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Abstract Ground-based and space-borne observatories used for studying exoplanet
transits now and in the future will considerably increase the number of exoplanets
known from transit data and the precision of the measured times of transit minima.
Variations in the transit times can not only be used to infer the presence of additional
planets, but might also provide opportunities to test the general theory of relativity in
these systems. To build a framework for these possible tests, we extend previous stud-
ies on the observability of the general relativistic precessions of periastron in transiting
exoplanets to variations in secular transit timing under parametrized post-Newtonian
formalism. We find that if one can measure the difference between observed and pre-
dicted variations of general relativistic secular transittiming to1 s yr−1 in a transiting
exoplanet system with a Sun-like mass, a period of∼ 1 day and a relatively small
eccentricity of∼ 0.1, general relativity will be tested to the level of∼ 6%.
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1 INTRODUCTION

Currently, more than 880 exoplanets have been discovered and about 300 of them are in transiting
systems1. Now and in the future, ground-based and space-borne observatories used for studying exo-
planet transits will considerably increase the number exoplanets discovered through transit data and
the precision of observed times of transit minima2. The measured transit timing variations (TTVs)
can be used to infer the presence of additional planets (e.g.Holman & Murray 2005; Agol et al. 2005;
Heyl & Gladman 2007; Nesvorný et al. 2012) and study the dynamics of multiple planet systems
(e.g. Holman et al. 2010; Lissauer et al. 2011; Fabrycky et al. 2012; Steffen et al. 2012; Nesvorný

∗ Supported by the National Natural Science Foundation of China.
1 http://exoplanet.eu/catalog/
2 As mentioned in appendix A of Kipping (2011), the so-called “mid-transit time” in the exoplanet literature is highly

ambiguous. Following the terminology used by Kipping (2011), we will use “transit minimum” and “time of transit minimum”
in this paper. Because, for a limb-darkened star, the transit minimum occurs when the apparent sky-projected separation
between the exoplanet and the star reaches a minimum has a completely unambiguous definition, “transit timing variations”
also refers to “changes of times of transit minimum.”



1232 S. S. Zhao & Y. Xie

et al. 2013). Recently, theKepler mission (Basri et al. 2005) released a catalog of transit timing mea-
surements for the first twelve quarters, which identifies theKepler objects of interest with significant
TTVs (Mazeh et al. 2013).

Theoretically, the contribution due to general relativity(GR), especially the general relativistic
periastron advance (GRPA), is among the causes of secular TTVs. Its observability in exoplanets has
been investigated in several works (e.g. Miralda-Escudé 2002; Adams & Laughlin 2006a,b,c; Iorio
2006a; Heyl & Gladman 2007; Jordán & Bakos 2008; Pál & Kocsis 2008; Li 2010; Iorio 2011a,b;
Li 2012b). It is found that GRPA can be detectable on timescales of less than about 10 years with
current observational capabilities by observing the timesof transits in exoplanets (Jordán & Bakos
2008).

This means that, like the well-known phenomenon in the SolarSystem of the anomaly in the
perihelion shift of Mercury (Nobili & Will 1986) that gave a hint at new physics about GR and the
dynamics of planets could be used to test fundamental laws ofphysics (e.g. Iorio 2005a,b; Folkner
2010; Pitjeva 2010; Fienga et al. 2011; Iorio et al. 2011; Iorio 2012a; Pitjeva 2012; Pitjev & Pitjeva
2013; Pitjeva & Pitjev 2013), the observation of secular TTVs can also serve as a test-bed for GR with
the help of high-precision measurements which might be available in the not-so-distant future. It will
also provide opportunities to test the fundamental theories of gravity, such as modified theories of
gravity and alternative relativistic theories of gravity,in quite a large number of different locations
beyond the Solar System. This will make transiting exoplanets very similar to binary pulsars in
testing physical laws describing gravity (e.g. Bell et al. 1996; Damour & Esposito-Farèse 1996;
Kramer et al. 2006; Iorio 2007b; Deng et al. 2009; Li 2010; Deng 2011; Li 2011; De Laurentis et al.
2012; Ragos et al. 2013; Xie 2013). Therefore, this inspiresus to extend previous works within GR
and to build a framework under the parametrized post-Newtonian (PPN) formalism (see Will 1993,
2006, for reviews) for modeling and evaluating these tests via secular TTVs. In this formalism, the
values of its PPN parameters represent deviations caused bytheories of gravity that are alternative to
GR. For example, two Eddington-Robertson-Schiff parameters,γ andβ, are both equal to1 in GR,
but might have different values in other cases (see Will 1993, 2006, for details). Our goal is to set up
a PPN theory for measurinḡγ ≡ γ − 1 andβ̄ ≡ β − 1 and testing fundamental laws of gravity in
transiting exoplanets.

