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Abstract We propose that grand minima in solar activity are causedryltane-
ous fluctuations in the meridional circulation and the Baled.eighton mechanism
for the poloidal field generation in the flux transport dynamadel. We present the
following results: (a) fluctuations in the meridional citation are more effective in
producing grand minima; (b) both sudden and gradual imtistof grand minima are
possible; (c) distributions of durations and waiting tinbe$ween grand minima seem
to be exponential; (d) the coherence time of the meridiomaliation has an effect
on the number and the average duration of grand minima, witbharence time of
about 30 yr being consistent with observational data. We stlsdy the occurrence of
grand maxima and find that the distributions of durations\aaiting times between
grand maxima are also exponential, like the grand minimaalli we address the
qguestion of whether the Babcock-Leighton mechanism campértive during grand
minima when there are no sunspots. We show that-affect restricted to the upper
portions of the convection zone can pull the dynamo out ofjtta@d minima and can
match various observational requirements if the amplitfdis a-effect is suitably
fine-tuned.
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1 INTRODUCTION

One intriguing aspect of the solar cycle is the occurrenaggraind minima when sunspots may not
appear for several decades and a few cycles may go missimge Bie beginning of the telescopic
observations of sunspots, one grand minimum known as thenauminimum occurred during
1645-1715 (Eddy 1976; Ribes & Nesme-Ribes 1993). We haveato for indirect proxy data to
infer the occurrences of grand minima at still earlier timé$hen the magnetic field of the Sun is
weak, more cosmic rays reach the Earth’s atmosphere, pragacger amounts of the cosmogenic
isotopes like'*C and'°Be. From the study of“C in old tree rings and®Be in polar ice cores,
several groups have identified a number of grand minima tt@atroed during the past few millennia
(Usoskin et al. 2007; Steinhilber et al. 2012). Particylddsoskin et al. (2007) have detected about
27 such events signifying low activity in the last 11 400 yarfrthe'*C data. Even when sunspots are
not seen, some of the indirect proxy data indicate the poeseircontinued oscillations at a subdued
level during grand minima (Fligge et al. 1999). Miyaharale{2004) found the oscillations to have
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longer periods during the Maunder minimum. Miyahara et2006, 2007) and Nagaya et al. (2012)
found this to be true for other grand minima as well.

The aim of the present paper is to investigate whether diffeaspects of grand minima can
be explained with a flux transport solar dynamo model. Anieapaper by Choudhuri & Karak
(2012; hereafter CK12) developed a theoretical model afidgrminima by introducing appropriate
fluctuations in our flux transport dynamo model and presesteae preliminary results. This paper
is a continuation of that work and addresses several aspkttis problem not discussed in CK12.

The flux transport dynamo model has emerged as the most pngnifseoretical model for
the sunspot cycle in recent years (Wang et al. 1991; Choudhat. 1995; Durney 1995; Dikpati
& Charbonneau 1999; Nandy & Choudhuri 2002; Charbonnea®;20houdhuri 2011; Karak &
Petrovay 2013; Jiang et al. 2013). The primary mechanisrthfopoloidal field generation in this
model is the Babcock—Leighton mechanism involving the gedailted bipolar sunspots (Babcock
1961; Leighton 1969). Since this mechanism depends on tiseeage of sunspots in order to be
operative, this mechanism may not work during a grand minimathen there are no sunspots. We
would then require some other mechanism to pull the Sun otliteofirand minimum. Early models
of the solar dynamo invoked the-effect proposed by Parker (1955) and Steenbeck et al. [1866
generate the poloidal field. Theeffect can twist a toroidal field to produce a poloidal fietdyoif
the toroidal field is not stronger than the equipartitiordfiélfter simulations of the buoyant rise of
flux tubes suggested a much stronger toroidal field (Choudh@ilman 1987; Choudhuri 1989;
D’Silva & Choudhuri 1993; Fan et al. 1993), the flux transphythamo models used the Babcock—
Leighton mechanism as the favored mechanism rather tham-#ffect for generating the poloidal
field. During a grand minimum, the toroidal field presumabégcdmes much weaker and probably
the a-effect can be operative to pull the Sun out of the grand mimmSince we have very little
knowledge about the nature of thiseffect, CK12 assumed the same Babcock-Leighton mechanism
to be operative all the time to simplify the theoretical cédtions. One of the things we explore in
this paper is the nature of theeffect needed to pull the dynamo out of the grand minimum. We
shall see that various observational requirements put sop@rtant constraints on the nature of this
a-effect.

Let us now come to the question of what can cause irregu@ariti the solar cycle and the

behavior. The simplest kind of nonlinearity used exterigiue the earlier dynamo models is the
a-gquenching. If, for some reason, the magnetic field becormmeager than usual, this quenching
makesa smaller and the dynamo weaker, bringing down the magnetit. fiethe magnetic field
becomes weaker, then the opposite happens. A nonlinearibeiform ofa-quenching makes the
dynamo more stable instead of producing chaotic behaviéewAauthors have found intermittent
behavior in highly truncated dynamo models with more coogtéd kinds of nonlinearity which do
not seem justified by solar observations (Weiss et al. 1984n&t%Smith et al. 2005).

One other source of irregularity is stochastic noise. Stheamean-field dynamo theory is ob-
tained by averaging over turbulence, we expect turbulestuations to provide a random noise.
Hoyng (1988) realized this for the first time and later sevawhors showed that stochastic noise
introduced in the mean-field dynamo equation can produegutarities in solar cycles including
grand minima-like episodes (Choudhuri 1992; Charbonn¢all 004; Gbmez & Mininni 2006;
Brandenburg & Spiegel 2008; Moss et al. 2008; Usoskin et@092; Passos et al. 2012). A sce-
nario for the origin of stochastic noise in a flux transpomamwo was provided by Choudhuri et al.
(2007). The Babcock—-Leighton mechanism for poloidal fielderation depends on the tilts of bipo-
lar sunspots. Although the average tilt at a latitude ismgive Joy’s law, one finds a scatter around
the average (Dasi-Espuig et al. 2010), presumably due teffbet of convective turbulence on the
rising flux tubes (Longcope & Choudhuri 2002). So, we belighat the Babcock—Leighton process
intrinsically has a random component. Choudhuri et al. 2@@corporated this by effect allowing
the poloidal field generated at the end of a cycle to diffemfrits average value. This approach
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has been followed in subsequent papers (Jiang et al. 200 ;&6houdhuri 2009; Choudhuri &
Karak 2009) as well as the present paper. Choudhuri & Kara@gphave shown that, if the poloidal
field becomes sulfficiently weak at the end of a cycle due todhtans in the Babcock—Leighton
mechanism, then that may trigger a grand minimum.

