominent. Considering such issues, a time-dependent
and non-local theory of convection was then developed basedon the hydrodynamic equations and
theory of turbulence (Xiong 1981, 1989; Xiong et al. 1997). Compared with MLT, our theory has a
more solid foundation in hydrodynamics, therefore it can provide a more precise treatment for the
dynamics of turbulence. The simple physical picture in MLT is absent from our theory. In addition,
it becomes more complicated than MLT in applications. The original MLT is described by a set
of algebraic equations, but our time-dependent and non-local theory of convection is composed of
three (for chemically uniform media) or six (for chemicallynon-uniform media) partial differential
equations, each of which is second order in space. As a result, the equations of stellar envelope
structure cover 10 orders, compared to four orders for the local MLT. For stellar evolution, at least
17 independent variables are needed (the exact number depends on the number of chemicals par-
ticipating). Due to intrinsic singularities and stiff properties of the equations, numerical calculation
becomes slightly difficult. That is the reason why such a theory cannot be generalized and widely
applied in the community, and it is only used in a relatively small community of authors and their
collaborators. Nevertheless, this community has enjoyed the successful application of such a theory
to a number of studies in stellar problems, such as the structure of the solar convective zone (Unno
et al. 1985), the depletion of lithium in the atmospheres of the Sun and solar-type stars (Xiong &
Deng 2009), the structure and evolution of massive stars (Xiong 1985; Xiong 1986) and both radial
and non-radial oscillations of stars (Xiong et al. 1998a, b;Xiong & Deng 2001a; Xiong & Deng
2007; Xiong & Deng 2010). Our studies have reproduced generally observed characteristics. For
instance, reproducing the adiabatic sound speed inside theSun from inversion of helioseismic data
by using our non-local convection model as the reference model turns out to be much better than
that from the standard solar model. (Zhang et al. 2012). It also reproduces the observation of lithium
abundance in the atmospheres of the Sun and solar-like stars(Xiong & Deng 2009). Moreover, our
theory not only offers a correct explanation for the red edgeof the instability strip for RR Lyr (Xiong
et al. 1998a,b) andδ Scu stars (Xiong & Deng 2001b), but also predicts the instability strip for Mira
variables outside the Cepheid instability strip (Xiong & Deng 2007). The same theory also explains
the observations and primary properties of small amplitudered variables (Xiong & Deng 2007).

The goal of the current work is to study the stability of radial and non-radial p-mode oscilla-
tions for solar-like stars and red giants. The energy generating core of a star has very little effect on
p-mode oscillations, therefore our survey of pulsational stability for stars can be simplified to cal-
culate the linear non-adiabatic oscillations of stellar envelope models. The structure and oscillations
of stellar envelopes can be described by a set of seven equations, four of which are used to treat
the conservations of mass, momentum and energy, and radiation transfer processes, therefore they
are not very different from the traditional equations describing stellar structure. The only exceptions
are that a Reynold tensor term of turbulence appears in the equation of momentum conservation,
and turbulent thermal flux and turbulent kinetic energy terms are included in the equation of energy
conservation. The other three equations describe the auto-and cross-correlations of turbulent veloc-
ity and temperature fluctuations, with all being second order partial differential equations. After a
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simplification is applied to the third order correlations, these seven equations are then transformed to
a consistent and closed set of dynamic equations for stellarstructure and oscillations (Xiong 1989;
Xiong et al. 1997). The linear stability analysis for these evolutionary models is divided into two
steps:

(1) Calculations of the non-local convective envelope models for stars:
If we set all the terms containing time derivatives and speedto be zero, we can derive the
equations for calculating the model of a static envelope from our original ones. The complete
set of equations and corresponding boundary conditions canbe referred to in our previous work
(Unno et al. 1985; Xiong & Deng 2001b).

(2) Calculations of linear non-adiabatic oscillations using the envelope models:
Setting all variable quantitiesy(r0, t) be the sum of their equilibrium value and oscillation com-
ponents,y0(r0) + y′(r0)e

iωt, and taking a linear expansion around the equilibrium position,
we can have a set of linear equations that describe non-adiabatic oscillations. For stellar radial
oscillations, the equations have 10 dimensions; but for non-radial oscillations, there are 14 di-
mensions. The equations representing linear oscillationsand boundary conditions can be found
in our previous work (Xiong et al. 1998a; Xiong & Deng 2007). For non-radial oscillations, a
concise description can be found in a recent paper (Xiong & Deng 2010).

Being different from the usual theoretical scheme of stellar oscillations, the completely non-
local treatment of convection is used either in equilibriummodels or pulsation calculations. This is
a key point because, for low temperature stars having extended convective envelopes, the dynamical
coupling between convection and oscillations is as important as the thermodynamic coupling, and
is sometimes more important. Non-local convection is vitally significant for the stability of low
temperature stars. This is why the results of our theoretical calculations are so different from those
that use normal MLT.

3 THE NUMERICAL RESULTS

With the algorithm discussed in the previous section, we calculated the radial and low-degree (l =
1−4) non-radial, non-adiabatic oscillations for stars from the MS up to the red giant and asymptotic
giant branch (AGB) phases in the mass range0.6 − 3.0 M⊙. The upper boundary is placed at the
optical depth ofτ = 10−3, and the lower boundary at an arbitrarily deep enough radius: Tb ≈
8× 106 K for MS, sub-giant and low luminosity red giant stars, orrb/R0 ≈ 0.01 for more luminous
red giants, whereTb andrb are respectively the temperature and radius of the bottom boundary. The
equation of state (Hummer & Mihalas 1988; Daeppen et al. 1988) and OPAL opacity (Rogers &
Iglesias 1992) have been used in this work. For the low temperature regime, the opacity has been
supplemented with the low temperature table of Alexander & Ferguson (1994). Linear non-adiabatic
oscillations of the fundamental up to the 39th p-mode are modeled.

3.1 Pulsationally Stable and Unstable Modes in the H-R Diagram

Figure 1(a) and (b) shows respectively the distributions ofstable (small solid dots) and unstable
(open symbols and crosses) radial modes in the H-R diagram. It is clearly shown from Figure 1(a)
that the unstable modes with a lower degree form two well-separated groups, i.e. the one for well-
knownδ Scuti stars located in the central part of the diagram, and another one on the upper right
part for pulsating red giants, including Miras, semi-regular and irregular variables. As demonstrated
in Figure 1(a) and (b), all the low luminosity stars located to the right of theδ Scuti instability strip
are stable in lower order modes, but are unstable in intermediate- and high-order modes. These stars
have solar-like oscillatory properties. On the contrary, all the high luminosity red giants are unstable
in low-degree modes, while at the same time being stable in intermediate- and high-order modes.
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Fig. 1 Pulsationally stable (small dots) and unstable (open symbols andcrosses) radial modes on the
H-R diagram. Panel (a): the low-order (p0–p5) modes. Panel (b): the intermediate- and high-order
(p16–p25) modes. The dashed- and solid-lines are, respectively, the theoretical blue and red edges
of theδ Scuti instability strip.

They are typical Mira-like oscillators. On Figure 1(b), thesolar-like instability strip has already been
connected with theδ Scuti strip. In fact, these two classes of variable stars have distinctly different
characters.

