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Abstract We propose that grand minima in solar activity are caused by simultane-
ous fluctuations in the meridional circulation and the Babcock–Leighton mechanism
for the poloidal field generation in the flux transport dynamomodel. We present the
following results: (a) fluctuations in the meridional circulation are more effective in
producing grand minima; (b) both sudden and gradual initiations of grand minima are
possible; (c) distributions of durations and waiting timesbetween grand minima seem
to be exponential; (d) the coherence time of the meridional circulation has an effect
on the number and the average duration of grand minima, with acoherence time of
about 30 yr being consistent with observational data. We also study the occurrence of
grand maxima and find that the distributions of durations andwaiting times between
grand maxima are also exponential, like the grand minima. Finally we address the
question of whether the Babcock–Leighton mechanism can be operative during grand
minima when there are no sunspots. We show that anα-effect restricted to the upper
portions of the convection zone can pull the dynamo out of thegrand minima and can
match various observational requirements if the amplitudeof this α-effect is suitably
fine-tuned.
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1 INTRODUCTION

One intriguing aspect of the solar cycle is the occurrence ofgrand minima when sunspots may not
appear for several decades and a few cycles may go missing. Since the beginning of the telescopic
observations of sunspots, one grand minimum known as the Maunder minimum occurred during
1645–1715 (Eddy 1976; Ribes & Nesme-Ribes 1993). We have to look for indirect proxy data to
infer the occurrences of grand minima at still earlier times. When the magnetic field of the Sun is
weak, more cosmic rays reach the Earth’s atmosphere, producing larger amounts of the cosmogenic
isotopes like14C and10Be. From the study of14C in old tree rings and10Be in polar ice cores,
several groups have identified a number of grand minima that occurred during the past few millennia
(Usoskin et al. 2007; Steinhilber et al. 2012). Particularly, Usoskin et al. (2007) have detected about
27 such events signifying low activity in the last 11 400 yr from the14C data. Even when sunspots are
not seen, some of the indirect proxy data indicate the presence of continued oscillations at a subdued
level during grand minima (Fligge et al. 1999). Miyahara et al. (2004) found the oscillations to have
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longer periods during the Maunder minimum. Miyahara et al. (2006, 2007) and Nagaya et al. (2012)
found this to be true for other grand minima as well.

The aim of the present paper is to investigate whether different aspects of grand minima can
be explained with a flux transport solar dynamo model. An earlier paper by Choudhuri & Karak
(2012; hereafter CK12) developed a theoretical model of grand minima by introducing appropriate
fluctuations in our flux transport dynamo model and presentedsome preliminary results. This paper
is a continuation of that work and addresses several aspectsof the problem not discussed in CK12.

The flux transport dynamo model has emerged as the most promising theoretical model for
the sunspot cycle in recent years (Wang et al. 1991; Choudhuri et al. 1995; Durney 1995; Dikpati
& Charbonneau 1999; Nandy & Choudhuri 2002; Charbonneau 2010; Choudhuri 2011; Karak &
Petrovay 2013; Jiang et al. 2013). The primary mechanism forthe poloidal field generation in this
model is the Babcock–Leighton mechanism involving the decay of tilted bipolar sunspots (Babcock
1961; Leighton 1969). Since this mechanism depends on the existence of sunspots in order to be
operative, this mechanism may not work during a grand minimum when there are no sunspots. We
would then require some other mechanism to pull the Sun out ofthe grand minimum. Early models
of the solar dynamo invoked theα-effect proposed by Parker (1955) and Steenbeck et al. (1966) to
generate the poloidal field. Theα-effect can twist a toroidal field to produce a poloidal field only if
the toroidal field is not stronger than the equipartition field. After simulations of the buoyant rise of
flux tubes suggested a much stronger toroidal field (Choudhuri & Gilman 1987; Choudhuri 1989;
D’Silva & Choudhuri 1993; Fan et al. 1993), the flux transportdynamo models used the Babcock–
Leighton mechanism as the favored mechanism rather than theα-effect for generating the poloidal
field. During a grand minimum, the toroidal field presumably becomes much weaker and probably
theα-effect can be operative to pull the Sun out of the grand minimum. Since we have very little
knowledge about the nature of thisα-effect, CK12 assumed the same Babcock–Leighton mechanism
to be operative all the time to simplify the theoretical calculations. One of the things we explore in
this paper is the nature of theα-effect needed to pull the dynamo out of the grand minimum. We
shall see that various observational requirements put someimportant constraints on the nature of this
α-effect.

Let us now come to the question of what can cause irregularities in the solar cycle and the
grand minima. One important question is whether nonlinearities in the system can induce chaotic
behavior. The simplest kind of nonlinearity used extensively in the earlier dynamo models is the
α-quenching. If, for some reason, the magnetic field becomes stronger than usual, this quenching
makesα smaller and the dynamo weaker, bringing down the magnetic field. If the magnetic field
becomes weaker, then the opposite happens. A nonlinearity in the form ofα-quenching makes the
dynamo more stable instead of producing chaotic behavior. Afew authors have found intermittent
behavior in highly truncated dynamo models with more complicated kinds of nonlinearity which do
not seem justified by solar observations (Weiss et al. 1984; Wilmot-Smith et al. 2005).