Another source of irregularities is fluctuations in merigibcirculation, the importance of which
has only been recognized recently (Yeates et al. 2008; Ka@dlo; Karak & Choudhuri 2011;
Passos 2012). The meridional circulation plays a crucia o the flux transport dynamo model
(Choudhuri et al. 1995; Dikpati & Charbonneau 1999; Karak@0Although we have neither good
theoretical understanding nor long observational measeinés of the meridional circulation, Karak
& Choudhuri (2011) used durations of sunspot cycles in tise 280 yr to have some idea about
fluctuations in meridional circulation. They concludedtitiiee meridional circulation had large tem-
poral variations with coherence time of more than a solalecyithere are also many other evidences
for variations of the meridional circulation in the pastge Passos & Lopes 2008; Passos et al.
2012). When the meridional circulation slows down, the geérdf the dynamo becomes longer.
This has rather different effects on dynamo models with laigtl low turbulent diffusivity (Yeates
et al. 2008; Karak 2010; Karak & Nandy 2012). If the turbuldiftusivity is assumed to be rea-
sonably high (which is the case in our model), then the cylsteome weaker because diffusivity
has a longer time to act in a cycle. On the other hand, if theulent diffusivity is low (Dikpati &
Charbonneau 1999), then the effect of diffusivity is not Borgy and the cycles become stronger
with decreasing meridional circulation because the déffiéiel rotation has a longer time to act on
the magnetic fields. Only a dynamo model with reasonably higbulent diffusion (like what we
use) can explain observational effects like the dipolaitpaf the Sun (Chatterjee et al. 2004; Hotta
& Yokoyama 2010), the Waldmeier effect (Karak & Choudhuri2} the period and the amplitude
relation (Karak 2010) and the lack of significant hemisphiasymmetry (Chatterjee & Choudhuri
2006; Goel & Choudhuri 2009). See section 5 of Jiang et aDT2@nd Miesch et al. (2012) (also
see Mufioz-Jaramillo et al. 2013) for a discussion on thigctdn the dynamo model with high
diffusivity in which a weaker meridional circulation makegcles weaker, Karak (2010) has shown
that a sufficiently weak meridional circulation can triggegrand minimum.

Ourrecent paper CK12 studies the occurrence of grand mimimar theoretical dynamo model
by introducing simultaneous fluctuations in the poloiddifigeneration and the meridional circu-
lation. The levels of fluctuations were determined from theavvational data of the last 28 cycles.
With such fluctuations, the flux transport dynamo model dgwed in our group showed 24-30 grand
minima in a typical run of 11 000 yr —in close agreement witlsetvational data.

Because of the shortness of the paper CK12, which was in thedba letter, a full exploration
of the different aspects of the problem could not be preskinté. This is done in the present paper.
After giving a short introduction to the model in Section 2 Section 3 we present various aspects
of the results not discussed in CK12, such as the relativeitapce of the two fluctuations and the
dependence on parameters like the coherence time of thelioreai circulation. We also present
some results of grand maxima, which could not be discuss&KitR. Finally, Section 4 addresses
the important question of how the dynamo comes out of thedgraimimum and if we can say
something about the nature of theeffect which may be needed for this.

2 MODEL

We carry out all the calculations using a flux transport dyoamodel originally presented in
Chatterjee et al. (2004). This model is based on the kinemeatan-field dynamo theory in which the
poloidal field generation is assumed to be due to the Babdamighton process. Assuming axisym-
metry, the evolutions of the magnetic field components is thddel are described by the following
two equations:

0A 1 1

e+ 1wV)s) =, (V2 - %) A+ aB, W
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with s = rsin . HereA is the vector potential of the poloidal magnetic fiel8,{), B is the toroidal
magnetic fieldp = v,7 + v,0 is the meridional circulatiors is the internal angular velocity,
andn, are the turbulent diffusivities for the poloidal and tor@idomponents respectively, ands

the source term for the poloidal field which parameterizedBabcock—Leighton mechanism. The
details of all these parameters are specified in Chattetjak €004). However, Karak (2010) re-
cently slightly modified a few parameters and in this work wewsing exactly the same parameters
as used in Karak (2010).

Just to remind the readers, we mention that in the express$ithe meridional circulation there
is a parameter, which determines the strength of the meridional circulatieor a normal cycle
with a period of 11 yr we take, = 23 m s~'. However, in this work, when we introduce fluctuations
in the meridional circulation, we change thisto change the strength of the meridional circulation.

