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Abstract In the context of the fact that Einstein’s general relativity has become an
inevitable part of deep space missions, we will extend previous works on relativistic
transformation between the proper timeτ of a clock onboard a spacecraft orbiting
Mars and the Barycentric Coordinate Time (TCB) by taking theclock offset into ac-
count and investigate its accessibility by Fourier analysis on the residuals after fitting
theτ−TCB curve in terms ofn-th order polynomials. We find that if the accuracy of
a clock can achieve better than∼ 10−5 s or∼ 10−6 s (depending on the type of clock
offset) in one year after calibration, the relativistic effects on the difference betweenτ
and TCB will need to be carefully considered.
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1 INTRODUCTION

Recent years have witnessed Einstein’s general relativity(GR) becoming an inevitable part of deep
space missions. This is driven by significant increases in measurement precisions with modern tech-
niques. It also makes GR go far beyond the territory of theoretical astronomy and physics into the
realm of practice and engineering. Relativistic effects obviously appear in the radio links with the
Cassini spacecraft (Bertotti et al. 2003) and the New Horizons spacecraft (Jensen & Weaver 2008).
The measurement of the frequency shift in the links connecting Cassini and Earth also yields the
most stringent test for the validity of GR in the Solar System(Bertotti et al. 2003).

One fundamental point associated with GR is to distinguish between the proper time and coor-
dinate time (Misner et al. 1973). The readings of an ideal clock are the proper timeτ , which is in the
reference frame of the clock. Although coordinate timescannot be measured directly, some of them
can be taken as independent variables in the equations of motion of celestial and artificial bodies
and photons. The coordinate time is related to the proper time through the invariant 4-dimensional
space-time interval, which depends on the motion of the clock (effects of special relativity) and the
gravitational fields (effects of GR). This dramatically changes the method of clock synchronization
and time transfer (Nelson 2011).

For Mars and other exploration missions, the synchronization between the clock onboard the
spacecraft and the clock on the ground is critical for control, navigation and scientific operation.
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As an intermediate step, the relativistic transformation betweenτ and the Barycentric Coordinate
Time (TCB) is usually required because TCB is the temporal variable describing the propagation of
the radio (or even laser) signal connecting the spacecraft with the station according to International
Astronomical Union (IAU) Resolutions (Soffel et al. 2003).Taking the Yinghuo-1 mission (Ping
et al. 2010a,b) as a technical example of future Chinese Marsexplorations, Deng (2012) studies this
transformation by analytic and numerical methods and finds two main effects associated with it: the
gravitational field of the Sun and the velocity of the spacecraft in the barycentric reference system.
The combined contribution of these two effects can reach a few sub-seconds in a year (Deng 2012).

In this paper, we will extend previous works by taking the clock offset into account and investi-
gate its accessibility by Fourier analysis. In Section 2, wewill describe the relativistic transformation
betweenτ and TCB and derive its numerical relation based on a proposedclock onboard a space-
craft orbiting Mars. In Section 3, we will separate the components behaving like clock offset from the
transformation and analyze the accessibility of the remaining “signals.” Conclusions and discussion
will be presented in Section 4.

2 TRANSFORMATION BETWEEN τ AND TCB

According to IAU Resolutions (Soffel et al. 2003), the proper timeτ of a clock onboard a spacecraft
andt ≡TCB are related up to the first order post-Newtonian (PN) approximation as

τ − t = −ǫ2
∫

(
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rsA

+
1

2
v2

s

)

dt + O(ǫ2J (A)
n , ǫ4) , (1)

whereǫ ≡ 1/c and the non-spherically-symmetric parts of each body’s gravitational field are omit-
ted. The index “s” stands for the spacecraft and the index “A” enumerates each body whose gravi-
tational effect needs to be considered.

To solve Equation (1), we integrate it numerically by Simpson’s rule (Stoer & Bulirsch 2002)
with the help of the ephemeris DE405; the positions and velocities of celestial bodies are taken
from DE405; the orbit of the spacecraft is solved by numerically integrating the Einstein-Infeld-
Hoffmann equation (Einstein et al. 1938) with the Runge-Kutta 7 method (Stoer & Bulirsch 2002)
and the stepsize is taken as one-hundredth of its Keplerian period. In the calculation, we neglect the
difference between TCB and the Barycentric Dynamical Time (TDB) which is the time variable of
DE405 becausedTDB = (1 − LB)dTCB whereLB = 1.550519768 × 10−8 (Petit et al. 2010)
so that the contribution associated withLB is less than 10 nanoseconds in a year (Deng 2012). Our
calculation only covers the phase of the spacecraft’s orbitaround Mars. (Deng 2012 briefly discusses
the case of the interplanetary cruise.)

We assume a spacecraft has been orbiting around Mars from 2017-Jan-01 00:00:00.0000 (TDB)
to 2018-Jan-01 00:00:00.0000 (TDB) and we rescale all of thetime variables from the starting point
in the other parts of this paper. Its orbital inclination with respect to the Martian equator is set as5◦.
The apoapsis altitude is 80 000 km and the periapsis altitudeis 800 km, with a period of about 3.2 d.
We find that, like the result of Deng (2012), the curve ofτ − t is nearly linear (see the top panel
of Fig. 1), which includes the gravitational contributionsfrom the Sun, eight planets, the Moon and
three large asteroids: Ceres, Pallas and Vesta.

However, this does not mean the curve is able to be accessed inrealistic experiments because
the theoretical calculation misses an important issue: clock offset.

3 ACCESSIBILITY WITH CLOCK OFFSET

A realistic clock has an offset from an ideal clock of∆τ , depending on its intrinsic physical proper-
ties. In practice, the offset can often be fitted byn-th order polynomials (Audoin & Guinot 2001), i.e.