One other source of irregularity is stochastic noise. Sincethe mean-field dynamo theory is ob-
tained by averaging over turbulence, we expect turbulent fluctuations to provide a random noise.
Hoyng (1988) realized this for the first time and later several authors showed that stochastic noise
introduced in the mean-field dynamo equation can produce irregularities in solar cycles including
grand minima-like episodes (Choudhuri 1992; Charbonneau et al. 2004; Gómez & Mininni 2006;
Brandenburg & Spiegel 2008; Moss et al. 2008; Usoskin et al. 2009a; Passos et al. 2012). A sce-
nario for the origin of stochastic noise in a flux transport dynamo was provided by Choudhuri et al.
(2007). The Babcock–Leighton mechanism for poloidal field generation depends on the tilts of bipo-
lar sunspots. Although the average tilt at a latitude is given by Joy’s law, one finds a scatter around
the average (Dasi-Espuig et al. 2010), presumably due to theeffect of convective turbulence on the
rising flux tubes (Longcope & Choudhuri 2002). So, we believethat the Babcock–Leighton process
intrinsically has a random component. Choudhuri et al. (2007) incorporated this by effect allowing
the poloidal field generated at the end of a cycle to differ from its average value. This approach
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has been followed in subsequent papers (Jiang et al. 2007; Goel & Choudhuri 2009; Choudhuri &
Karak 2009) as well as the present paper. Choudhuri & Karak (2009) have shown that, if the poloidal
field becomes sufficiently weak at the end of a cycle due to fluctuations in the Babcock–Leighton
mechanism, then that may trigger a grand minimum.

Another source of irregularities is fluctuations in meridional circulation, the importance of which
has only been recognized recently (Yeates et al. 2008; Karak2010; Karak & Choudhuri 2011;
Passos 2012). The meridional circulation plays a crucial role in the flux transport dynamo model
(Choudhuri et al. 1995; Dikpati & Charbonneau 1999; Karak 2010). Although we have neither good
theoretical understanding nor long observational measurements of the meridional circulation, Karak
& Choudhuri (2011) used durations of sunspot cycles in the last 250 yr to have some idea about
fluctuations in meridional circulation. They concluded that the meridional circulation had large tem-
poral variations with coherence time of more than a solar cycle. There are also many other evidences
for variations of the meridional circulation in the past (e.g., Passos & Lopes 2008; Passos et al.
2012). When the meridional circulation slows down, the period of the dynamo becomes longer.
This has rather different effects on dynamo models with highand low turbulent diffusivity (Yeates
et al. 2008; Karak 2010; Karak & Nandy 2012). If the turbulentdiffusivity is assumed to be rea-
sonably high (which is the case in our model), then the cyclesbecome weaker because diffusivity
has a longer time to act in a cycle. On the other hand, if the turbulent diffusivity is low (Dikpati &
Charbonneau 1999), then the effect of diffusivity is not so strong and the cycles become stronger
with decreasing meridional circulation because the differential rotation has a longer time to act on
the magnetic fields. Only a dynamo model with reasonably highturbulent diffusion (like what we
use) can explain observational effects like the dipolar parity of the Sun (Chatterjee et al. 2004; Hotta
& Yokoyama 2010), the Waldmeier effect (Karak & Choudhuri 2011), the period and the amplitude
relation (Karak 2010) and the lack of significant hemispheric asymmetry (Chatterjee & Choudhuri
2006; Goel & Choudhuri 2009). See section 5 of Jiang et al. (2007) and Miesch et al. (2012) (also
see Muñoz-Jaramillo et al. 2013) for a discussion on this topic. In the dynamo model with high
diffusivity in which a weaker meridional circulation makescycles weaker, Karak (2010) has shown
that a sufficiently weak meridional circulation can triggera grand minimum.

Our recent paper CK12 studies the occurrence of grand minimain our theoretical dynamo model
by introducing simultaneous fluctuations in the poloidal field generation and the meridional circu-
lation. The levels of fluctuations were determined from the observational data of the last 28 cycles.
With such fluctuations, the flux transport dynamo model developed in our group showed 24–30 grand
minima in a typical run of 11 000 yr —in close agreement with observational data.

Because of the shortness of the paper CK12, which was in the form of a letter, a full exploration
of the different aspects of the problem could not be presented in it. This is done in the present paper.
After giving a short introduction to the model in Section 2, in Section 3 we present various aspects
of the results not discussed in CK12, such as the relative importance of the two fluctuations and the
dependence on parameters like the coherence time of the meridional circulation. We also present
some results of grand maxima, which could not be discussed inCK12. Finally, Section 4 addresses
the important question of how the dynamo comes out of the grand minimum and if we can say
something about the nature of theα-effect which may be needed for this.

2 MODEL

We carry out all the calculations using a flux transport dynamo model originally presented in
Chatterjee et al. (2004). This model is based on the kinematic mean-field dynamo theory in which the
poloidal field generation is assumed to be due to the Babcock–Leighton process. Assuming axisym-
metry, the evolutions of the magnetic field components in this model are described by the following
two equations:
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with s = r sin θ. HereA is the vector potential of the poloidal magnetic field (Bp), B is the toroidal
magnetic field,v = vr r̂ + vθ θ̂ is the meridional circulation,Ω is the internal angular velocity,ηp

andηt are the turbulent diffusivities for the poloidal and toroidal components respectively, andα is
the source term for the poloidal field which parameterized the Babcock–Leighton mechanism. The
details of all these parameters are specified in Chatterjee et al. (2004). However, Karak (2010) re-
cently slightly modified a few parameters and in this work we are using exactly the same parameters
as used in Karak (2010).

Just to remind the readers, we mention that in the expressionof the meridional circulation there
is a parameterv0 which determines the strength of the meridional circulation. For a normal cycle
with a period of 11 yr we takev0 = 23 m s−1. However, in this work, when we introduce fluctuations
in the meridional circulation, we change thisv0 to change the strength of the meridional circulation.