Let us make a comment on the absolute value of the magnetidrfielir results. If the equations
are completely linear in the magnetic field, then the unithef magnetic field would be arbitrary.
Although (1) and (2) are linear equations, our problem bezononlinear when we include magnetic
buoyancy following the methodology used in the earlier pajfm our group (see Chatterjee et al.
2004). If the amplitude of the toroidal magnetic fieldl| above the bottom of the convection zone
is larger than a critical valué,., then a part of the toroidal field is made to rise to the surface
This nonlinearity limits the amplitude of the magnetic fieWle takeB. = 0.8, which makes the
maximum value of the magnetic field at the bottom of the cotivazone hover around 1. Since
simulations of flux tube rise based on the thin flux tube eguatSpruit 1981; Choudhuri 1990)
suggest magnetic fields of the orderid® G at the bottom of the convection zone (Choudhuri &
Gilman 1987; Choudhuri 1989; D’'Silva & Choudhuri 1993; Faale1993), it is tempting to identify
the value 1 of the magnetic field in our simulations witfi* G. However, such an identification is
guestionable. Apart from the fact this would give valuesefpolar magnetic field that disagree with
observations, we expect the magnetic field tdd2G only inside flux tubes, whereas the dynamo
equation deals with the mean magnetic field. If the fillingtdaof flux tubes at the bottom of the
convection zone is considerably less than 1, then the megnetia field which has to be identified
with the magnetic field computed in our model may be much less 05 G. We shall discuss these
considerations further in Section 4, where we discuss vandtie dynamo requires aneffect in
addition to the Babcock-Leighton mechanism to bring it duhe grand minimum.

In the next section, we present results based on exactlyaime snodel of producing grand
minima as was used in CK12. We basically discuss a few impbaspects of the problem which
could not be included in CK12 due to the lack of space. Thergention 4, we shall allow the
possibility that the poloidal field generation under norrogtle conditions and during the grand
minima may require different mechanisms.

3 SIMULATIONS OF GRAND MINIMA

Our earlier paper CK12 explained the basic assumptions oframdel of grand minima and pre-
sented some illustrative results. Because CK12 was a pajplee form of a letter, a full discussion
of the results could not be presented in it. This sectiongmrsssome additional results based on
the grand minimum model of CK12. Since the details of the rhbdee been given in CK12, we
simply mention the salient features. The grand minima inmoadel were produced by fluctuations
in meridional circulation and by fluctuations in the Babcelckighton process that would make the
scaled polar field amplitude at the end of a cycle vary from cycle to cycle. Assuming the tlaat
the solar cycle period is inversely related to the stren§th@meridional circulation, we estimated
the nature of fluctuations in the meridional circulationnfrthe durations of the last 28 cycles. On
the other hand, assuming that the solar cycle strengthésttlircorrelated to the strength of the polar
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Fig. 1 Typical histograms of (a) the strength of the meridionatwiationv, and (b) the strength
of the poloidal fieldy used for grand minima simulations. These randomly gengiddaéa are taken
from Gaussian distributions whose means and standardtdssare derived in CK12.

field at the end of the previous cycle, we have obtained th&ufltions iy from the strengths of the
last 28 solar cycles. See figure 2 of CK12 and the correspgriext for details. Assuming both the
fluctuations obey Gaussian distributions, we have congdutbe distributions of these fluctuations
by using the means and standard deviations of these data.

Figure 1 shows the typical histograms of these. We then makad~ vary randomly following
these distributions. We point out that for different runs generate different results for different
realizations of the fluctuations af, and~. Another important thing to note is that we change the
polar field by the factofy at every solar minimum, whereas we changefter a certain time interval
called the coherence timeg;c. Now we shall systematically explore the origin and differaspects
of grand minima.

3.1 Contributions of Meridional Circulation and the Poloid al Field in Triggering Grand
Minima

Using the same parameters of the basic dynamo model as usgli», we explore the relative
importance of the contributions of the meridional circidatfluctuations and the poloidal field fluc-
tuations in triggering grand minima. We perform two sepasiulation runs by including only
one kind of fluctuation in each run. First, we do a simulatignrndomly varying onlyv, after
intervals of 30 yr (i.e.;aic = 30 yr). The random values fey, used for this run have been shown
in Figure 1(a). The top panel of Figure 2 shows the resulthisfiun. For clarity of display we
only show a small segment of this data set which spans 1000ext, we present a simulation
with only poloidal field fluctuations. We change the poloifield factor~ at every solar minimum.
The histogram ofy for this run is shown in Figure 1(b), whereas the result of thin is shown in
Figure 2(b).

Based on these simulations, we make the following impoxantlusions.

(i) The meridional circulation plays an important role in dutating the solar cycle period and the
amplitude (consistent with Karak 2010). This is clear froigure 2(a).

(i) Most of the grand minima are produced when the meridiairgulation becomes sufficiently
weak, whereas the weak poloidal field has a very minor cauttdh to producing grand minima
(as seen by comparing the two panels in Fig. 2). Fluctuatiotise poloidal field have some
effect in producing grand minima when combined with the flating meridional circulation,
but are not able to produce any grand minima when acting alone

Although we ourselves had not been aware of these concliaidhe time of writing our earlier
paper CK12, it now seems from hindsight that these conahssieould follow from figure 1 of
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Fig. 2 (a) Simulation of grand minima with fluctuating meridionéculation with 7vic = 30 yr.
The dashedréd) line shows the strength of meridional circulatianused in the simulation whereas
the solid plue) line shows the (theoretical) sunspot number as a functiéme (years). Two grand
minima are clearly evinced. (b) Simulation with fluctuatipgloidal field. The dashedink) line
shows that the strength of poloidal fiejcchanges at every solar minimum, whereas the sblige)
line shows the sunspot number.

CK12, where the region of the parameter space required fmlyming grand minima is demarcated.
When the polar field is not varied (i.g.is always kept equal to 1), we see from figure 1 of CK12
that it is necessary to makg less than about 15.5 nT$ to produce grand minima and we find that
the probability of this is not too low, as can be seen from #g2a) of CK12. On the other hand, if
fluctuations in meridional circulation are not include@(iy is held fixed at the value 23 n1'$),
then~ has to be made aboutl (below the bottom of fig. 1 of CK12) and we see from figure 2(b)
of CK12 that the probability of this is minuscule.

Now we come to the question of whether our conclusion thafltttuations in the polar field
do not play an important role in producing grand minima cteenghen the parameters of the basic
dynamo model are different. This is discussed in the nexdestion.