Theδ Scuti stars are mainly excited by the radiationκ-mechanism, and the solar-like oscillators
in the right hand side of theδ Scuti instability strip are excited by convection. Theδ Scuti stars
oscillate in intermediate- and low-order modes, but the solar-like stars with low-temperatures and
about the same luminosities are oscillating in intermediate- and high-order modes. We are going to
show that the normalized frequency (or radial order) of the maximum unstable mode for solar-like
oscillations depends primarily on stellar luminosity and weakly on temperature. For example, for
a low temperature star located outside the instability strip, with M = 2 M⊙, log(L/L⊙) ≈ 1.45
and log Te ≈ 3.69, its maximum unstable mode is p15. However, for aδ Scuti star with similar
luminosity, its maximum unstable mode is p4.

3.2 Pulsationally Stable and Unstable Modes in thelog L/L⊙ − nr Plane

A trend has been demonstrated in Figure 1(a) and (b): for increasing stellar luminosity, the oscillation
instability tends to shift from high order modes to lower order ones.

Figure 2 shows the distribution of the stable (small solid dots) and unstable radial modes (open
circles) in thelog L/L⊙ − nr plane for evolutionary models of anM = 1.0 M⊙ star, wherenr is
the radial order of the modes. The size of the circles in the plot is proportional to the logarithm of
amplitude growth ratelog η, whereη = −2πωi/ωr, andωi andωr are respectively the imaginary
and real parts of the complex circular frequencyω = ωr + ωii. As clearly shown in Figure 2,
for increasing stellar luminosity, oscillations proceed from high-order modes towards lower order
modes, and the number of unstable modes decreases, while theamplitude growth rates increase.
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Fig. 2 Pulsationally stable (small dots) and unstable (open circles) radial modes on thelog L/L⊙ −

nr plane for the evolutionary models of anM = 1.0 M⊙ star, wherenr is the radial order of modes.
The size of the circles is proportional to the logarithm of the amplitude growth rate of the oscillation
modes.

3.3 The Dependence of Pulsation Amplitude Growth Rate onl and ν

The classical giant variables, such as Cepheids and RR Lyraestars, are usually oscillating in the ra-
dial fundamental mode, or sometimes in a few low order overtones, with large amplitudes. The most
obvious characteristics of the solar five-minute oscillations and solar-like oscillations of stars are
simultaneous excitation of multiple modes, both radial andnon-radial. The amplitudes are tiny. For
the oscillations of the Sun, over107 modes withl from 0 to∼ 1000 have been observed. Individual
modes have amplitudes ranging from a few millimeters per second up to about 20 centimeters per
second. Our studies show that the theoretical amplitude growth rates of the oscillations only depend
on the oscillation frequenciesν, not on the degreel of the spherical harmonics; this is true at least
for the intermediate- and low-degree modes ofl ≤ 25 (Xiong & Deng 2010). Through the current
work, we have learned that the same fact also holds for the pure p-mode oscillations of stars other
than the Sun.

Figure 3 shows the amplitude growth rates (η) of the non-radial modes withl = 1 − 4 as a
function of frequencyν(= ωr/2π) for the solar model. Such a theoretical result has been confirmed
by observations of solar oscillations (Libbrecht & Zirin 1986; Libbrecht 1988; Libbrecht & Woodard
1991).

3.4 The Maximum Unstable Mode

As shown in Figure 3, the amplitude growth rates for solar-like oscillations vary as a function of
frequency of the oscillation mode. In this work, the maximumunstable mode is defined as the mode
whose amplitude growth rate is the largest for a given stellar model. Because the oscillatory ampli-
tude of any individual mode is always extremely small for solar-like oscillators, the non-linearity
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Fig. 3 The amplitude growth ratesη = −2πωi/ωr versus frequencies for the Solar model.

has little effect on selection of modes. Therefore we expectthat the theoretical prediction for the
maximum unstable mode should correspond to the mode of maximum amplitude observed, when
the coupling between convection and oscillations is treated in the right way.

Figures 1 and 2 show a trend: towards higher luminosity, the oscillation instability shifts from
high- or intermediate-orders to lower ones, and the amplitude growth rate also increases at the same
time.

Figures 4 and 5 demonstrate respectively the radial ordernmax and its amplitude growth rate
ηmax of the maximum unstable mode as functions of luminosity for the low temperature stars of
1.0 to 3.0M⊙ located to the right hand side of the instability strip. In Figure 4, the open symbols
represent the radial modes, while the small solid symbols are the non-radial modes ofl = 1 − 4.
It can be seen that the radial orders of the maximum unstable mode decrease almost linearly with
increasinglog L/L⊙ for stars with the same mass. It is also shown in Figure 5 that the amplitude
growth rate hardly depends on stellar mass and the sphericalharmonic degreel; instead it depends
exclusively on luminosity.log η increases almost linearly withlog L/L⊙.

Similar to the pulsation constantQ, we define the normalized oscillation frequency as the fol-
lowing,

[ν] = ν

√

ρ̄⊙
ρ̄

. (1)

By using linear pulsation stability analysis, we found thatthe normalized frequency of the maximum
unstable mode[ν] can be approximately expressed as,

log [νmax] ≈ 1.5 log
Te

Te⊙
− 6.5

[

log
Te

Te⊙

]2

− 0.1 log
M

M⊙

+ 3.47 . (2)

Figure 6 shows the termlog [νmax] + 0.1 M/M⊙ as a function of effective temperature, from
which one can see that Equation (2) is validated for all the radial and non-radial modes for low-
temperature stars of 0.6–3.0M⊙, located to the right hand side of the instability strip.
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Fig. 4 The radial order of the maximum unstable mode versus stellarluminosity for evolutionary
models of stars withM = 1 − 3M⊙. The open and solid symbols are, respectively, the radial and
low-degree non-radial modes.

Fig. 5 The amplitude growth rate of the maximum unstable mode versus stellar luminosity for
evolutionary models withM = 1 − 3 M⊙.

Brown et al. (1991) argued thatνmax ∝ Cs/HP, whereCs is the sound speed andHP ∝ T/g is
the pressure scale height of the stellar atmosphere, and then calibrated such a rigid relation using a
solar model and derived the following semi-empirical relation for the maximum unstable frequency,

νmax =
(M/M⊙) (Te/5777)

3.5

L/L⊙

νmax⊙ , (3)

whereνmax⊙ = 3021± 27 µHz is the frequency of the maximum unstable mode of the Sun.
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Fig. 6 The normalized frequencies of the maximum unstable modes versus the effective temperature
for evolutionary models of stars withM = 1−3M⊙. The open and solid symbols are, respectively,
the radial and low-degree non-radial modes.

Fig. 7 A comparison between our theoretical results and the semi-empirical formula Eq. (3) (Stello
et al. 2007).

From Equations (1) and (2), the frequency of the maximum unstable mode predicted by our
theoretical calculations of non-adiabatic oscillations of stars can be transformed to,

log νmax = 4.5 log
Te

Te⊙
− 6.5

[

log
Te

Te⊙

]2

− 0.75 log
L

L⊙

+ 0.4 log
M

Me⊙
+ 3.47 . (4)
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In Figure 7, a comparison is presented between the theoretically predicted (from Eq. (4)) fre-
quency of the maximum unstable mode in our non-adiabatic oscillation theory to that of Stello et
al.’s equation (3). A very good match has been reached, as demonstrated in the plot.