Let us make a comment on the absolute value of the magnetic field in our results. If the equations
are completely linear in the magnetic field, then the unit of the magnetic field would be arbitrary.
Although (1) and (2) are linear equations, our problem becomes nonlinear when we include magnetic
buoyancy following the methodology used in the earlier papers from our group (see Chatterjee et al.
2004). If the amplitude of the toroidal magnetic field|B| above the bottom of the convection zone
is larger than a critical valueBc, then a part of the toroidal field is made to rise to the surface.
This nonlinearity limits the amplitude of the magnetic field. We takeBc = 0.8, which makes the
maximum value of the magnetic field at the bottom of the convection zone hover around 1. Since
simulations of flux tube rise based on the thin flux tube equation (Spruit 1981; Choudhuri 1990)
suggest magnetic fields of the order of105 G at the bottom of the convection zone (Choudhuri &
Gilman 1987; Choudhuri 1989; D’Silva & Choudhuri 1993; Fan et al. 1993), it is tempting to identify
the value 1 of the magnetic field in our simulations with105 G. However, such an identification is
questionable. Apart from the fact this would give values of the polar magnetic field that disagree with
observations, we expect the magnetic field to be105 G only inside flux tubes, whereas the dynamo
equation deals with the mean magnetic field. If the filling factor of flux tubes at the bottom of the
convection zone is considerably less than 1, then the mean magnetic field which has to be identified
with the magnetic field computed in our model may be much less than105 G. We shall discuss these
considerations further in Section 4, where we discuss whether the dynamo requires anα-effect in
addition to the Babcock–Leighton mechanism to bring it out of the grand minimum.

In the next section, we present results based on exactly the same model of producing grand
minima as was used in CK12. We basically discuss a few important aspects of the problem which
could not be included in CK12 due to the lack of space. Then, inSection 4, we shall allow the
possibility that the poloidal field generation under normalcycle conditions and during the grand
minima may require different mechanisms.

3 SIMULATIONS OF GRAND MINIMA

Our earlier paper CK12 explained the basic assumptions of our model of grand minima and pre-
sented some illustrative results. Because CK12 was a paper in the form of a letter, a full discussion
of the results could not be presented in it. This section presents some additional results based on
the grand minimum model of CK12. Since the details of the model have been given in CK12, we
simply mention the salient features. The grand minima in ourmodel were produced by fluctuations
in meridional circulation and by fluctuations in the Babcock–Leighton process that would make the
scaled polar field amplitudeγ at the end of a cycle vary from cycle to cycle. Assuming the fact that
the solar cycle period is inversely related to the strength of the meridional circulation, we estimated
the nature of fluctuations in the meridional circulation from the durations of the last 28 cycles. On
the other hand, assuming that the solar cycle strength is directly correlated to the strength of the polar
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Fig. 1 Typical histograms of (a) the strength of the meridional circulationv0 and (b) the strength
of the poloidal fieldγ used for grand minima simulations. These randomly generated data are taken
from Gaussian distributions whose means and standard deviations are derived in CK12.

field at the end of the previous cycle, we have obtained the fluctuations inγ from the strengths of the
last 28 solar cycles. See figure 2 of CK12 and the corresponding text for details. Assuming both the
fluctuations obey Gaussian distributions, we have constructed the distributions of these fluctuations
by using the means and standard deviations of these data.

Figure 1 shows the typical histograms of these. We then makev0 andγ vary randomly following
these distributions. We point out that for different runs wegenerate different results for different
realizations of the fluctuations ofv0 andγ. Another important thing to note is that we change the
polar field by the factorγ at every solar minimum, whereas we changev0 after a certain time interval
called the coherence timeτMC. Now we shall systematically explore the origin and different aspects
of grand minima.

3.1 Contributions of Meridional Circulation and the Poloidal Field in Triggering Grand
Minima

Using the same parameters of the basic dynamo model as used inCK12, we explore the relative
importance of the contributions of the meridional circulation fluctuations and the poloidal field fluc-
tuations in triggering grand minima. We perform two separate simulation runs by including only
one kind of fluctuation in each run. First, we do a simulation by randomly varying onlyv0 after
intervals of 30 yr (i.e.,τMC = 30 yr). The random values forv0 used for this run have been shown
in Figure 1(a). The top panel of Figure 2 shows the results of this run. For clarity of display we
only show a small segment of this data set which spans 1000 yr.Next, we present a simulation
with only poloidal field fluctuations. We change the poloidalfield factorγ at every solar minimum.
The histogram ofγ for this run is shown in Figure 1(b), whereas the result of this run is shown in
Figure 2(b).

Based on these simulations, we make the following importantconclusions.

(i) The meridional circulation plays an important role in modulating the solar cycle period and the
amplitude (consistent with Karak 2010). This is clear from Figure 2(a).

(ii) Most of the grand minima are produced when the meridional circulation becomes sufficiently
weak, whereas the weak poloidal field has a very minor contribution to producing grand minima
(as seen by comparing the two panels in Fig. 2). Fluctuationsin the poloidal field have some
effect in producing grand minima when combined with the fluctuating meridional circulation,
but are not able to produce any grand minima when acting alone.

Although we ourselves had not been aware of these conclusions at the time of writing our earlier
paper CK12, it now seems from hindsight that these conclusions would follow from figure 1 of
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Fig. 2 (a) Simulation of grand minima with fluctuating meridional circulation withτMC = 30 yr.
The dashed (red) line shows the strength of meridional circulationv0 used in the simulation whereas
the solid (blue) line shows the (theoretical) sunspot number as a function of time (years). Two grand
minima are clearly evinced. (b) Simulation with fluctuatingpoloidal field. The dashed (pink) line
shows that the strength of poloidal fieldγ changes at every solar minimum, whereas the solid (blue)
line shows the sunspot number.

CK12, where the region of the parameter space required for producing grand minima is demarcated.
When the polar field is not varied (i.e.γ is always kept equal to 1), we see from figure 1 of CK12
that it is necessary to makev0 less than about 15.5 m s−1 to produce grand minima and we find that
the probability of this is not too low, as can be seen from figure 2(a) of CK12. On the other hand, if
fluctuations in meridional circulation are not included (i.e. v0 is held fixed at the value 23 m s−1),
thenγ has to be made about−1 (below the bottom of fig. 1 of CK12) and we see from figure 2(b)
of CK12 that the probability of this is minuscule.

Now we come to the question of whether our conclusion that thefluctuations in the polar field
do not play an important role in producing grand minima changes when the parameters of the basic
dynamo model are different. This is discussed in the next subsection.