3.2 Sensitivity of the Results on the Value od

When we run our basic dynamo model without fluctuations, we tirat the critical value of the
coefficient isay = 21.1 m s~1. In other words, when we run the code by varyingalone while
keeping all the other parameters fixed (especially usingdifiesivity n, = 3 x 10'2 cn? s71),
we get a non-decaying oscillatory solution onlynif is larger than this critical value. The results
of CK12 as well as the results presented in Section 3.1 aredbas a model using a somewhat
supercritical value ofyy = 30 m s~!. We now carry on some calculations using only a moderately
critical value ofap = 24 m s~1. We study the effect of introducing fluctuations in the pdiaid
alone on this moderately critical dynamo.

Figure 3 shows a typical result of such a simulation. Now wd fimat 14 grand minima are
produced in 11000 yr. It is not difficult to give a physical angent why fluctuations in the polar
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Fig. 3 The durations of grand minima indicated by vertical barshatrttimes of occurrence in an
11 000 yr simulation with only poloidal field fluctuations. tédhat unlike earlier in this case we get
14 grand minima with poloidal field fluctuations alone. IrstBimulationny = 24 m s™* instead of
30 m s ! used earlier; everything else remains unchanged.

field produce grand minima more easily in a moderately @lititynamo. If the fluctuations make
the polar field during a minimum much less than the polar fieldctv such a moderately critical
dynamo would normally produce, then this is almost as if thengith ofa is temporarily reduced
and this can make the dynamo subcritical, pushing it intoaam@minimum. This is not likely to
happen when the dynamo is reasonably supercritical. Wecttnusdude that fluctuations in the polar
field would have a significant effect on the dynamo only if itiederately critical.

We have done some calculations introducing fluctuation®th the meridional circulation and
the poloidal field in a moderately critical dynamo. The numbigrand minima becomes much
larger than the observed value. Since the results of a stfeabdynamo are in such good agreement
with the observations (CK12), one is tempted to conclude tiira solar dynamo is supercritical
and fluctuations in the polar field do not have much effect tuging grand minima. It may be
noted that Charbonneau et al. (2007) proposed that the GhewyOhl effect is produced by period
doubling, which also requires a reasonably supercritigabtho. Other dynamo models which are
not supercritical show the occurrence of grand minima oro¢hicing fluctuations in the-effect
alone (Olemskoy et al. 2013).

We point out that the earlier paper by Choudhuri & Karak (20@®duced grand minima with
only fluctuations in the Babcock-Leighton mechanism. Thelehaised in this paper was not too
supercritical. Additionally, one ad hoc assumption useithisa paper was to also reduce the toroidal
field by a factor of 0.8 when the poloidal field was reduced &ate a grand minimum. This helped in
creating the Maunder-like grand minima. In the present papedo not use this ad hoc assumption
and the toroidal field is never changed when changing theigadleld to incorporate fluctuations
in the Babcock—Leighton process.

The results presented in the remaining subsections of ¢laisos are all obtained with the su-
percritical dynamo used in CK12.

3.3 Are Initiations of Grand Minima Sudden or Gradual?

One important question connected with grand minima is wdrdtiey initiate suddenly or gradually.
Usoskin et al. (2000) concluded that the Maunder minimumteddaabruptly. However, Vaquero
et al. (2011) more recently presented evidence that thiatioit of the Maunder minimum was
more gradual. On the theoretical side, in our simulatiorsna find both grand minima which start
abruptly and which start gradually. Since we now recogriedltictuations in meridional circulation
to be the primary cause of grand minima, we discuss the seguitthe run with fluctuations in
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Fig. 4 Panel (a) shows the distribution of the durations of the graimima and Panel (b) shows the
distribution of the waiting times between the grand minifhhis figure is produced from the data
representing 88 000 yr of simulation runs.

meridional circulation alone. Things can be seen more tjghare. The results are qualitatively the
same when both fluctuations in meridional circulation aredgblar field are present.

In Figure 2(a) we see that the grand minimum that startedhtyfidoefore 1500 and also the
grand minimum that started around 1900 initiated gradu@tyese grand minima did not start im-
mediately after the meridional circulation became suffitieweak. The dynamo took about one or
two solar cycles to enter into grand minima. Therefore, artevo solar cycles before the beginning
of grand minima, the solar cycle period tended to becomedoizecause the meridional circulation
determines the cycle period). This result is remarkablysisiant with the results of Miyahara et al.
(2010) who have found sufficient evidences of the longersnjeles even before the beginning of
the Maunder minimum and also the Sporer minimum.

Now we discuss an opposite case where the grand minimurs stadtienly and we do not see
much change in the solar cycle period before the beginningeo§rand minimum. In Figure 2(a),
the grand minimum around 1100 shows this behavior. We natdliis grand minimum was caused
by the meridional circulation falling to a very low value slahly from a reasonably high value.
Although the cycle period did not get elongated before thet stf the grand minimum, the cycle
period is longer than usual during the actual grand minimporch.

Based on our theoretical results, we draw the following tusion. As the meridional circulation
is made to fluctuate randomly, it would sometimes happeritieaneridional circulation would drop
from a rather high value to a low value. In such a situatioajtiitiation of the grand minimum seems
abrupt. More commonly, we may have the meridional circatatiropping from a more moderate
value to a low value. The grand minimum starts more gradualliyis situation. As we do not know
at present how rapidly the meridional circulation can dro@tiow value, we do not know which
one is more physical. In our simulations done with both kiotifuctuations present, we have noted
that aboutt0% of grand minima initiate abruptly whereas the remainingygraninima initiate more
gradually. However the recovery from grand minima is alwgyadual, which is consistent with
observations during the Maunder minimum (Usoskin et al(200