∆τ = a0 + a1τ
1 + · · ·anτn, (2)
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Fig. 1 Top panel: evolution ofτ − t with respect tot. Bottom panel: the residuals of the fit for cases
n = 2 (solid line) andn = 3 (dashed line).

where the time is rescaled from the starting time of the calculation. For the Chinese Beidou
Navigation Satellite System and its time scales, the2nd order polynomial is adopted from Han et
al. (2011). Thus, to analyze the accessibility of theτ − t curve, we need to separate its components
behaving like clock offset from “signals” by fitting the curve with 2nd and3rd order polynomials
which represent two possible types of the offset respectively. (Other types of clock offset can be pro-
cessed with the same approach.) The reason is that any clock-offset-like components will be cleared
out in the calibration of the clock, which means they are not accessible. The coefficients of fitted
polynomials are given in Table 1 and the residuals of the fit (which we call “signals”) are shown
in the bottom panel of Figure 1. In the case ofn = 2 (solid line), the residuals are at the level of
milliseconds and have a low frequency oscillation. In the case ofn = 3 (dashed line), the residuals
are about 10 times less than those ofn = 2. An important feature they both have is tiny oscillations
roughly corresponding to the orbital period of the spacecraft (3.2 d) (see the inset of Fig. 1).

Since periodic variations can be effectively identified by aFourier transformation, we employ
this technique to process the residual “signals.” The resulting spectrum is shown in Figure 2. Its top
panel is for the case ofn = 2 and the bottom one is forn = 3. Peaks in the top one are not as distinct
as those in the bottom one because of its very small relative amplitudes (e.g., see the inset with the
same scales and units as the big one). The 10 peaks with the largest amplitudes based on Fourier
analysis are given in Table 2. (It is worth mentioning that the Keplerian frequency of the spacecraft
orbiting Mars is about2.2584 × 10−5 rad s−1.) For the casen = 2, it shows “dual-peak” features
(two peaks with close frequencies and amplitudes), but these features do not show up in the case of

Table 1 The Coefficients of Fitted Polynomials

n = 2 ai Value n = 3 ai Value

a0 −1.640111353146620 × 10−3 a0 +3.549462221118650 × 10−4

a1 −8.898456910791267 × 10−4 a1 −9.554397450110422 × 10−4

a2 +2.690895236548168 × 10−7 a2 +7.183681395594635 × 10−7

a3 −8.206002116979848 × 10−10
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Table 2 The Parameters of the 10 Peaks with the Largest Amplitudes

f (rad s−1) Amplitude (s)

n = 2 2.251395039673050 × 10−5 1.233630762883909 × 10−5

2.331090439307495 × 10−5 1.005179670503308 × 10−5

4.542637779163323 × 10−5 5.660790359807275 × 10−6

4.602409328889156 × 10−5 5.176295331970426 × 10−6

6.813956668744985 × 10−5 3.801385296939757 × 10−6

6.873728218470818 × 10−5 3.494538194103410 × 10−6

9.085275558326646 × 10−5 2.832293178828826 × 10−6

9.125123258143868 × 10−5 2.639571402821048 × 10−6

1.135659444790831 × 10−4 2.230736259459634 × 10−6

1.362791333748997 × 10−4 1.822013183108982 × 10−6

n = 3 2.251395039673050 × 10−5 4.155663307883478 × 10−6

4.522713929254712 × 10−5 1.722240619375779 × 10−6

6.794032818836374 × 10−5 1.055705666726146 × 10−6

9.065351708418035 × 10−5 7.488017620881390 × 10−7

1.133667059799970 × 10−4 5.681957100403799 × 10−7

1.360798948758136 × 10−4 4.452869900439114 × 10−7

1.587930837716302 × 10−4 3.535376773038794 × 10−7

1.815062726674468 × 10−4 2.808845501229303 × 10−7

2.042194615632634 × 10−4 2.212453954239430 × 10−7

2.269326504590800 × 10−4 1.713292734822900 × 10−7
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Fig. 2 The spectrum of residual “signals.” The top panel is for the casen = 2 and the bottom one is
for n = 3. The inset shows an enlarged region of the big one. The label “A” represents the amplitude
in the unit of seconds and “f” denotes the frequency in the unit of rad s−1.

n = 3. The amplitudes of the highest peaks in these cases are at thelevel of∼ 10−5 s and∼ 10−6 s
respectively. This means the effects caused by relativistic transformation betweenτ and TCB will
become significant if an onboard clock can reach an accuracy better than∼ 10−5 s or∼ 10−6 s
(depending on the type of clock offset) within one year aftercalibration.
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4 CONCLUSIONS AND DISCUSSION

In this work, we numerically integrate the relativistic transformation between the proper timeτ of
a clock onboard a spacecraft orbiting Mars and TCB. Its clock-offset-like behavior is separated by
fitting theτ − t curve in terms ofn-th order polynomials. Fourier analysis on the residual “signals”
shows that if the accuracy of a clock can achieve better than∼ 10−5 s or∼ 10−6 s (depending on
the type of clock offset) within one year after calibration then the relativistic effects on the difference
betweenτ and TCB will need to be carefully considered.

Although, in terms of hardware, the realistic offset of an onboard clock in the environment of
deep space and the strategy that should be taken to calibrateit are still very complicated issues, a
complete analysis of the proper time onboard a spacecraft and time scales on ground stations needs
to be established for practical purposes. Relativistic light propagation in the solar system under a
realistic condition will be another important issue that needs to be investigated in detail for future
theoretical works.
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