3.2 Sensitivity of the Results on the Value ofα

When we run our basic dynamo model without fluctuations, we find that the critical value of theα
coefficient isα0 = 21.1 m s−1. In other words, when we run the code by varyingα0 alone while
keeping all the other parameters fixed (especially using thediffusivity η0 = 3 × 1012 cm2 s−1),
we get a non-decaying oscillatory solution only ifα0 is larger than this critical value. The results
of CK12 as well as the results presented in Section 3.1 are based on a model using a somewhat
supercritical value ofα0 = 30 m s−1. We now carry on some calculations using only a moderately
critical value ofα0 = 24 m s−1. We study the effect of introducing fluctuations in the polarfield
alone on this moderately critical dynamo.

Figure 3 shows a typical result of such a simulation. Now we find that 14 grand minima are
produced in 11 000 yr. It is not difficult to give a physical argument why fluctuations in the polar
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Fig. 3 The durations of grand minima indicated by vertical bars at their times of occurrence in an
11 000 yr simulation with only poloidal field fluctuations. Note that unlike earlier in this case we get
14 grand minima with poloidal field fluctuations alone. In this simulationα0 = 24 m s−1 instead of
30 m s−1 used earlier; everything else remains unchanged.

field produce grand minima more easily in a moderately critical dynamo. If the fluctuations make
the polar field during a minimum much less than the polar field which such a moderately critical
dynamo would normally produce, then this is almost as if the strength ofα is temporarily reduced
and this can make the dynamo subcritical, pushing it into a grand minimum. This is not likely to
happen when the dynamo is reasonably supercritical. We thusconclude that fluctuations in the polar
field would have a significant effect on the dynamo only if it ismoderately critical.

We have done some calculations introducing fluctuations in both the meridional circulation and
the poloidal field in a moderately critical dynamo. The number of grand minima becomes much
larger than the observed value. Since the results of a supercritical dynamo are in such good agreement
with the observations (CK12), one is tempted to conclude that the solar dynamo is supercritical
and fluctuations in the polar field do not have much effect in inducing grand minima. It may be
noted that Charbonneau et al. (2007) proposed that the Gnevyshev–Ohl effect is produced by period
doubling, which also requires a reasonably supercritical dynamo. Other dynamo models which are
not supercritical show the occurrence of grand minima on introducing fluctuations in theα-effect
alone (Olemskoy et al. 2013).

We point out that the earlier paper by Choudhuri & Karak (2009) produced grand minima with
only fluctuations in the Babcock–Leighton mechanism. The model used in this paper was not too
supercritical. Additionally, one ad hoc assumption used inthis paper was to also reduce the toroidal
field by a factor of 0.8 when the poloidal field was reduced to create a grand minimum. This helped in
creating the Maunder-like grand minima. In the present paper, we do not use this ad hoc assumption
and the toroidal field is never changed when changing the poloidal field to incorporate fluctuations
in the Babcock–Leighton process.

The results presented in the remaining subsections of this section are all obtained with the su-
percritical dynamo used in CK12.

3.3 Are Initiations of Grand Minima Sudden or Gradual?

One important question connected with grand minima is whether they initiate suddenly or gradually.
Usoskin et al. (2000) concluded that the Maunder minimum started abruptly. However, Vaquero
et al. (2011) more recently presented evidence that the initiation of the Maunder minimum was
more gradual. On the theoretical side, in our simulation runs we find both grand minima which start
abruptly and which start gradually. Since we now recognize the fluctuations in meridional circulation
to be the primary cause of grand minima, we discuss the results for the run with fluctuations in
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Fig. 4 Panel (a) shows the distribution of the durations of the grand minima and Panel (b) shows the
distribution of the waiting times between the grand minima.This figure is produced from the data
representing 88 000 yr of simulation runs.

meridional circulation alone. Things can be seen more cleanly there. The results are qualitatively the
same when both fluctuations in meridional circulation and the polar field are present.

In Figure 2(a) we see that the grand minimum that started slightly before 1500 and also the
grand minimum that started around 1900 initiated gradually. These grand minima did not start im-
mediately after the meridional circulation became sufficiently weak. The dynamo took about one or
two solar cycles to enter into grand minima. Therefore, one or two solar cycles before the beginning
of grand minima, the solar cycle period tended to become longer (because the meridional circulation
determines the cycle period). This result is remarkably consistent with the results of Miyahara et al.
(2010) who have found sufficient evidences of the longer solar cycles even before the beginning of
the Maunder minimum and also the Spörer minimum.

Now we discuss an opposite case where the grand minimum starts suddenly and we do not see
much change in the solar cycle period before the beginning ofthe grand minimum. In Figure 2(a),
the grand minimum around 1100 shows this behavior. We note that this grand minimum was caused
by the meridional circulation falling to a very low value suddenly from a reasonably high value.
Although the cycle period did not get elongated before the start of the grand minimum, the cycle
period is longer than usual during the actual grand minimum epoch.

Based on our theoretical results, we draw the following conclusion. As the meridional circulation
is made to fluctuate randomly, it would sometimes happen thatthe meridional circulation would drop
from a rather high value to a low value. In such a situation, the initiation of the grand minimum seems
abrupt. More commonly, we may have the meridional circulation dropping from a more moderate
value to a low value. The grand minimum starts more graduallyin this situation. As we do not know
at present how rapidly the meridional circulation can drop to a low value, we do not know which
one is more physical. In our simulations done with both kindsof fluctuations present, we have noted
that about40% of grand minima initiate abruptly whereas the remaining grand minima initiate more
gradually. However the recovery from grand minima is alwaysgradual, which is consistent with
observations during the Maunder minimum (Usoskin et al. 2000).