3.4 Statistics of Grand Minima

In figure 5 of CK12 we presented the distributions of duratioh grand minima and the waiting
times between them. Since these distributions were caristidrom the limited set of 29 grand
minima which occurred during one run, the nature of thesgilligions was not very clear from
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this figure. To make a statistically reliable conclusion, meav make histograms from the data of
a very long simulation (about 88 000 yr) in which we have det@@bout 207 grand minima. The
histograms are shown in Figure 4. From this plot, we now fesage that both the duration and
the waiting time follow exponential behavior. This demaatss that the duration and waiting time
are governed by stationary memoryless stochastic praze&sehe grand minima are produced by
the random fluctuations in the meridional circulation anel ploloidal field, the occurrence of the
grand minimum must be a random event implying that the waitime distribution is exponential.
On the other hand, once the dynamo enters into a grand minstatey the recovery of the dynamo
from a grand minimum state is only possible by the increasaaridional circulation which hap-
pens randomly. Since stochastic fluctuations in meridigiralilation are responsible for bringing
back the dynamo into the normal cycle, the distribution & tlurations of grand minima is also
exponential. We mention that the observational distrdyubf the waiting times of grand minima
based on 27 grand minima that occurred in the last 11 400 yrtegh by Usoskin et al. (2007) is
also exponential, whereas the distribution of duratiom®isso conclusive.

3.5 The Dependence of the Coherence Time of Meridional Cirdation

Karak & Choudhuri (2011) pointed out that several successixcles in the past often had very
similar periods (see their fig. 2). This suggests that thadiwaral circulation probably had remained
steady during those cycles before changing abruptly atrideoésuch an epoch. Given the limited
data of the last few cycles, it is very difficult to estimate ttoherence timey;¢ of the meridional
circulation. Karak & Choudhuri (2011) concluded that thisherence time should lie in the range
between 15 yr and 45 yr. All the results presented in CK12 wbtained by using a coherence time
of 30 yr. Here we explore the importance of this coherence tity of the meridional circulation
on various features of grand minima.

In our earlier simulations of CK12 using;c = 30 yr, after every 30 yry, was varied randomly
in accordance with their distributions. Now we have perfedseveral simulations by varying;c
from 10 to 50 yr. We note the number of grand minima in a run 0®QQ yr and also calculate the
average duration of such grand minima for each run with dquéar value ofry;c. Note that in all
simulations the poloidal field is only changing at every satiimum.

Figure 5 shows the results. We see that the total number ofigranima initially increases
with the increase ofyic and then, after a certain value around 30 yr, it tends to dsereThis is
easy to understand. #;c is small, the dynamo does not get much time to make magnéeltis fie
sufficiently weak even when the meridional circulationga a low value during a short coherence
time. Therefore, the occurrence of grand minima becomes\eith the increase afy; ¢, the number
of grand minima increases. However, aftgf: becomes comparable to the typical duration of a few
cycles, further increase of it does not increase the nunfltggaad minima, but rather it decreases. If
the meridional circulation changes after long times, thengrobability that it falls to a sufficiently
low value also becomes less. Therefore the total numberasidgminima in a run that spans a finite
period becomes lower at larggic.

Another important result from this figure is that the averdgeation of grand minima is an
increasing function of;c. In an earlier work with constant meridional circulationavh grand
minima were produced by fluctuations in the polar field alddleoudhuri & Karak (2009) found
that the recovery to the normal state from a grand minimunmiy determined by the dynamo
growth rate (measured by the dynamo number/n?; wherex is the strength of the poloidal field
generation process during a grand minimum episode). Hawievthe case of fluctuating meridional
circulation, where grand minima are mostly caused by thekwzridional circulation, the recovery
from a grand minima state is not only determined by the dynaomber but also on how rapidly
the meridional circulation comes back to a more usual valum the very low value that caused the
grand minimum. If the meridional circulation recovers ddycfrom its low value, the duration of
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Fig. 5 Dependence of the number of grand minima (shown by starshendkished line) in 11 000 yr
and their average duration (shown by circles and the doitte) &long the right vertical axis as a
function of the coherence time of the meridional circulat{oyic).

the grand minimum will be short and vice versa. Thereforeatferage duration of grand minima is
strongly dependent on how frequently the meridional catiah changes, i.e., onc.

3.6 Grand Maxima

Of late, grand maxima—epochs during which solar activitgdmes exceptionally strong for suf-
ficiently long time—are drawing more and more attention fremfar physicists. The middle of the
twentieth century was such an epoch when several succssdareycles were rather strong (Solanki
et al. 2004). Along with grand minima, Usoskin et al. (2008paresented a study of grand maxima
during the last 11 400 yr. They identified 19 grand maxima dmved that their durations follow
an exponential distribution, suggesting that the duratiame determined by a memoryless random
process.

We present a study of grand maxima from our theoretical sittal. How you define grand
maxima has more arbitrariness compared to how you definelgnarima. We now explain how we
select our grand maxima.

Figure 6(a) plots the theoretical sunspot eruptions in tiaerical run, whereas Figure 6(b) is
a histogram showing the distribution of the peak values e$éhcycles. The solid horizontal line in
Figure 6(a) and the solid vertical line in Figure 6(b) indecehe mean valug NV,,, of the cycle peaks.
We calculate the standard deviatiar) of these peak values. The dashed (red) lines in Figure 6(a)
and (b) indicate the&s N,,, + o levels. If at least two successive solar cycles have theengths
above this level, then we regard it as a grand maximum. Péoedsd (d) in Figure 6 respectively
are the histograms showing the distribution of the duratiand the waiting times of these grand
maxima. To understand the extent to which the statisticgtidutions depend on the definition of
grand maxima, we also present results by defining grand nza&brat least two successive cycles
having peaks aboveN,,, + 1.20 levels. These levels are indicated in Figure 6(a) and (b)hley t
dash-dotted (pink) lines. The distributions of durationd avaiting times for grand maxima defined
in this way are shown in Figure 6(e) and (f). Comparing thethwigure 6(c) and (d), we conclude
that the statistical behaviors of grand maxima are readpmabust and do not change with the
definition of grand maxima.
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Fig. 6 Statistics of grand maxima. (a) Shows the theoretical satmspmber. The three horizontal
lines (solid, dashed and dash-dotted) indicate the vafiés, SN, + o andSN,, + 1.20, where
SN,, ando are the mean and the standard deviation of the peak sunspdtens. (b) Shows the
histogram of the peak sunspot numbers where the threealdities (solid, dashed and dash-dotted)
indicate the valueS'N,,,, SN,,, + o0 andSN,,, + 1.20. (c) and (d) Show the histograms of durations
and waiting times of grand maxima defined to be aboveShg, + o level. (e) and (f) Show
histograms similar to (c) and (d), except that the grand maxare now defined to be above the
SNy, + 1.20 level.