4 THE EXCITATION MECHANISM OF OSCILLATIONS FOR LOW-TEMPERA TURE
STARS ON THE RIGHT HAND SIDE OF THE INSTABILITY STRIP

It is well known that warm pulsating variable stars such as Cepheids, RR Lyrae andδ Scuti are
excited by the radiativeκ-mechanism. For cooler stars located to the right hand side of the insta-
bility strip, the major mechanism for energy transportation in the envelope is convection, instead of
radiation. Naturally, convection should become the primary mechanism of excitation and damping
for oscillations in these cool stars. For a long time, peoplehave thought that the coupling between
convection and oscillations is solely a damping against p-mode oscillations of stars, which results in
the red edge of the instability strip. The oscillations in the Sun and all low-temperature stars located
to the right hand side of the instability strip are damped outby convection, therefore these stars
should be pulsationally stable (Balmforth 1992). Solar five-minute oscillations and the solar-like os-
cillations of stars are excited by stochastic excitation ofturbulent convection (Goldreich & Keeley
1977a,b; Kumar et al. 1988; Goldreich & Kumar 1988; Kumar & Goldreich 1989; Goldreich et al.
1994; Belkacem et al. 2008; Samadi & Goupil 2001; Samadi et al. 2003; Samadi et al. 2008). Such an
idea was supported by the finite line width of solar p-mode oscillations (Libbrecht 1988). However,
this idea is rather superficial. Even if the turbulent stochastic excitation can explain the five-minute
oscillations fairly well and also explain the solar-like oscillations in MS stars and sub-giant stars,
there are great difficulties in applying the same mechanism to solar-like oscillations observed in
intermediate- and high-luminosity red giants, such asα UMa (Dziembowski et al. 2001) discussed
in Section 1. It is impossible to explain the huge pulsation amplitudes and the frequency spectra of
unstable mode in Miras, semi-regular and irregular variable stars. Convection affects the stability of
stars in three ways: turbulent thermal convection, turbulent pressure and turbulent viscosity. We will
see below that turbulent viscosity and turbulent thermal convection play a damping effect against
oscillations, however turbulent pressure is usually a destabilizing effect. The aspect ratios among the
three factors actually change with the structure of stars (as functions of luminosity, effective tem-
perature and metallicity) and the mode of oscillations. Sometimes convection overall behaves as a
damping mechanism, and sometimes as an excitation. The key question for exploring the pulsational
stability of low-temperature stars is that one needs a well established non-local and time-dependent
theory of convection to handle the coupling between convection and oscillations.

4.1 Accumulated Work

In the above discussions, a qualitative picture of the coupling between convection and oscillations
is presented. In the following, we are going to start from thehydrodynamic equations (the conser-
vation equations of energy and momentum of mean motions), and dynamic equations for turbulent
correlations, to derive the expressions for the accumulated work done by stellar oscillations, and to
quantitatively describe the excitation and damping of oscillations due to the radiation and the cou-
pling between convection and oscillations. Without loss ofgenerality, all the mathematics of stellar
convective motions follow Reynold’s method. Due to the gigantic scale of stars, stellar convection
occurs in fully developed turbulence, therefore all the physical quantitiesX will be expressed as the
sum of its averaged valueX and its turbulent fluctuationX ′,

X = X + X ′. (5)

Inserting Equation (5) into the dynamic equations for fluids, and expanding a Taylor series forX ′

and saving only the first order ofX ′, then averaging all the equations, we can have the hydrodynamic
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equations for average motion. The equations describing conservation of energy and momentum, for
instance, can be transformed into the following average equations of the corresponding conservation
laws after Reynold’s decomposition and the averaging process,

Dui

Dt
+

1

ρ̄
∇k

(

gikP̄ + ρuiuk

)

+ gik∇kφ = 0, (6)

ρ̄CP
DT̄

Dt
− B̄

DP̄

Dt
+

1

2
ρ̄

D

Dt
u′

iu
′i + ρu′iu′k∇kūi

= ρ̄ǭN −∇k

(

F̄ k
r + F̄ k

c + F̄ k
t

)

, (7)

whereF̄ k
r , F̄ k

c = CPρu′kT ′ and F̄ k
t = ρu′ku′

iu
′i are respectively the radiative, convective and

turbulent kinetic energy fluxes, and
D

Dt
=

∂

∂t
+ uk∇k (8)

is the Lagrangian differential operator, andρ, T , P , ǫN andui are respectively the density, tem-
perature, pressure, nuclear energy generation rate per unit mass and theith covariant component of
the velocity of the gas,φ is the gravitational potential,CP is the specific heat at constant pressure,
B = − (∂ ln ρ/∂ lnT )P is the expansion coefficient of gas andF k

r is thek component of radiative
flux.

It is shown in Equations (6) and (7) that, when convection happens, a turbulent Reynold’s stress
termρu′iu′k emerges in the equation describing momentum conservation in fluid motion, turbulent
thermal fluxFc and turbulent kinetic energy fluxFt. The Reynold’s stress can be expressed by the
sum of the isotropic componentgikρ̄x2 and anisotropic componentρ̄χik,

ρu′iu′k = ρ̄
(

gikx2 + χik
)

. (9)

By subtracting the average Equations (6) and (7) from the original conservation equations of momen-
tum and energy, one can get the dynamic equations of turbulent velocityu′i and relative temperature
fluctuationT ′/T̄ , and then the dynamic equations for the auto- and cross-correlations of turbulent
velocity and temperature fluctuation. The resulting equations, together with the equations for aver-
age motion of a fluid, form a complete, closed and consistent set of dynamic equations for stellar
structure and oscillations (Xiong 1989; Xiong et al. 1997).The dynamic equations for the isotropic
componentx2 and the anisotropic one of turbulent Reynold’s stress can beexpressed in the following
(Deng et al. 2006):

Dx2

Dt
+

2

3

(

x2∇kūk + χik∇kūi

)

− 2

3
B̄u′k

T ′

T̄

(

Dūk

Dt
+ ∇kφ̄

)

− 1

ρ̄
gαβ∇α

(

ρ̄xl∇βx2
)

= − 4

3τc

x2 , (10)

Dχij

Dt
+ x2

(

gik∇kūj + gjk∇kūi − 2

3
gij∇kūk

)

+ χik∇kūj + χjk∇kūi − 2

3
gijχαβ∇αūβ

− B̄

(

giku′j
T ′

T̄
+ gjkū′i

T ′

T̄
− 2

3
giju′k

T ′

T̄

) (

Dūk

Dt
+ ∇kφ̄

)

− 1

ρ̄
gαβ∇α

(

ρ̄xl∇βχij
)

= −4 (1 + c3)

3τc

χij , (11)
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where

τc =
c1r

2P̄

0.78GMrρ̄x
(12)

is the decay timescale of turbulence due to viscosity, and

l =

√
3

4
c2HP =

√
3c2r

2P̄

4GMrρ̄
(13)

is the characteristic scale length of the turbulent diffusion.c1, c2 andc3 are the convection parameters
related respectively to turbulent viscous dissipation, non-local diffusion and anisotropy of turbulence
(Xiong 1989; Xiong et al. 1997; Deng et al. 2006).