3.4 Statistics of Grand Minima

In figure 5 of CK12 we presented the distributions of durations of grand minima and the waiting
times between them. Since these distributions were constructed from the limited set of 29 grand
minima which occurred during one run, the nature of these distributions was not very clear from
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this figure. To make a statistically reliable conclusion, wenow make histograms from the data of
a very long simulation (about 88 000 yr) in which we have detected about 207 grand minima. The
histograms are shown in Figure 4. From this plot, we now clearly see that both the duration and
the waiting time follow exponential behavior. This demonstrates that the duration and waiting time
are governed by stationary memoryless stochastic processes. As the grand minima are produced by
the random fluctuations in the meridional circulation and the poloidal field, the occurrence of the
grand minimum must be a random event implying that the waiting time distribution is exponential.
On the other hand, once the dynamo enters into a grand minimumstate, the recovery of the dynamo
from a grand minimum state is only possible by the increase ofmeridional circulation which hap-
pens randomly. Since stochastic fluctuations in meridionalcirculation are responsible for bringing
back the dynamo into the normal cycle, the distribution of the durations of grand minima is also
exponential. We mention that the observational distribution of the waiting times of grand minima
based on 27 grand minima that occurred in the last 11 400 yr reported by Usoskin et al. (2007) is
also exponential, whereas the distribution of durations isnot so conclusive.

3.5 The Dependence of the Coherence Time of Meridional Circulation

Karak & Choudhuri (2011) pointed out that several successive cycles in the past often had very
similar periods (see their fig. 2). This suggests that the meridional circulation probably had remained
steady during those cycles before changing abruptly at the end of such an epoch. Given the limited
data of the last few cycles, it is very difficult to estimate the coherence timeτMC of the meridional
circulation. Karak & Choudhuri (2011) concluded that this coherence time should lie in the range
between 15 yr and 45 yr. All the results presented in CK12 wereobtained by using a coherence time
of 30 yr. Here we explore the importance of this coherence time τMC of the meridional circulation
on various features of grand minima.

In our earlier simulations of CK12 usingτMC = 30 yr, after every 30 yr,v0 was varied randomly
in accordance with their distributions. Now we have performed several simulations by varyingτMC

from 10 to 50 yr. We note the number of grand minima in a run of 11000 yr and also calculate the
average duration of such grand minima for each run with a particular value ofτMC. Note that in all
simulations the poloidal field is only changing at every solar minimum.

Figure 5 shows the results. We see that the total number of grand minima initially increases
with the increase ofτMC and then, after a certain value around 30 yr, it tends to decrease. This is
easy to understand. IfτMC is small, the dynamo does not get much time to make magnetic fields
sufficiently weak even when the meridional circulation falls to a low value during a short coherence
time. Therefore, the occurrence of grand minima becomes less. With the increase ofτMC, the number
of grand minima increases. However, afterτMC becomes comparable to the typical duration of a few
cycles, further increase of it does not increase the number of grand minima, but rather it decreases. If
the meridional circulation changes after long times, then the probability that it falls to a sufficiently
low value also becomes less. Therefore the total number of grand minima in a run that spans a finite
period becomes lower at largeτMC.

Another important result from this figure is that the averageduration of grand minima is an
increasing function ofτMC. In an earlier work with constant meridional circulation where grand
minima were produced by fluctuations in the polar field alone,Choudhuri & Karak (2009) found
that the recovery to the normal state from a grand minimum is only determined by the dynamo
growth rate (measured by the dynamo number∼ α/η2; whereα is the strength of the poloidal field
generation process during a grand minimum episode). However, in the case of fluctuating meridional
circulation, where grand minima are mostly caused by the weak meridional circulation, the recovery
from a grand minima state is not only determined by the dynamonumber but also on how rapidly
the meridional circulation comes back to a more usual value from the very low value that caused the
grand minimum. If the meridional circulation recovers quickly from its low value, the duration of
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Fig. 5 Dependence of the number of grand minima (shown by stars and the dashed line) in 11 000 yr
and their average duration (shown by circles and the dotted line) along the right vertical axis as a
function of the coherence time of the meridional circulation (τMC).

the grand minimum will be short and vice versa. Therefore theaverage duration of grand minima is
strongly dependent on how frequently the meridional circulation changes, i.e., onτMC.

3.6 Grand Maxima

Of late, grand maxima—epochs during which solar activity becomes exceptionally strong for suf-
ficiently long time—are drawing more and more attention fromsolar physicists. The middle of the
twentieth century was such an epoch when several successivesolar cycles were rather strong (Solanki
et al. 2004). Along with grand minima, Usoskin et al. (2007) also presented a study of grand maxima
during the last 11 400 yr. They identified 19 grand maxima and showed that their durations follow
an exponential distribution, suggesting that the durations are determined by a memoryless random
process.

We present a study of grand maxima from our theoretical simulation. How you define grand
maxima has more arbitrariness compared to how you define grand minima. We now explain how we
select our grand maxima.

Figure 6(a) plots the theoretical sunspot eruptions in the numerical run, whereas Figure 6(b) is
a histogram showing the distribution of the peak values of these cycles. The solid horizontal line in
Figure 6(a) and the solid vertical line in Figure 6(b) indicate the mean valueSNm of the cycle peaks.
We calculate the standard deviation (σ) of these peak values. The dashed (red) lines in Figure 6(a)
and (b) indicate theSNm + σ levels. If at least two successive solar cycles have their strengths
above this level, then we regard it as a grand maximum. Panels(c) and (d) in Figure 6 respectively
are the histograms showing the distribution of the durations and the waiting times of these grand
maxima. To understand the extent to which the statistical distributions depend on the definition of
grand maxima, we also present results by defining grand maxima as at least two successive cycles
having peaks aboveSNm + 1.2σ levels. These levels are indicated in Figure 6(a) and (b) by the
dash-dotted (pink) lines. The distributions of durations and waiting times for grand maxima defined
in this way are shown in Figure 6(e) and (f). Comparing them with Figure 6(c) and (d), we conclude
that the statistical behaviors of grand maxima are reasonably robust and do not change with the
definition of grand maxima.
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Fig. 6 Statistics of grand maxima. (a) Shows the theoretical sunspot number. The three horizontal
lines (solid, dashed and dash-dotted) indicate the valuesSNm, SNm + σ andSNm + 1.2σ, where
SNm andσ are the mean and the standard deviation of the peak sunspot numbers. (b) Shows the
histogram of the peak sunspot numbers where the three vertical lines (solid, dashed and dash-dotted)
indicate the valuesSNm, SNm +σ andSNm +1.2σ. (c) and (d) Show the histograms of durations
and waiting times of grand maxima defined to be above theSNm + σ level. (e) and (f) Show
histograms similar to (c) and (d), except that the grand maxima are now defined to be above the
SNm + 1.2σ level.