We remind the reader that, to get a statistically significasult, we used data that span a run
of about 88000 yr. The numbers of grand maxima were 270 andrlfife two definitions. This
implies that the numbers of grand maxima in 11 000 yr woulddar8l 24 respectively. Interestingly
the distributions of durations and the waiting times of gramaxima as shown in Figure 6(c)—(d)
also seem to follow the exponential distribution, whichiagells us that the occurrence of grand
maxima is governed by a stationary memoryless random pso@escomparing with Figures 4(a)—
(b) showing similar distributions for grand minima, we nttat the durations of grand maxima tend
to be shorter than the durations of grand minima. A physigplanation for this is not difficult to
give. Once the Sun enters a grand minimum due to an effedhi&slowing down of the meridional
circulation, the dynamo has to build up the magnetic fieldragafore the Sun can come out of the
grand minimum even after the meridional circulation hasmetd to more normal values. This takes
some time. On the other hand, from a state of grand maximumackivity level can get reduced
more easily when conditions change due to stochastic fltiohsa Another important point to note
is that like grand minima, grand maxima are mainly causechbyariable meridional circulation.
This becomes clear by looking at Figure 2(a). We see thahgtnoeridional circulation makes the
cycle stronger.
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Fig. 7 Simulation of the solar cycle with the Babcock—Leighton hretsm, which gets switched
off when there are no sunspots. The dynamo is not able to eeémm the grand minimum state.

4 THE RECOVERY PHASE OF GRAND MINIMA

Here we explore an important, yet unsettled, issue cond&gtk grand minima: the recovery mech-
anism from grand minimum states. If the meridional cirdolator the poloidal field somehow be-
comes sufficiently weak, then that can push the Sun into adgmanimum. However, we do not
understand well how the Sun comes out of such a quiesceet $tatre are also many uncertainties
in our understanding of the nature of the dynamo processigihie grand minimum state. It has
been clearly demonstrated by observations that the sotde cgntinued during grand minima with
weaker strength and also with polarity reversals (Fliggalefi999; Miyahara et al. 2004, 2010;
Nagaya et al. 2012). The question that remains open is howdluedal field is generated during
grand minima. The Babcock-Leighton process depends oreitegydf tilted active regions and at
present we have strong observational evidence that thépsas indeed working near the solar sur-
face (Dasi-Espuig et al. 2010; Kitchatinov & Olemskoy 20Jiang et al. 2013). On the other hand,
very few sunspots were detected during the Maunder mininfBiokdloff & Nesme-Ribes 1994;
Hoyt & Schatten 1996). Therefore, the Babcock—Leightortess may have been ineffective during
the Maunder minimum. However, in all our earlier calculaiqChoudhuri & Karak 2009; Karak
2010; CK12), we have used the sameoncentrated near the solar surface corresponding to the
Babcock-Leighton mechanism all the time for the poloiddtifgeeneration because of our lack of
knowledge about handling the problem in a better way. Now sgeiae that the Babcock—Leighton
process cannot operate when the toroidal field is very wedlsanspots do not form. We make the
Babcock-Leightony coefficient fall to zero when the dynamo enters a grand mininauind keep
running the simulation. Then the dynamo cannot come outefjtand minimum state, as seen in
Figure 7.

If we assume that the Babcock—Leighton process cannot watikgla grand minimum, we
need some other mechanism to pull the dynamo out of the gramchoom. The obvious other can-
didate to produce the poloidal field is theeffect based on helical turbulencey(r) proposed by
Parker (1955) and Steenbeck et al. (1966). This is a meaharfigenerating the poloidal field in
the convection zone by the twist of the helical turbulencéctvtis effective in the weak toroidal
field regime. When flux tube simulations showed that sundpots from toroidal magnetic fields as
strong as0° G (Choudhuri & Gilman 1987; Choudhuri 1989; D’Silva & Choutth1993; Fan et al.
1993), the Babcock—Leighton mechanism was favored over-higect in the flux transport dynamo
model, since the helical turbulence cannot twist toroiddtl as strong as)® G. Presumably the
situation gets reversed during a grand minimum. While thiecBak—Leighton mechanism may not
be operative due to the lack of sunspots, the weaker tormdghetic field during the grand min-
imum may allow then-effect to work. We now present some simulations in which wéch on
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an«-effect during the grand minima and investigate what cogioluwe can draw about the nature
of the a-effect by requiring that results of the simulation agre¢hvabservations. These simula-
tions pertaining to the plausible failure of the Babcockighéon dynamo to recover from a grand
minimum episode and the role of an additional mean-fieldagdfect in a possible recovery are mo-
tivated by discussions with Dibyendu Nandy and Soumitrarbl§arivate communications) and the
work detailed in Passos (2010, PhD Thesis), Hazra, Pasddsady (2013) and Passos, Hazra and
Nandy (2013). One other point needs to be noted. Because wfdi we treat magnetic buoyancy in
our code, whenever the toroidal field strength above thebotif the convection zone exceefls,

a part of it is brought to the solar surface. During the usitahton (i.e. outside grand minima), the
toroidal field near the surface in our simulation contindggets enhanced by magnetic buoyancy.
This does not happen during the grand minima. Whether wevdalie Babcock—Leighton process
to continue or replace it by the-effect, the toroidal field at the solar surface during gramdima
comes there due to turbulent diffusion or advection due értteridional circulation after being
created in the tachocline.