The anisotropic component of Reynold’s stressχij is a symmetric (χij = χji) second order
tensor, which contains, in general, six independent components. However, for static convection or
radial oscillations in stars, only three components in the diagonalχ11, χ22 andχ33 are non-zero due
to spherical symmetry; all the other non-diagonal components are zero, i.e.χ12 = χ23 = χ31 = 0.
Moreover, asgijχ

ij = 0, only one of the non-zero components is independent,

g11χ
11 = χ1

1 = −2χ2
2 = −2χ3

3 . (14)

Using Equation (14), one can prove that, for stellar radial oscillations, Equation (6) can be
simplified as,

Dūr

Dt
+ 4πr2 ∂

∂Mr

(

P̄ + ρ̄x2
)

+
4π

r

∂

∂Mr

(

ρ̄r3χ1
1

)

+
GMr

r2
= 0 , (15)

and Equations (10) and (11) can be simplified to,

Dx2

Dt
+

2

3

[

−x2

ρ̄

Dρ̄

Dt
+ χ1

1

∂

∂ ln r

( ūr

r

)

]

− 2

3
Bur

T ′

T̄

(

Dūr

Dt
+

GMr

r2

)

− 1

ρ̄r2

∂

∂r

(

r2ρ̄xl
∂x2

∂r

)

= − 4

3τc

x2 , (16)

Dχ1
1

Dt
+

4

3

{

x2 ∂

∂ ln r

( ūr

r

)

+ χ1
1

[

∂

∂ ln r

( ūr

r

)

+
3

2

ūr

r

]}

− 4

3
Bu′

r

T ′

T̄

(

Dūr

Dt
+

GMr

r2

)

− 1

ρ̄r2

∂

∂r

(

r2ρ̄xl
∂χ1

1

∂r

)

= −4 (1 + c3)

3τc

χ1
1 . (17)

Now, linearizing Equation (15) gives,

ω2δr =
1

ρ̄

d

dr

[

δP̄ + δ
(

ρ̄x2
)]

+
1

ρ̄r3

d

dr

[

δ
(

ρ̄r3χ1
1

)]

−

[

4
GMr

r3
+

3

ρ̄r3

d
(

ρ̄r3χ1
1

)

dr

]

δr . (18)

Multiplying Equation (18) byδr∗dMr, and integrating from 0 toM0 with respect todMr, the left
hand side becomes,

∫ M0

0

ω2δrδr∗dMr = 2

(

1 +
ω2

i

ω2
r

+ 2i
ωi

ωr

)

EK , (19)
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where

EK =
1

2
ω2

r

∫ M0

0

δrδr∗dMr, (20)

is the total kinetic energy of the corresponding mode, andωi andωr are respectively the imaginary
and real parts of the complex circular frequency of the oscillatory modeω = ωr + iωi. With simple
manipulation, the accumulated work can be expressed as,

Wall = −2π
ωi

ωr

=
π

2EK

∫ M0

0

Im

{

−
[

δP̄

ρ̄
+ 2x2 δx

x

]

δρ̄∗

ρ̄
+δχ1

1

d

d ln r

(

δr∗

r

)}

dMr . (21)

4.2 Radiativeκ-Mechanism and Radiative Modulation Excitation

Equation (21) is the proper expression for the accumulated work involved in stellar radial oscilla-
tions. The second and third terms in the integral represent contributions due to the isotropic (δx2)
and anisotropic (δχ1

1) components of the Reynold’s stress, in other words, the dynamical coupling
between convection and oscillations. The first term including δP is the gas pressure component in
the accumulated work,

WPg
= − π

2EK

∫ M0

0

Im

[

δP̄

ρ̄

δρ̄∗

ρ̄

]

dMr. (22)

Linearizing the equation of energy conservation given by Equation (7), for radial oscillations we
have,

δP̄

P̄
= Γ1

δρ̄

ρ̄
+

Γ3 − 1

P̄

{

ρ̄x2

(

δρ̄

ρ̄
− 3

δx

x

)

−ρ̄χ1
1

d

d ln r

(

δr

r

)

+
1

iω

[

δ (ρ̄ǭN ) − 1

4πr2

d

dr
(δLr + δLc + δLt)

]}

. (23)

The first term on the right hand side of Equation (23) is due to adiabatic variation of gas pressure
which has no contribution to the accumulated work as demonstrated in Equation (22). The second
term is for the non-adiabatic variation of gas pressure, in which the termδ (ρǫN) is the contribution
to gas pressure due to generation of nuclear energy. Generally speaking, it is much less than the last
term in the bracket for normal pure p-mode oscillations. We are not going to discuss the details at
this point due to limited space.δLr, δLc andδLt are responsible for variations in gas pressure due
to radiative and convective (enthalpy and turbulent kinetic) energy transfer. Inserting Equation (23)
into Equation (21), the accumulated work (Eq. (21)) can be written as,

Wall =
π

2Ek

∫ M

0

{

Im

[

(3Γ3 − 5) x2 δx

x

δρ̄∗

ρ̄
+ δχ1

1

d

d ln r

(

δr∗

r

)]

− Re

[

Γ3 − 1

4πr2ρ̄ωr

δρ̄∗

ρ̄

d

dr
(δLr + δLc + δLt)

]}

dw

= Wt + Wvis + WPgr + WPgc. (24)

The first set of square brackets under the integral is the contribution to accumulated work due to
Reynold’s stress, also referred to as the dynamic coupling between convection and oscillations. The
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second set of square brackets is that of the radiation and convective (enthalpy and turbulent kinetic)
energy transfer.

WPgr =
π

2EK

∫ M0

0

Im

{

δρ̄∗

ρ̄

[

Γ3 − 1

iωρ̄

1

4πr2

d (δLr)

dr

]}

dMr

= −
π

2ωEK

∫ R0

0

Re

[

(Γ3 − 1)
δρ̄∗

ρ̄

d (δLr)

dr

]

dr , (25)

WPgc =
π

2EK

∫ M0

0

Im

{

δρ̄∗

ρ̄

[

Γ3 − 1

iωρ̄

1

4πr2

d (δLc + δLt)

dr

]}

dMr

= − π

2ωEK

∫ R0

0

Re

[

(Γ3 − 1)
δρ̄∗

ρ̄

d (δLc + δLt)

dr

]

dr . (26)

Equations (25) and (26) are the precise formulae for the accumulated work done by radiative
and convective energy transfer respectively, in whichδLr andδLc can be written as,

δLr

Lr

=
d

d lnT

(

δT̄

T̄

)

+ (4 − KT )
δT̄

T̄
− KP

δP̄

P̄
+ 4

δr

r
, (27)

δLc

Lc

= (A + CP,P )
δP̄

P̄
+ (1 − B + CP,T )

δT̄

T̄
+

δV

V
+ 2

δr

r
, (28)

whereV = u′
rT

′/T̄ is the turbulent velocity-temperature correlation,A = (∂ ln ρ/∂ lnP )T and
B = − (∂ ln ρ/∂ lnT )ρ are respectively the compression coefficient and thermal expansion co-
efficient of gas,K andCP are the radiative opacity of gas and specific heat at constantpressure
respectively,

KP = (∂ lnK/∂ lnP )T ,

KT = (∂ lnK/∂ lnT )P ,

CP,P = (∂ lnCP/∂ lnP )T

and
CP,T = (∂ lnCP/∂ lnT )P

are the corresponding partial derivatives with respect toP andT . Considering that oscillations in
stellar interiors are normally very close to being adiabatic, we can use the following adiabatic rela-
tions when calculating the accumulated work in Equations (25) and (26),

(Γ3 − 1)
δρ̄∗

ρ̄
≈ δT̄ ∗

T̄
,

δP̄

P̄
≈ δT̄

T̄
/∇ad. (29)

Inserting Equations (27)–(29) into Equations (25) and (26), the following approximate expres-
sions for the accumulated work can be derived,