The rest of the paper is organized as follows. Section 2 is devoted to describing TTVs under
PPN formalism. In Section 3, we present an analysis about theobservability ofγ̄ andβ̄ via secular
TTVs. Finally, in Section 4, we summarize our results.

2 TTVS UNDER PPN FORMALISM

To describe the dynamics of a transiting exoplanetary system, understand its transit light curve and
represent the observables, we adopt the coordinate systemsdefined and applied in Kipping (2011).
The plane ofX̂-Ŷ is defined as the plane of the sky, where the star is at the origin O and the
observer is located at(X, Y, Z) = (0, 0, +∞). Then, in theX̂-Ŷ -Ẑ system, the inclination of a
transiting exoplaneti is close to90◦3. The normalized apparent (sky-projected) separation between
the planet and the star is defined as (Kipping 2011)

S ≡ 1

R∗

√

X2 + Y 2

=
a

R∗
̺(f)

√

1 − sin2(ω + f) sin2 i , (1)

3 We take widely used notations in celestial mechanics:a is the semi-major axis,e is the eccentricity,i is the inclination,
Ω is the longitude of the ascending node,ω is the argument of periastron,M is the mean anomaly andf is the true anomaly.
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where̺(f) ≡ (1− e2)/(1 + e cos f) andR∗ is the radius of the star. For mathematical convenience
in the following parts of this paper, we will also use the expression forS2

S2 =
a2

R2
∗

̺2(f)[1 − sin2(ω + f) sin2 i] . (2)

2.1 Transit Minima

For a Kelperian transiting exoplanet, the instants of transit minima (and maxima) occur when
dS/dt = 0 (Kipping 2011), which leads to

dS

dt
=

dS

df

df

dt
= 0 . (3)

It is worth mentioning that the condition defined by Equation(3) is a pure geometric criterion without
any ambiguity. Becausedf/dt 6= 0 for planetary orbital motions, the conditiondS/dt = 0 is
equivalent todS/df = 0. An easier way to handle the mathematics is to make use ofdS2/df = 0,
and such a condition can be proven to be equivalent todS/df = 0 (Kipping 2011). To obtain
the true anomaly at the transit minimafT (the subscript “T ” denotes transit), one needs to solve
a quartic equation that involvescos f [see eq. (4.5) given by Kipping (2011)]. Although solving
it is mathematically possible, the solutions are pretty lengthy and impractical. Treatingcos2 i as a
small quantity which is very close to zero for transiting exoplanets and using the Newton-Raphson
iteration method, Kipping (2011) shows the series expansion solution forfT can be written as

fT =

[

π

2
− ω

]

−
n

∑

j=1

ηT
j , (4)

where, byh ≡ e sinω andk ≡ e cosω,

ηT
1 =

(

k

1 + h

)

(cos2 i)1, (5)

ηT
2 =

(

k

1 + h

)(

1

1 + h

)

(cos2 i)2, (6)

ηT
3 = −

(

k

1 + h

)[−6(1 + h) + k2(−1 + 2h)

6(1 + h)3

]

(cos2 i)3 . (7)

It is demonstrated by Kipping (2011) that using a solution expanded to first-order can reduce the
error to less than a millisecond for a highly eccentric planet with a short period. Solutions expanded
to high order (up ton = 6) can be found in Kipping (2011).