As soon as the dynamo enters into a grand minimum state asditispot eruption stops due to
the weak toroidal field, we switch off theg, corresponding to the Babcock—Leighton mechanism
and switch on thexgt representing the twisting of the toroidal field by helicaltulence. Then,
after the recovery from the grand minimum state, we switdttef oyt and again switch on the
apr. Although the nature and also the sign of thisr is not certain at present, we use the following

profile for it
1 —0.85R
QHT = 1.1 cosf 5 |:1+€‘I'f (7&0027@@)} ms_l. (3)

The profile of thisayr along with the Babcock—Leightonmg, is shown in Figure 8. Note that
ayr is almost one order of magnitude smaller than éhg, and importantlyayr is zero below
around).8 R . We have seen that, dfy 1 is non-zero within the whole body of the convection zone,
then the solar cycle periods during grand minima become steoyt, which is not supported by the
observation (Fligge et al. 1999; Miyahara et al. 2004, 2(N#&gaya et al. 2012). One important
conclusion we draw is that an-effect which gets switched on during grand minima has to be
restricted in the upper regions of the convection zone if wendt want the periods to become
too short.

Now let us comment on the amplitude®fir. If axr has the amplitude 1.1 nT$ in the upper
part of the convection zone which follows from (3), the réswf the simulation are qualitatively
exactly similar to the results we got by allowing the Babcdokightonagy, to operate all the time.
The results of the simulations of the grand minima with this: during grand minima are shown in
Figure 9. This plot shows the positions of the grand mininoaglthe time axis whereas the vertical
axis shows the durations of grand minima. In this 11 000 yu&ation run, we get about 28 grand
minima. A comparison with figure 3 of CK12 shows that the rissate qualitatively very similar.

Figure 10 shows the results whem is made to have the slightly larger amplitude of 1.2
m s~ !. We see that the number of grand minima is reduced in thiatito. Whemyr is larger, the
dynamo gets out of the state of reduced activity very quicgigce we count something as a grand
minimum only if two successive cycles are missed, the nurabgrand minima is reduced. We also
did runs by using the slightly lower value of the amplitud@ . s~ for ayr. In this case, we found
that the dynamo was unable to get out of a grand minimum afiteriag it.

Figure 11 presents histograms of the durations and thengdtitnes of grand minima from
simulation data spanning 33 000 yr using the value@f given by (3), with amplitude 1.1 n's.
Again in this case both of the distributions are exponeiatia qualitatively similar to the distribu-
tions shown in Figure 4.

We are not completely sure what conclusions we should draveftine results we have pre-
sented. It is quite remarkable that the results of our sitiaridy using the same Babcock—Leighton
« all the time, as had been done in CK12 and in Section 3 of tipeipare in such good agreement
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Fig.9 The durations of grand minima indicated by vertical barshairttimes of occurrence in an
11 000 yr simulation. This is the result of a particular regtiion of random fluctuations that produced
28 grand minima. In this simulation, during grand minimaseplies, the Babcock—Leightesy, is
switched off and a weak turbuleaizr is allowed to switch on with the amplitude of 1.1 cm's

with different aspects of observational data. On the ottardh if we switch off this Babcock—
Leighton a concentrated near the solar surface during the grand miaimdause the traditional
a-effect to pull the dynamo out of the grand minima, then weeh@vfine-tune the nature of this
oy quite a bitin order to get results consistent with obseoveti data. Interestingly, we get the best
results when the amplitude of theeffect is just marginally above the critical value and ooper-
ating in the upper half of the convection zone. Does thisuglthat Babcock—Leightom remains
operative even during the grand minima for reasons we douro¢iatly understand? This is a very
provocative question which needs further investigatiaonalier active regions with magnetic flux
less than that of detectable sunspots may have some {std}isystematic tilt to produce a signifi-
cant poloidal field during grand minima-like episodes ($eediscussion in Wang & Sheeley 2013).
In fact, Stenflo & Kosovichev (2012) find a systematic tilt Botong range of the magnetic fluxes



Grand Minima from Flux Transport Dynamo 1353

220

200/ n
2180 n
£ 160 N
1401 n
120F n
1001 n
801 n
60
40F

ZEHHHHMHHHHHHHH

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Time (yr)

r

Duration of grand min

Fig. 10 The same as Figure 9 except that turbutenwhich is switched on during the grand minima,
has the amplitude 1.2 cnTs.

40 1 30

Count

0 === [

50 100 150 200 250 0 200 400 600 800 1000 1269 1400
Duration of grand minima (yr) Waiting time between grand minima (yr)

Fig. 11 Same as Fig. 4, except that the turbuleatr gets switched on during grand minima instead
of the Babcock-Leightoa;, operating all the time.

in active regions, suggesting that the poloidal field may é&eegated when there are no detectable
sunspots. Importantly, even a few big sunspots (with cotigccan produce a significant poloidal
field to maintain the polarity reversal—this might also be tase during grand minima. As we do
not have sufficient observational data needed to studyesktissues during the Maunder minimum,
we cannot conclusively say anything about the poloidal fggdderation mechanism during grand
minima. However Hazra et al. (2013a) and Passos et al. (2i&ve the Babcock—Leighton pro-
cess cannot operate during the grand minimum episode an@lamwean-field alpha in the whole
convection zone is needed to recover the Sun out of such jplaaeel on their simulations with low
order dynamo model and flux transport dynamo model.