We remind the reader that, to get a statistically significantresult, we used data that span a run
of about 88 000 yr. The numbers of grand maxima were 270 and 191in the two definitions. This
implies that the numbers of grand maxima in 11 000 yr would be 34 and 24 respectively. Interestingly
the distributions of durations and the waiting times of grand maxima as shown in Figure 6(c)–(d)
also seem to follow the exponential distribution, which again tells us that the occurrence of grand
maxima is governed by a stationary memoryless random process. On comparing with Figures 4(a)–
(b) showing similar distributions for grand minima, we notethat the durations of grand maxima tend
to be shorter than the durations of grand minima. A physical explanation for this is not difficult to
give. Once the Sun enters a grand minimum due to an effect likethe slowing down of the meridional
circulation, the dynamo has to build up the magnetic field again before the Sun can come out of the
grand minimum even after the meridional circulation has returned to more normal values. This takes
some time. On the other hand, from a state of grand maximum, the activity level can get reduced
more easily when conditions change due to stochastic fluctuations. Another important point to note
is that like grand minima, grand maxima are mainly caused by the variable meridional circulation.
This becomes clear by looking at Figure 2(a). We see that strong meridional circulation makes the
cycle stronger.
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Fig. 7 Simulation of the solar cycle with the Babcock–Leighton mechanism, which gets switched
off when there are no sunspots. The dynamo is not able to recover from the grand minimum state.

4 THE RECOVERY PHASE OF GRAND MINIMA

Here we explore an important, yet unsettled, issue connected with grand minima: the recovery mech-
anism from grand minimum states. If the meridional circulation or the poloidal field somehow be-
comes sufficiently weak, then that can push the Sun into a grand minimum. However, we do not
understand well how the Sun comes out of such a quiescent state. There are also many uncertainties
in our understanding of the nature of the dynamo process during the grand minimum state. It has
been clearly demonstrated by observations that the solar cycle continued during grand minima with
weaker strength and also with polarity reversals (Fligge etal. 1999; Miyahara et al. 2004, 2010;
Nagaya et al. 2012). The question that remains open is how thepoloidal field is generated during
grand minima. The Babcock–Leighton process depends on the decay of tilted active regions and at
present we have strong observational evidence that this process is indeed working near the solar sur-
face (Dasi-Espuig et al. 2010; Kitchatinov & Olemskoy 2011;Jiang et al. 2013). On the other hand,
very few sunspots were detected during the Maunder minimum (Sokoloff & Nesme-Ribes 1994;
Hoyt & Schatten 1996). Therefore, the Babcock–Leighton process may have been ineffective during
the Maunder minimum. However, in all our earlier calculations (Choudhuri & Karak 2009; Karak
2010; CK12), we have used the sameα concentrated near the solar surface corresponding to the
Babcock–Leighton mechanism all the time for the poloidal field generation because of our lack of
knowledge about handling the problem in a better way. Now we assume that the Babcock–Leighton
process cannot operate when the toroidal field is very weak and sunspots do not form. We make the
Babcock–Leightonα coefficient fall to zero when the dynamo enters a grand minimum and keep
running the simulation. Then the dynamo cannot come out of the grand minimum state, as seen in
Figure 7.

If we assume that the Babcock–Leighton process cannot work during a grand minimum, we
need some other mechanism to pull the dynamo out of the grand minimum. The obvious other can-
didate to produce the poloidal field is theα-effect based on helical turbulence (αHT) proposed by
Parker (1955) and Steenbeck et al. (1966). This is a mechanism of generating the poloidal field in
the convection zone by the twist of the helical turbulence which is effective in the weak toroidal
field regime. When flux tube simulations showed that sunspotsform from toroidal magnetic fields as
strong as105 G (Choudhuri & Gilman 1987; Choudhuri 1989; D’Silva & Choudhuri 1993; Fan et al.
1993), the Babcock–Leighton mechanism was favored over theα-effect in the flux transport dynamo
model, since the helical turbulence cannot twist toroidal fields as strong as105 G. Presumably the
situation gets reversed during a grand minimum. While the Babcock–Leighton mechanism may not
be operative due to the lack of sunspots, the weaker toroidalmagnetic field during the grand min-
imum may allow theα-effect to work. We now present some simulations in which we switch on
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anα-effect during the grand minima and investigate what conclusion we can draw about the nature
of the α-effect by requiring that results of the simulation agree with observations. These simula-
tions pertaining to the plausible failure of the Babcock–Leighton dynamo to recover from a grand
minimum episode and the role of an additional mean-field alpha effect in a possible recovery are mo-
tivated by discussions with Dibyendu Nandy and Soumitra Hazra (private communications) and the
work detailed in Passos (2010, PhD Thesis), Hazra, Passos and Nandy (2013) and Passos, Hazra and
Nandy (2013). One other point needs to be noted. Because of the way we treat magnetic buoyancy in
our code, whenever the toroidal field strength above the bottom of the convection zone exceedsBc,
a part of it is brought to the solar surface. During the usual situation (i.e. outside grand minima), the
toroidal field near the surface in our simulation continuously gets enhanced by magnetic buoyancy.
This does not happen during the grand minima. Whether we allow the Babcock–Leighton process
to continue or replace it by theα-effect, the toroidal field at the solar surface during grandminima
comes there due to turbulent diffusion or advection due to the meridional circulation after being
created in the tachocline.