2.2 PPN Secular TTVs

With the same approach used by Iorio (2011a) to work out long-term time variations of some ob-
servables for transiting exoplanets, for a given observable Γ that is a function of Keplerian orbital
elements, i.e.Γ = Γ({σ}), where{σ} = {a, e, i,Ω, ω, M}, if perturbations on the Keperlian orbital
motion are taken into account, we can calculate its secular variation by averaging

〈

dΓ

dt

〉

=
1

P

∫ P

0

dΓ

dt
dt =

1

P

∫ P

0

∑

κ∈{σ}

∂Γ

∂κ

dκ

dt
dt , (8)



1234 S. S. Zhao & Y. Xie

whereP is the Keplerian period of the orbit. Applying this approachto fT , we can obtain its secular
changes as

〈

dfT

dt

〉

= −
〈

dω

dt

〉

−
n

∑

j=1

〈

dηT
j

dt

〉

. (9)

If a PPN two-body problem is considered, we can find that
〈

dηT
1

dt

〉

= − h + e2

(1 + h)2
cos2 i

〈

dω

dt

〉

, (10)

〈

dηT
2

dt

〉

= −k2 + h + e2

(1 + h)3
cos4 i

〈

dω

dt

〉

, (11)

〈dηT
3

dt

〉

=
1

2

(2h3k2 + 2hk4 + h2k2 − 2k4 − 2h3 − 7hk2 − 4h2 − 6k2 − 2h)

(1 + h)5
cos6 i

〈dω

dt

〉

,

(12)
where only〈dω/dt〉 contributes in the above expression because the secular variations ofa, e, i and
Ω are zero (see Appendix A for details).

However, the secular variation offT is not practically observable so that, for realistic measure-
ments, it needs to be converted to the secular variation of time of transit minimumtT , i.e. secular
TTV,

〈

dtT
dt

〉

=

〈

dtT
dfT

dfT

dt

〉

=
1

n
√

1 − e2
̺2

T

〈

dfT

dt

〉

, (13)

where̺T ≡ ̺(fT ) and n = 2π/P . If we consider the PPN 2-body problem, by substituting
Equations (9), (4) and (A.19) into Equation (13), we can derive the PPN secular TTV as

〈

dtT
dt

〉

= −(3 + 2γ̄ − β̄)

√
1 − e2

(1 + h)2
Gm

c2a
+ O(cos2 i) , (14)

whereG is the gravitational constant,c is the speed of light andm is the total mass of the transiting
exoplanet system. For a time duration∆t, the PPN secular TTV∆tT is

∆tT
∆t

= −3
Gm

c2a
(1 − 2h) − (2γ̄ − β̄)

Gm

c2a
(1 − 2h) + O

(

cos2 i,
e2

c2

)

. (15)

It is obvious that∆tT /∆t has two parts: a contribution caused by GR and one due to the deviation
from GR. They respectively are, in more convenient expressions,

∆tT
∆t

∣

∣

∣

∣

GR

= −
(

47.7 s

1 yr

)(

m

m⊙

)2/3(

P

1 day

)−2/3

(1 − 2h) + O
(

cos2 i,
e2

c2

)

, (16)

and

∆tT
∆t

∣

∣

∣

∣

γ̄,β̄

= −
(

15.9 s

1 yr

)

(2γ̄ − β̄)

(

m

m⊙

)2/3(

P

1 day

)−2/3

(1 − 2h) + O
(

cos2 i,
e2

c2

)

. (17)

Equation (16) shows that, in a transiting exoplanet system with a Sun-like mass, a period of∼ 1 day
and a relatively small eccentricity of∼ 0.1, the variation in times of transit minima can reach∼ 40
seconds in a year.