5 CONCLUSIONS

The aim of the present paper is to follow up our earlier papg€t Zin exploring whether different

aspects of grand minima can be explained on the basis of therélasport dynamo model of the
solar cycle. Following earlier work done by our group, wekesing a reasonably high turbulent
diffusivity, which implies that a slowing down of the meradial circulation results in longer and
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weaker cycles. In such a model, the meridional circulatiayga profound role in producing irreg-
ularities of the solar cycle and also the grand minima. On@fmain uncertainties in theoretical
models at the present time is our lack of understanding aftbedional circulation, either from the
theoretical or the observational viewpoint. While we do yeithave a complete theory of the solar
meridional circulation, we believe that the turbulent sées in the solar convection zone drives it
and hence we assume the meridional circulation to be confirthih the solar convection zone.
The poleward meridional circulation near the solar surfsageses the advection of the poloidal field
to higher latitudes (Wang et al. 1989; Dikpati & Choudhurp291995). We need an equatorward
counterflow at the bottom of the convection zone for the flaxsport dynamo to produce proper
butterfly diagrams (Nandy & Choudhuri 2002; Hazra et al. 2)1S%o far we do not have direct
observational measurements of this counterflow. Whileoselsmology has been able to provide
information about meridional circulation in the upper ley@f the convection zone (Giles et al.
1997; Braun & Fan 1998), extracting unambiguous infornmatibout meridional circulation in the
deeper layers has remained a challenge (Gough & Hindman Z0l0 et al. 2012). Any possible
periodic modulations of the meridional circulation witletkolar cycle are not expected to produce
sustained irregularities in the cycle (Karak & Choudhuii20Passos & Lopes 2012). However, ran-
dom fluctuations of the meridional circulation with cohezertimes longer than solar cycle periods,
as suggested by the data of past cycles, can have profowutssdin the dynamo.

Our earlier paper CK12 suggested that grand minima are peatiy combined fluctuations
in the meridional circulation and in the Babcock—Leightoeaimanism for generating the poloidal
field. While our further calculations support this broadrs#o, we now find that the fluctuations in
the meridional circulation are more important in produding grand minima (cf. Sect. 3.1). From
a theoretical viewpoint, such variations in meridionatalation are not surprising. We know that
the meridional circulation is mainly generated from the at@mce between two large terms — the
non-conservative part of the centrifugal force and the daric torque (i.e., the deviation from the
thermal wind balance) (Kitchatinov & Ruediger 1995). It @t ionly the case that there is a devia-
tion which produces the meridional circulation in the saanvection zone but also this deviation
fluctuates because of the fact that the differential rotaiioproduced by turbulent convection and
the fluctuations in it are unavoidable (Brun et al. 2010).sTihiysics has already been explored
by a mean-field model of Rempel (2005). He introduced randagiuations in theA-effect and
found that it produced fluctuations in the differential taia but in turn the fluctuations produced in
meridional circulation are about two orders of magnitudgdathan those in the differential rotation.
Indeed, helioseismology has detected a significant terhgariation of the meridional circulation
during the last several years (e.g., Gonzalez Hernanidalz 2006). Unfortunately we do not have
any measurement of the meridional circulation during theiMier minimum. There are some obser-
vational studies which indicate that solar rotation watedént during the Maunder minimum (Casas
et al. 2006, and references therein), suggesting also traiga of the meridional circulation. Some
authors (Wang & Sheeley 2003; Passos & Lopes 2011) sugge&tmweridional circulation during
the Maunder minimum.

Our calculations suggest that the fluctuations in the memali circulation are more important
than fluctuations in the polar field in inducing grand miniro& Sect. 3.1), although fluctuations in
the polar field have more effect if the dynamo is only moddyatetical (cf. Sect. 3.2). We have seen
that the recovery phase is always gradual, which is supgbsteéhe observation. However, depend-
ing on the detailed nature of the fluctuations in the meridi@irculation at the beginning of a grand
minimum, we find that both sudden and gradual initiationsrahg minima are possible. Since we
are able to make only a very rough estimate of the coheremedf meridional circulation fluc-
tuations, we explore how our results may change when vatyieagoherence time (cf. Sect. 3.5).
For coherence times lying in the range 20-50 yr, the resattsam qualitatively similar. We also
present statistical analyses of the characteristics afcgnainima (cf. Sect. 3.4). We have seen that
both the distributions of the waiting times and the duratiohthe grand minima are exponential,
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suggesting that these are governed by the random procese. &ahese results are supported by
observational data (Usoskin et al. 2007). One issue we didtndy here is the north-south asym-
metry during grand minima. There are sufficient evidencasdliring the Maunder minimum and
the Dalton minimum (Ribes & Nesme-Ribes 1993; Usoskin eR@09b) there was strong north-
south asymmetry in sunspots, indicating this to be a rolmagtfe of grand minima. Choudhuri &
Karak (2009) and Karak (2010) have proposed that if the paldield or the meridional circulation
becomes weak due to the stochastic fluctuations, then itrjsurdikely that they become weak in
both hemispheres by the same amount. With this assumptiyrhidve demonstrated that by intro-
ducing a slight asymmetry in the poloidal field or in the mnl circulation we can easily model
the observed north-south asymmetry of sunspots during tagier minimum. We believe that the
hemispheric asymmetry in grand minima may be another itidicéor the stochastic forcing as the
origin of grand minima.

In this paper we have studied another interesting aspeeéaidlar cycle, which is grand maxima
(cf. Sect. 3.6). We have seen that similar to grand minimandimaxima are mostly caused by the
strong meridional circulation and the distributions oftbtite waiting times and the durations of the
grand maxima are exponential. Although the definition ohgranaxima is more subjective, we have
seen that the average durations of grand maxima are shortgrared to those of grand minima.

One other issue we addressed here is how the Sun comes outoitbnginimum. The Babcock—
Leighton mechanism for the poloidal field generation degeow the existence of sunspots and
one naively thinks that this mechanism would not be opematialuring the grand minima. We
explored whether the-effect, which gets suppressed when the toroidal field snstr could be
operational during the grand minima when the toroidal fiebkddmes weak and whether this
effect could pull the Sun out of a grand minimum (cf. Sectign\We found that we can match
various aspects of observational data only when we modehtgiffect as occurring in the upper
half of the convection zone and fine-tune its strength. Onativer hand, on assuming that the
Babcock-Leighton mechanism remains operational througtie grand minima, we get results
remarkably close to the observational data. This raisepittneocative question about whether the
Babcock-Leighton mechanism could still remain operafidiniging grand minima for reasons we
do not understand. We merely pose this question which carmanswered at our present level of
understanding on the subject.
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