As soon as the dynamo enters into a grand minimum state and thesunspot eruption stops due to
the weak toroidal field, we switch off theαBL corresponding to the Babcock–Leighton mechanism
and switch on theαHT representing the twisting of the toroidal field by helical turbulence. Then,
after the recovery from the grand minimum state, we switch off the αHT and again switch on the
αBL. Although the nature and also the sign of thisαHT is not certain at present, we use the following
profile for it

αHT = 1.1 cosθ
1

2

[

1 + erf

(

r − 0.85R⊙

0.025R⊙

)]

m s−1. (3)

The profile of thisαHT along with the Babcock–LeightonαBL is shown in Figure 8. Note that
αHT is almost one order of magnitude smaller than theαBL and importantlyαHT is zero below
around0.8R⊙. We have seen that, ifαHT is non-zero within the whole body of the convection zone,
then the solar cycle periods during grand minima become veryshort, which is not supported by the
observation (Fligge et al. 1999; Miyahara et al. 2004, 2010;Nagaya et al. 2012). One important
conclusion we draw is that anα-effect which gets switched on during grand minima has to be
restricted in the upper regions of the convection zone if we do not want the periods to become
too short.

Now let us comment on the amplitude ofαHT. If αHT has the amplitude 1.1 m s−1 in the upper
part of the convection zone which follows from (3), the results of the simulation are qualitatively
exactly similar to the results we got by allowing the Babcock–LeightonαBL to operate all the time.
The results of the simulations of the grand minima with thisαHT during grand minima are shown in
Figure 9. This plot shows the positions of the grand minima along the time axis whereas the vertical
axis shows the durations of grand minima. In this 11 000 yr simulation run, we get about 28 grand
minima. A comparison with figure 3 of CK12 shows that the results are qualitatively very similar.

Figure 10 shows the results whenαHT is made to have the slightly larger amplitude of 1.2
m s−1. We see that the number of grand minima is reduced in this situation. WhenαHT is larger, the
dynamo gets out of the state of reduced activity very quickly. Since we count something as a grand
minimum only if two successive cycles are missed, the numberof grand minima is reduced. We also
did runs by using the slightly lower value of the amplitude 1.0 m s−1 for αHT. In this case, we found
that the dynamo was unable to get out of a grand minimum after entering it.

Figure 11 presents histograms of the durations and the waiting times of grand minima from
simulation data spanning 33 000 yr using the value ofαHT given by (3), with amplitude 1.1 m s−1.
Again in this case both of the distributions are exponentialand qualitatively similar to the distribu-
tions shown in Figure 4.

We are not completely sure what conclusions we should draw out of the results we have pre-
sented. It is quite remarkable that the results of our simulation by using the same Babcock–Leighton
α all the time, as had been done in CK12 and in Section 3 of this paper, are in such good agreement
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Fig. 8 Variations of the strength of the Babcock-LeightonαBL (solid line) and the (helical) turbulent
αHT (dashed line) as a function of solar radius at45

◦ latitude.

Fig. 9 The durations of grand minima indicated by vertical bars at their times of occurrence in an
11 000 yr simulation. This is the result of a particular realization of random fluctuations that produced
28 grand minima. In this simulation, during grand minima episodes, the Babcock–LeightonαBL is
switched off and a weak turbulentαHT is allowed to switch on with the amplitude of 1.1 cm s−1.

with different aspects of observational data. On the other hand, if we switch off this Babcock–
Leightonα concentrated near the solar surface during the grand minimaand use the traditional
α-effect to pull the dynamo out of the grand minima, then we have to fine-tune the nature of this
αHT quite a bit in order to get results consistent with observational data. Interestingly, we get the best
results when the amplitude of theα-effect is just marginally above the critical value and onlyoper-
ating in the upper half of the convection zone. Does this tellus that Babcock–Leightonα remains
operative even during the grand minima for reasons we do not currently understand? This is a very
provocative question which needs further investigation. Smaller active regions with magnetic flux
less than that of detectable sunspots may have some (statistical) systematic tilt to produce a signifi-
cant poloidal field during grand minima-like episodes (see the discussion in Wang & Sheeley 2013).
In fact, Stenflo & Kosovichev (2012) find a systematic tilt fora long range of the magnetic fluxes
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Fig. 10 The same as Figure 9 except that turbulentα, which is switched on during the grand minima,
has the amplitude 1.2 cm s−1.

Fig. 11 Same as Fig. 4, except that the turbulentαHT gets switched on during grand minima instead
of the Babcock–LeightonαBL operating all the time.

in active regions, suggesting that the poloidal field may be generated when there are no detectable
sunspots. Importantly, even a few big sunspots (with correct tilt) can produce a significant poloidal
field to maintain the polarity reversal—this might also be the case during grand minima. As we do
not have sufficient observational data needed to study all these issues during the Maunder minimum,
we cannot conclusively say anything about the poloidal fieldgeneration mechanism during grand
minima. However Hazra et al. (2013a) and Passos et al. (2013)believe the Babcock–Leighton pro-
cess cannot operate during the grand minimum episode and a weak mean-field alpha in the whole
convection zone is needed to recover the Sun out of such phasebased on their simulations with low
order dynamo model and flux transport dynamo model.