WPgr ≈ π

2ωrEK

∫ R0

0

Re

{

Lr

δT̄ ∗

T̄

× d

dr

[

(KT + KP/∇ad − 4)
δT̄

T̄
− d

d lnT

(

δT̄

T̄

)

− 4
δr

r

]

+
dLr

dr

δT̄ ∗

T̄

[

(KT + KP/∇ad − 4)
δT̄

T̄
−

d

d lnT

(

δT̄

T̄

)

− 4
δr

r

]}

dr , (30)
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WPgc ≈ −
π

2ωrEK

∫ R0

0

Re

{

Lc

δT̄ ∗

T̄

× d

dr

[(

1 − B + CP,T +
A + CP,P

∇ad

)

δT̄

T̄
+

δV

V
+ 2

δr

r

]

+
dLc

dr

δT̄ ∗

T̄

[(

1 − B + CP,T +
A + CP,P

∇ad

)

δT̄

T̄
+

δV

V
+ 2

δr

r

]}

dr . (31)

The first term in the outermost braces of Equation (30) is nothing but the well known radiativeκ-
mechanism, on which there are very rich discussions in the literature. No more follow up in this work
is needed. The second term is what we have called the radiative modulated excitation mechanism
(Xiong et al. 1997). Although also being linked to radiativeopacity, it is an excitation mechanism
for stellar oscillations that is completely different fromthe radiativeκ-mechanism, and it only exists
in the radiative zone where there is a gradient in the flux. During the course of stellar oscillations,
such a static variation in radiative flux can be modulated by oscillatory motion, and causes transfor-
mation between radiative energy and oscillatory kinetic energy. The underlying driving mechanism
is somewhat similar to blowing a gentle laminar wind onto a piece of paper, and making the paper
vibrate. That is why we call it the radiation modulated excitation mechanism. For the sake of clarity,

we will ignore the last two, relatively small, terms (d
d ln T

(

δT̄
T̄

)

and4 δr
r

) in the brackets, and we can

deduce from Equation (30) that, when

(KT + KP/∇ad − 4)
dLr

dr
> 0 , (32)

this process acts as an excitation, otherwise it is a dampingmechanism. In the zone that has a
gradient in radiative flux at the top of a convective zone,KT + KP/∇ad − 4 > 0, dLr/dr > 0 and
Equation (32) holds, but in the bottom of the radiative zone where there is a gradient in flux, in a
deep enough convective zone, one hasKT + KP/∇ad − 4 < 0 anddLr/dr < 0, and Equation (32)
holds as well. Therefore, the radiative modulated excitation mechanism behaves as an excitation in
both radiative zones that have a gradient in flux at the top andbottom of a convective zone. This
is exactly the reason why all stars located to the right of theinstability strip are unstable, and no
red edge of the instability strip can be defined when ignoringthe coupling between convection and
oscillations.

Figure 8 shows the variation in the accumulated work of the fundamental mode as a function of
depth, for a low temperature star located to the red side of the instability strip. The coupling between
convection and oscillations is not taken into account here.It is clearly demonstrated in this plot that
the major excitation comes from the radiative modulation excitation at the top and bottom of the
convective zone. Therefore, we can understand why the cool stars in the right hand side of the HR
diagram are pulsationally unstable and no red edge of the instability strip can be found when the
convection coupling is ignored.

4.3 Thermodynamic Coupling between Convection and Oscillations

Equation (31) is the component of the accumulated work that comes from transfer of convective en-
ergy, which represents the thermodynamic coupling betweenconvection and oscillations. Convection
absolutely dominates the energy transfer inside the convective zone (far from both boundaries) for
stars having extended convective envelopes, so that we haveLr ≪ Lc, Lc ≈ L anddLc/dr ≈ 0. The
first term under the integral in Equation (31) is much larger than the second term. Due to the inertia of
convective motion, the variations ofδV/V lag slightly behind those ofδT/T , thereforeWPgc < 0,
i.e. the thermodynamic coupling between convection and oscillations works as a damping mecha-
nism within the deep interior of the convective zone. Furthermore, Equation (31) demonstrates that
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Fig. 8 The accumulated workWPg (solid line) versus the depth for a low-luminosity red giant star
with M = 1.0 M⊙, log L/L⊙ = 0.0830 andlog Te = 3.7523. The fractional radiation flux (dotted
line) is also drawn. The coupling between convection and oscillations is not taken into account here.
The two rising parts on the curve at the bottom and top of the convective zone are due to radiative
modulation excitation.

WPgc is inversely proportional to the oscillation frequencyω. This means that the damping of ther-
modynamic coupling between convection and oscillations isstronger for low order modes, therefore
it is the major factor for stabilizing oscillations of the low-order modes in low temperature stars.

In the radiative zones that have a gradient in flux at the upperand lower boundaries of the
convective layer, the second term of the integral in Equation (31) becomes substantial and cannot be
ignored. We refer to this factor as convective modulation excitation, which is distinct from radiative
modulated excitation. At the bottom of the convective zone,it behaves as a damping, whereas in the
upper boundary it becomes an excitation.

4.4 Dynamic Coupling between Convection and Oscillations

In the following, we are going to discuss the dynamical coupling between convection and oscilla-
tions, i.e. the contributions of turbulent Reynold’s stress which are precisely expressed by the sec-
ond and third terms under the integral in Equation (21).δx andδχ1

1 can be derived from linearizing
Equations (16) and (17). Equations (16) and (17) both contain a differential term, therefore accurate
solutions forδx andδχ1

1 can only be made through numerical integrations for the linear equations
describing a non-adiabatic oscillation. The last terms on the left hand side of Equations (16) and (17)
come from the third order correlations representing non-local convection transport. Specifically, the
term ρ̄r2xl ∂x2

∂r
in Equation (16) is the turbulent kinetic energy flux, which is small compared with

other terms in the deep interior of the convective zone far from the boundaries. For simplicity, we
will ignore all the third order terms in Equations (16) and (17) for the moment. Linearizing these
two equations, we produce the explicit approximate solutions forδx andδχ1

1,

δx2 ≈
2

3

1

1 + iωτc1

{

iωτc1

[

x2 δρ̄

ρ̄
− χ1

1

d

d ln r

(

δr

r

)]
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+
GMrBV τc1

r2

[

δV

V
−

(

2 +
r3ω2

GMr

)

δr

r

]}

, (33)

δχ1
1 ≈

4

3

1

1 + iωτc2

{

−iωτc2

[

(

x2 + χ1
1

) d

d ln r

(

δr

r

)

+
3

2
χ1

1

δr

r

]

+
GMrBV τc2

r2

[

δV

V
−

(

2 +
r3ω2

gMr

)

δr

r

]}

. (34)

The second and third terms under the integral in Equation (21) are respectively the isotropic
and anisotropic components of the turbulent Reynold’s stress. The first set of square brackets on the
right hand side of Equations (33) and (34) represents the exchange of energy between turbulence and
oscillation motions resulting from shear and deformation of the fluid, therefore it reflects turbulent
viscosity in the accumulated work; the second square brackets represent the gain of turbulent en-
ergy induced by buoyant force. It represents the transformation between thermal energy and kinetic
energy of turbulence, thus it acts as the component of turbulent pressure in the accumulated work.
Putting Equations (33) and (34) into Equation (21), and after some manipulations, the integrations
of the second and third terms can be approximated as the following form,

WPt ≈ 2

3

π

EK

∫ M0

0

Re

{[

5 − 3Γ3

4

ωτ2
c1

1 + ω2τ2
c1

δρ̄∗

ρ̄

− ωτ2
c2

1 + ω2τ2
c2

d

d ln r

(

δr∗

r

)]

GMrBV

r2

×
[

δV

V
−

(

2 +
r3ω2

GMr

)

δr

r

]}

dMr, (35)

Wvis ≈ −2

3

π

EK

∫ M0

0

Re

{

ωτc1

1 + ω2τ2
c1

[

x2 δρ̄

ρ̄
− χ1

1

d

d ln r

(

δr

r

)]

× 5 − 3Γ3

4

δρ̄∗

ρ̄
+

ωτc2

1 + ω2τ2
c2

[

(

x2 + χ1
1

) d

d ln r

(

δr

r

)

+
3

2
χ1

1

δr

r

]

d

d ln r

(

δr∗

r

)}

dMr, (36)

whereτc1 = 3
4τc, τc2 = 3

4(1+c3)
τc.

Equations (35) and (36) express respectively the effects ofturbulent pressure and turbulent vis-
cosity on the stability of stellar oscillations. Noticing that5 − 3Γ3 ≥ 0 andδV/V always slightly
lags behind the density variations, the following four characteristics can be concluded:

(1) Generally speaking,WPt > 0, i.e. turbulent pressure is an excitation against oscillations. This is
due to the fact that turbulent pressure normally slightly lags behind density variations due to the
inertia of turbulent convective motion. Therefore, on thePt-V (= 1/ρ̄) plane, a positive Carnot
cycle is formed, so that the kinetic energy of turbulence is converted into that of oscillation.

(2) Contrary to the turbulent pressure componentWPt, Wvis < 0. The physical meaning of that is
also very clear: viscosity converts the kinetic energy of stellar oscillations into turbulence due to
shear motions. Such a process primarily happens in the low wave number range of the turbulent
spectrum. Through the cascading process of turbulence, turbulent kinetic energy gradually shifts
from low wave numbers to higher ones, and is eventually converted into the thermal energy of
gas by molecular viscosity. If there were no convection, thecontribution of molecular viscos-
ity to stellar oscillations could be ignored. However, whenconvection sets in, the viscosity of
fluid motion will greatly increase. In fact, Equations (16) and (17) are the expressions for the
conservation of turbulent kinetic energy. In those equations, the first terms describe the rate of
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variations for turbulent kinetic energy, the second ones represent the transformation between
kinetic energy of the average motion and turbulent one; the third terms are the work done by
buoyant force, i.e. transformation between thermal energyand turbulent kinetic energy; while
the fourth terms are for a turbulent kinetic energy flux representing the non-local convective
diffusion process that makes turbulent kinetic energy go from one place to another. The right
hand sides of Equations (16) and (17) are turbulent viscous dissipation terms. Therefore, these
two equations actually describe the equilibrium of energy between the pulsating, turbulent and
thermal motions. Our non-local and time-dependent theory of turbulent convection is developed
based on fluid dynamics and turbulence theory. This can describe the dynamic behaviors of
turbulent convection more accurately than MLT.

(3) The maximum unstable modes: Equations (35) and (36) provide a perspective on the dependence
of the dynamic coupling between turbulent convection and oscillations on frequency. When
ωτc1 = 1 or ωτc2 = 1, the two frequency dependent factors in Equations (35) and (36) reach
their maximum. The dynamic coupling between convection andoscillations peak under such a
condition. Therefore the frequency of the maximum unstableoscillatory mode can be estimated
asνmax ≈ 1/2πτc1. Taking the Sun as a reference, it follows from Equation (12)that

νmax ≈ M

M⊙

(

R⊙

R

)2
T⊙

T

x

x⊙

νmax,⊙

=
M

M⊙

L⊙

L

(

Te

Te,⊙

)3
x

x⊙

νmax,⊙ . (37)

Within the convective zone of low temperature red stars, theradiative flux is much smaller than
the convective flux (Fc ∼ σT 4

e ). It can be shown thatFc ∝ ρx3, therefore,

x

x⊙

∼
(

ρ⊙T 4
e

ρT 4
⊙

)

1

3

=

(

M

M⊙

)−
1

3

(

L

L⊙

)
1

2

(

Te

Te,⊙

)−
2

3

. (38)

Inserting Equation (38) into Equation (37), one will have

νmax ∼
(

M

M⊙

)
2

3

(

L

L⊙

)−
1

2

(

Te

Te,⊙

)
7

3

νmax,⊙ . (39)

The properties of the maximum unstable mode as estimated by Equation (39) are similar to those
given by Equation (3). It is then predicted that for higher stellar luminosities and lower effective
temperatures, the maximum unstable mode is shifting towards lower frequencies.

(4) Estimating the width in frequency for unstable oscillation modes: For the frequency of the max-
imum unstable mode calculated using Equation (37), the factor ωτc1/

(

1 + ω2τ2
c1

)

decreases to-
wards both higher and lower frequencies. The width in frequency of the unstable modes can be
measured by locating the points whereωτc1/

(

1 + ω2τ2
c1

)

decreases by half. It is trivial to prove
that the low frequency half power point is atν1 =

(

2 −
√

3
)

νmax, while the high frequency one
is ν2 =

(

2 +
√

3
)

νmax. The frequency width of unstable modes∆ν = ν2 − ν1 = 2
√

3νmax. It
can be seen from Equation (39) that bothνmax and∆ν decrease with increasing luminosity and
decreasing effective temperature of stars.

Figure 9 illustrates the general frequency characteristicof WPgc, WPt andWvis. Through the
above analysis and discussions, it is straightforward to understand the properties of low temperature
oscillators given in Section 3.

(1) For all faint low-temperature stars located to the rightof the instability strip shown in Figure 1(a),
the main cause for them to be stable in low order p-modes is thethermodynamic coupling
between convection and oscillations. Equation (31) accurately describes the effects of convective
energy transport on the stability of pulsation in stars.
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Fig. 9 A sketch showing the frequency dependence of the effects of the convective flux (dashed
line), turbulent pressure (solid line) and turbulent viscosity (dotted line) on the pulsational stability
of stars. The arrows indicate the directions of movement of the peak forWPt andWvis when stellar
luminosityL increases.

(2) As shown in Figure 1(b), the intermediate- and high-order p-modes are unstable for all the faint
low-temperature stars located to the right hand side of the instability strip. They are excited by
turbulent pressure. Figure 9 illustratesWPgc, WPt andWvis as functions of frequency. It can be
noticed that the maximum excitation due to turbulent pressure is not at the same frequency; in-
stead it changes with the luminosity and effective temperature of stars, as given by Equation (39).
For low luminosity red stars, the maximum excitation is at the frequency of the intermediate or-
der modes. This can explain why the Sun, quasi-solar stars and low luminosity red giants are
stable in low-order p-modes, but are unstable in intermediate- and high-order p-modes, while
possessing a relatively wide frequency width for unstable modes (see Figs. 1 and 2).

(3) The maximum unstable mode shifts toward low-order modesand, at the same time, the fre-
quency width of unstable modes also decreases with the increase of luminosity and decrease
of an effective temperature of the star, as indicated by arrows in Figure 9. This explains why
luminous red giants pulsate at only a few low-order modes (see Figs. 1 and 2).