5 CONCLUSIONS

The aim of the present paper is to follow up our earlier paper CK12 in exploring whether different
aspects of grand minima can be explained on the basis of the flux transport dynamo model of the
solar cycle. Following earlier work done by our group, we keep using a reasonably high turbulent
diffusivity, which implies that a slowing down of the meridional circulation results in longer and
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weaker cycles. In such a model, the meridional circulation plays a profound role in producing irreg-
ularities of the solar cycle and also the grand minima. One ofthe main uncertainties in theoretical
models at the present time is our lack of understanding of themeridional circulation, either from the
theoretical or the observational viewpoint. While we do notyet have a complete theory of the solar
meridional circulation, we believe that the turbulent stresses in the solar convection zone drives it
and hence we assume the meridional circulation to be confinedwithin the solar convection zone.
The poleward meridional circulation near the solar surfacecauses the advection of the poloidal field
to higher latitudes (Wang et al. 1989; Dikpati & Choudhuri 1994, 1995). We need an equatorward
counterflow at the bottom of the convection zone for the flux transport dynamo to produce proper
butterfly diagrams (Nandy & Choudhuri 2002; Hazra et al. 2013b). So far we do not have direct
observational measurements of this counterflow. While helioseismology has been able to provide
information about meridional circulation in the upper layers of the convection zone (Giles et al.
1997; Braun & Fan 1998), extracting unambiguous information about meridional circulation in the
deeper layers has remained a challenge (Gough & Hindman 2010; Zhao et al. 2012). Any possible
periodic modulations of the meridional circulation with the solar cycle are not expected to produce
sustained irregularities in the cycle (Karak & Choudhuri 2012; Passos & Lopes 2012). However, ran-
dom fluctuations of the meridional circulation with coherence times longer than solar cycle periods,
as suggested by the data of past cycles, can have profound effects on the dynamo.

Our earlier paper CK12 suggested that grand minima are produced by combined fluctuations
in the meridional circulation and in the Babcock–Leighton mechanism for generating the poloidal
field. While our further calculations support this broad scenario, we now find that the fluctuations in
the meridional circulation are more important in producingthe grand minima (cf. Sect. 3.1). From
a theoretical viewpoint, such variations in meridional circulation are not surprising. We know that
the meridional circulation is mainly generated from the imbalance between two large terms – the
non-conservative part of the centrifugal force and the baroclinic torque (i.e., the deviation from the
thermal wind balance) (Kitchatinov & Ruediger 1995). It is not only the case that there is a devia-
tion which produces the meridional circulation in the solarconvection zone but also this deviation
fluctuates because of the fact that the differential rotation is produced by turbulent convection and
the fluctuations in it are unavoidable (Brun et al. 2010). This physics has already been explored
by a mean-field model of Rempel (2005). He introduced random fluctuations in theΛ-effect and
found that it produced fluctuations in the differential rotation but in turn the fluctuations produced in
meridional circulation are about two orders of magnitude larger than those in the differential rotation.
Indeed, helioseismology has detected a significant temporal variation of the meridional circulation
during the last several years (e.g., González Hernández et al. 2006). Unfortunately we do not have
any measurement of the meridional circulation during the Maunder minimum. There are some obser-
vational studies which indicate that solar rotation was different during the Maunder minimum (Casas
et al. 2006, and references therein), suggesting also the variation of the meridional circulation. Some
authors (Wang & Sheeley 2003; Passos & Lopes 2011) suggest weak meridional circulation during
the Maunder minimum.

Our calculations suggest that the fluctuations in the meridional circulation are more important
than fluctuations in the polar field in inducing grand minima (cf. Sect. 3.1), although fluctuations in
the polar field have more effect if the dynamo is only moderately critical (cf. Sect. 3.2). We have seen
that the recovery phase is always gradual, which is supported by the observation. However, depend-
ing on the detailed nature of the fluctuations in the meridional circulation at the beginning of a grand
minimum, we find that both sudden and gradual initiations of grand minima are possible. Since we
are able to make only a very rough estimate of the coherence time of meridional circulation fluc-
tuations, we explore how our results may change when varyingthe coherence time (cf. Sect. 3.5).
For coherence times lying in the range 20–50 yr, the results remain qualitatively similar. We also
present statistical analyses of the characteristics of grand minima (cf. Sect. 3.4). We have seen that
both the distributions of the waiting times and the durations of the grand minima are exponential,



Grand Minima from Flux Transport Dynamo 1355

suggesting that these are governed by the random process. Some of these results are supported by
observational data (Usoskin et al. 2007). One issue we did not study here is the north-south asym-
metry during grand minima. There are sufficient evidences that during the Maunder minimum and
the Dalton minimum (Ribes & Nesme-Ribes 1993; Usoskin et al.2009b) there was strong north-
south asymmetry in sunspots, indicating this to be a robust feature of grand minima. Choudhuri &
Karak (2009) and Karak (2010) have proposed that if the poloidal field or the meridional circulation
becomes weak due to the stochastic fluctuations, then it is very unlikely that they become weak in
both hemispheres by the same amount. With this assumption they have demonstrated that by intro-
ducing a slight asymmetry in the poloidal field or in the meridional circulation we can easily model
the observed north-south asymmetry of sunspots during the Maunder minimum. We believe that the
hemispheric asymmetry in grand minima may be another indication for the stochastic forcing as the
origin of grand minima.

In this paper we have studied another interesting aspect of the solar cycle, which is grand maxima
(cf. Sect. 3.6). We have seen that similar to grand minima, grand maxima are mostly caused by the
strong meridional circulation and the distributions of both the waiting times and the durations of the
grand maxima are exponential. Although the definition of grand maxima is more subjective, we have
seen that the average durations of grand maxima are shorter compared to those of grand minima.

One other issue we addressed here is how the Sun comes out of a grand minimum. The Babcock–
Leighton mechanism for the poloidal field generation depends on the existence of sunspots and
one naively thinks that this mechanism would not be operational during the grand minima. We
explored whether theα-effect, which gets suppressed when the toroidal field is strong, could be
operational during the grand minima when the toroidal field becomes weak and whether thisα-
effect could pull the Sun out of a grand minimum (cf. Section 4). We found that we can match
various aspects of observational data only when we model this α-effect as occurring in the upper
half of the convection zone and fine-tune its strength. On theother hand, on assuming that the
Babcock–Leighton mechanism remains operational throughout the grand minima, we get results
remarkably close to the observational data. This raises theprovocative question about whether the
Babcock–Leighton mechanism could still remain operational during grand minima for reasons we
do not understand. We merely pose this question which cannotbe answered at our present level of
understanding on the subject.
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