Figure 10(a) and (b) shows accumulated works as functions ofdepth (in log P ) for the ra-
dial fundamental mode (a) and 20th overtone mode (b) for the same low luminosity red star as
in Figure 8, but with the coupling between convection and oscillations taken into account. The gas
pressure (WPg

), turbulent pressure (WPt) and turbulent viscosity (Wvis) components of the accu-
mulated work, as well as the fractional radiative fluxLr/L are plotted. The gas pressure component
of accumulated work includes the contributions of both radiative flux and convective flux as shown
by Equations (22) and (23). In the deep interior of the convection zone, far from the convective
boundary, convection dominates, namelyWPg

∼ WPgc. As shown in Figure 10(a) and 10(b), once
the coupling between convection and oscillations has been considered, the fundamental mode (and
low-order p-modes) becomes stable, but the intermediate- and high-order p-modes are still unstable.
Convective energy transfer now works as a damping mechanism, but turbulent pressure acts as an
excitation mechanism.
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Fig. 10 The accumulated workWall = WPg +WPt +Wvis (solid line) and its gas pressure- (WPg ,
dashed line), turbulent pressure- (WPt, long dashed line) and turbulent viscosity- (Wvis, dotted line)
components versus the depth for the same low-luminosity redgiant star as in Fig. 8. The fractional
radiation flux (dashed-dotted line) is also shown. The panel (a) the fundamental mode, the panel(b)
p20-mode. The sharp increase ofWPg is due to radiative and convective modulated excitation.

Fig. 11 The same as Fig. 10, but for a luminous red giant star withM = 1.0 M⊙, log L/L⊙ =

2.1905 andlog Te = 3.5855.

Figure 11(a) and (b) depicts the accumulated works as functions of depth of the fundamental and
20th overtone mode for a luminous red giant. In contrast to the behaviors in Figure 10(a) and (b), the
fundamental mode is now unstable, but the 20th overtone modebecomes stable. Turbulent thermal
convection and turbulent viscosity are the major damping mechanisms in this case, and turbulent
pressure is always an excitation mechanism for oscillations.
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The discussions on the accumulated work, including Equations (15)–(36), are all concentrated
on radial oscillations of stars. For non-radial oscillation in stars, modifications to the above for-
malisms have to be applied (Xiong & Deng 2010). However, the effects of convective flux, turbulent
pressure and turbulent viscosity on instabilities in stellar oscillation, together with the conclusions
drawn about the frequency dependence are all also qualitatively correct for non-radial oscillations.
In fact, stellar radial oscillations can be regarded as particular cases of non-radial oscillations when
l = 0. It follows from Figures 3–7 that the main properties of radial and non-radial oscillations
are very similar; amplitude growth rates of oscillations only depend on oscillation frequencyν, and
have nothing to do with the degreel of spherical harmonics. This is true at least for intermediate-
and low-degree oscillations ofl ≤ 25 in stars (Xiong & Deng 2010).

5 DISCUSSION

This work is one in a series of papers on turbulent convectionand pulsation stability. In this work,
we present the numerical results of the radial and low-degree (l = 1 − 4) non-radial, non-adiabatic
oscillations from zero age main sequence to AGB stars with stellar masses ranging from 0.6 to
3.0M⊙. The results show that the low-luminosity, low-temperature stars behave as solar-like oscil-
lators, whereas the luminous red giants possess Mira-like oscillation properties.

For low-temperature stars with extended convective envelopes, the coupling between convection
and oscillations serves as the major mechanism for excitation and damping. Convection acts on
stellar stability through convective energy transfer, turbulent pressure and turbulent viscosity. We
have carried out very careful analysis of the effects of the above-mentioned factors on stellar stability,
and the results of our studies show that, in the deep interiors of the convective zone far away from
the boundaries, thermal convection works as a damping mechanism, and the damping is inversely
proportional to oscillation frequency. Thermodynamic coupling between convection and oscillations
is the reason for the existence of the red edge of the Cepheid instability strip. On the contrary,
turbulent pressure is usually an excitation of oscillations, because of the fact that turbulent pressure
Pt always slightly lags behind variations in gas density due tothe inertia of convective motions in
the course of stellar pulsations.

As a result, a positive Carnot cycle is formed in thePt–V (V = 1/ρ) plane, i.e. turbulent
kinetic energy is converted into that of pulsation, yielding an excitation mechanism. Turbulent vis-
cosity tends to convert pulsation kinetic energy into turbulent kinetic energy in the low-wave number
regime, and eventually into heat at high wave numbers through cascading processes of turbulence.
Therefore turbulent viscosity is always a damping against oscillations. The excitation of turbulent
pressure and the damping of turbulent viscosity reach theircorresponding maxima respectively at
3ωτc/4 ∼ 1 and3ωτc/4(1 + c3) ∼ 1 (ω is the circular frequency andτc = c1r

2P/0.78GMrρx
is the dynamic time scale of convective motions). For lower temperature and higher luminosity,τc

increases, therefore the most unstable mode in a star is shifted towards lower order. This is the reason
why low-luminosity, low-temperature stars usually show solar-like oscillations, but the luminous red
giants display Mira-like oscillations.

Our theory of non-local and time-dependent convection is based on the hydrodynamic equa-
tions and the theory of turbulence. Compared with the phenomenological mixing-length theories,
ours is more physically sound and more accurate in describing the dynamic behaviors of turbulent
convection in stars. Our theory can be regarded as a system ofdynamic equations of auto- and
cross-correlations, which contain two (c1 andc2 in the approximation of quasi-isotropic turbulence)
or three (plusc3 describing anisotropy of turbulence) adjustable parameters.c1, c2 andc3 describe
respectively the turbulent dissipation, the turbulent diffusion and the anisotropy of turbulent con-
vection. Explaining a problem by tuning a parameter in a theory is a usual practice in astrophysical
research. In our case, by using the same set of convective parameters (c1–c3) that were calibrated by
solar observations, we successfully reproduced a variety of solar and stellar observations, including
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Fig. 12 The amplitude growth ratesη = −2πωi/ωr versus frequencies for four solar envelope
modes with different connection parameters,c1 = 0.7 (circles), 0.8 (triangles), 0.9 (inverse trian-
gles) and 1.0 (squares), wherec2 = c1/2. The small solid symbols and large open symbols are used
for the stable and the unstable modes respectively.

the structure of the solar convective zone (Unno et al. 1985;Xiong & Deng 2001b; Zhang et al.
2012), the atmospheric lithium abundances of the Sun and solar-type stars (Xiong & Deng 2009),
evolution of massive stars (Xiong 1986), RR Lyrae and theδ Scuti instability strip (Xiong et al.
1998b; Xiong & Deng 2001a), and the general observational properties of oscillations in Mira stars
and red giants (Xiong et al. 1998a; Xiong & Deng 2007). All these works served as a demonstration
that our theory is rather robust in stellar physics. We wouldlike to emphasize here that the results
of non-adiabatic oscillations of stellar models hardly depend on the tuning of the parameters (Xiong
et al. 1998b). The results of solar convective envelope models calculated using four sets of param-
eters,c1 = 0.7, 0.8, 0.9, 1.0, andc2 = c1/2, are presented in Figure 12, in which the amplitude
growth rate as a function of frequency for the non-radial p-mode ofl = 1 is drawn. It can be made
clear from the plot that by changing the parameter by almost afactor of 1.4 times (far larger than
the range of its uncertainty), the stability of the p-mode only varies by a small amount. Therefore,
we are rather confident to conclude that the main results of the current work are not compromised
by any choice of the convective parameters in the theory. Concluding from the work done for very
different stellar convection problems, our theory describing stellar convection is robust in handling
the dynamic behaviors of stellar convection.

We are certain that the turbulent stochastic excitation is the excitation that is responsible for high-
degree/order mode oscillations in the Sun and in low-luminosity, low-temperature stars. Comparing
the line width of solar p-modes (Libbrecht 1988; Chaplin et al. 1997) and the amplitude growth
rates calculated by us, one can easily see that it is not possible to have observed amplitudes in
high frequency modes (ν > 4000 Hz) with the coupling between convection and oscillations alone.
However, for the solar p-modes with intermediate frequency(∼ 1000 µHz< ν < 3500 µHz),
the excitation of the coupling between convection and oscillations is powerful enough to compen-
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sate the damping indicated by the line widths in those modes,so that those modes can be excited.
Therefore we would argue that five-minute solar oscillations cannot be a result of one single mecha-
nism; instead they are driven by the combination of turbulent stochastic excitation and the “regular”
convective coupling. For intermediate- and low-frequencymodes, the coupling between convection
and oscillations dominates, while in high-frequency modes, turbulent stochastic excitation takes over
(Xiong & Deng 2010).

No doubt, the assessment on the excitation mechanism of solar five-minute oscillations dis-
cussed above is solely based on a number of theoretical reasonings, and it definitely needs obser-
vations to back it up. Using 200 day solar radial velocity data taken by GOLF onboard SOHO,
Garcı́a et al. (2001) discovered a peak atν = 284.67 µHz in the power spectrum with 98% confi-
dence. Later in 2002, Gabriel et al. independently confirmedsuch an observation using a statistical
approach, verifying the signal at 96% confidence. Coincidentally, the theoretical modeling of solar
non-radial and non-adiabatic oscillations also shows thatthep1 mode ofl = 1 is unstable, which has
a theoretical oscillation frequency ofν ≈ 284.1 µHz. Meanwhile, all other g- and p-modes having
similar frequencies are stable (Xiong & Deng 2012). If the discovery of Garcı́a et al. and Gabriel
et al. were both correct, it can serve as solid support for ourtheory.

Restricted to solar oscillations, the turbulent stochastic excitation mechanism is more developed
and successful compared to our theory, due to its clarity, and can be strongly supported by observa-
tions in the following two aspects.

(1) With a certain choice of convection parameter, the observed line widths of solar p-mode oscil-
lations can be reproduced fairly well (Balmforth 1992; Libbrecht 1988; Chaplin et al. 1997);

(2) Under some specific assumptions on the spectra of turbulence, the observed amplitude in
velocity of solar five-minute oscillations can be approximately reproduced (Libbrecht 1988;
Balmforth 1992; Goldreich & Kumar 1988; Samadi et al. 2003; Belkacem et al. 2008).

One of the fundamental ideas of the turbulent stochastic excitation mechanism is that solar oscil-
lations are pulsationally stable, and are damped by convection. Whether solar oscillations are stable
or unstable has been a rather disputed theoretical problem that sensitively depends on the treatment
of convection (Ulrich & Rhodes 1977; Antia et al. 1982; Antiaet al. 1988; Samadi et al. 2002;
Balmforth 1992). Suddenly after the measurement of the limited line widths of solar p-mode oscilla-
tions, the damped solar five-minute oscillations became an undisputed fact in the community. Is that
really completely unchallengeable? Of course, a linear stable mode must have a limited width, but on
the other hand, one may conclude differently going backward, i.e. limited width may not necessarily
be the result of linear stability. For a straightforward example, a chain of quasi “monochromatic”
light waves, with limited length or with its amplitude/phase being modulated, will always be ob-
served as having limited width. This is because in most cases, we cannot observe the true profile of
a spectral line. This is not solely due to restrictions on observational techniques; even if observa-
tions were perfect, the true line profile still could not be observed due to the limited lifetime of the
oscillation mode that puts a limit on the resolution of the spectrum. That is why we say that “ob-
servations give a seemingly limited line width.” For classical variables with small amplitudes such
asδ Scuti andβ Cephei, observations will also show limited line widths. There are no observations
that confirm this behavior, simply because no attempts have been made so far. Nevertheless, we can
never conclude that the oscillations in all red giants are linearly stable by extrapolating the turbulent
stochastic excitation mechanism established in solar studies. In fact, Mira, semi-regular and irregular
variables cannot be explained at all using turbulent stochastic excitation; instead it is widely accepted
that the coupling between convection and oscillations is their driving mechanism. It is hard to believe
that a mechanism having such a major effect happens all of a sudden in luminous red giants. A more
logical reasoning will be that such a mechanism already exists in low-luminosity, low-temperature
stars, and it becomes stronger with higher luminosity. Thisis a rather gradual process of change.
Although it is not possible to define the exact location in theH-R diagram and the exact frequency
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where the transition between these two competing mechanisms happens, the transition point must
still exist as nature obeys physical laws. In this sense, theseries of work done so far using our theory
has provided a unified approach to a number of connected problems, namely the red edge of the
Cepheid instability strip, solar-like oscillations in low-luminosity cases, and Mira-like oscillations
in luminous red giants. That is not to say that the theory itself is already perfect; instead much more
still needs to be done in order to further improve it.

Our non-local, time-dependent theory of convection is a type of statistical theory of correla-
tions, or more precisely, it is composed of a set of dynamic equations of squared turbulent velocity,
temperature fluctuations and turbulent velocity-temperature fluctuation correlations related by some
statistical average. Such a statistical average is made either at a characteristic length shorter than the
wavelength of standing waves and on a spherical surface large enough compared to the characteristic
dimension of turbulent elements in space, or shorter than the oscillation period and longer than the
characteristic time scale of turbulence in time. As a result, the theory we developed is only suitable
for static convection and modes with low-frequency (low-degree and low-order) oscillations. For
modes with high frequency oscillations, the wavelength of oscillation and the characteristic scale
length of turbulent eddies is compatible; the oscillation period and the characteristic time scale of
turbulent elements are also of the same order, and the statistical averaging method embedded in
our theory is no longer appropriate, therefore the conclusions will no longer be valid. Therefore, it is
problematic to apply in modes with high frequency. For higher and higher frequencies, the stochastic
nature of turbulence overwhelms this process. To conclude,our statistical theory of turbulent convec-
tion is a good approach for static stellar convection and analysis of low-frequency oscillations, and
the turbulent stochastic mechanism should work better for high-frequency (high-order/high-degree)
oscillations in stars. Unfortunately, the development of stellar convection theory still has to over-
come obstacles, since there is currently no good way to handle problems in both low-frequency and
high-frequency domains.

When turbulence is propagating in inhomogeneous media, sound waves may be scattered or
refracted by turbulent eddies, causing energy loss and phase shifts. Both damage the coherence of
the standing waves (Gough 1980). The shorter the sound wavelength is, the stronger these effects
become. In the current work, we completely ignored the effects of scattering and refractions due to
turbulence. As a result of such a treatment, damping at high frequency is underestimated for solar
and solar-like oscillations. Such a problem has already been shown in the numerical results. For
instance, the theoretical prediction is that the most unstable mode falls atνmax ∼ 3800 µHz (see
Fig. 3), but the observed one is located atνmax ∼ 3020 µHz.
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