For future observation on relativistic secular TTVs, if we define the difference between the
measured TTVs and its prediction by GR as

δGR

∆tT /∆t ≡
∆tT
∆t

∣

∣

∣

∣

obs

− ∆tT
∆t

∣

∣

∣

∣

GR

, (18)
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then2γ̄ − β̄ via TTVs can be determined to be

2γ̄ − β̄ = −6.28 × 10−2

(

m

m⊙

)−2/3(

P

1 day

)2/3

(1 + 2h)

(

δGR

∆tT /∆t

1 s yr−1

)

+ O
(

cos2 i,
e2

c2

)

. (19)

According to the above equation,γ̄ andβ̄ cannot be separately constrained by only using TTVs, but
their combination̄ζT ≡ 2γ̄ − β̄ is accessible. Sincēγ andβ̄ have been measured to be very close
to zero in various experiments and observations (Will 1993,2006),ζ̄T is expected to also be nearly
zero in well-determined systems with transiting exoplanets. Equation (19) tells us that if one can
measure the difference between observed and predicted general relativistic secular TTVs to1 s yr−1

in a transiting system with a Sun-like mass, a period of∼ 1 day and a relatively small eccentricity
of ∼ 0.1, then GR will be tested to the level of∼ 6%.

3 OBSERVABILITY OF ζ̄T VIA TTVS

This section will be dedicated to an important issue: the observability of ζ̄T via TTVs. Based on
the catalog of confirmed transiting exoplanets4, we will focus on the space of parameters describing
transiting exoplanets and associated measurements, givenas

D =

{(

m, P, h, δGR

∆tT /∆t

) ∣

∣

∣

∣

0.1 m⊙ ≤ m ≤ 5 m⊙, 10−1 day ≤ P ≤ 103 day,

0 ≤ h ≤ 0.4, 10−2 s yr−1 ≤ δGR

∆tT /∆t ≤ 10 s yr−1

}

. (20)

According to Equation (19), the spaceD can generate|ζ̄T | ranging from∼ 10−4 to ∼ 102

(see color indexed Figs. 1 and 2 with identical logarithmic color bars). Figure 1(a) shows the color
indexed|ζ̄T | whenh = 0.1 andδGR

∆tT /∆t = 1.0 s yr−1. It suggests that, under this specific condition,

only the transiting systems withP . 10 days can determine|ζ̄T | down to∼ 10−1. If δGR

∆tT /∆t

can be determined to the level of0.1 s yr−1, the transiting systems can be used to extend those
cases withP . 102 days as shown in Figure 1(b). Figure 2(a) represents the color indexed|ζ̄T |
whenm = 1.0 m⊙ andh = 0.1. It can be seen that, for a system with periods even as long as
102 . P . 103 days, improvement ofδGR

∆tT /∆t will make it available for detecting|ζ̄T |. Finally,

Figure 2(b) indicates that determination of|ζ̄T | is not sensitive toh. All of these figures show that,
even ifδGR

∆tT /∆t might not be determined very precisely, short-period transiting systems can serve as
good test-beds.

However, like in the Solar System, the story of testing GR in transiting exoplanets is not so
simple. Many other sources might cause secular TTVs, such asadditional planets or tidal deforma-
tions (e.g. Holman & Murray 2005; Agol et al. 2005; Heyl & Gladman 2007; Jordán & Bakos 2008;
Iorio 2012b; Nesvorný et al. 2012; Iorio 2013). For example, Jordán & Bakos (2008) show that the
precession caused by tidal deformations may dominate the total precession in cases where GRPA
is detectable. Thus, theoretically and numerically modeling the full dynamics and observables of
transiting exoplanets up to a level compatible with observational datasets will be an important step
to separate and extract information.

4 CONCLUSIONS AND DISCUSSION

In the context of a potential, considerable increase in the number of exoplanets discovered through
transiting and the precision of measured times of transit minima by both ground-based and space-
borne observatories used for studying exoplanet transits now and in the future, we investigate the

4 http://exoplanet.eu/catalog/
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Fig. 1 Panel (a) shows the color indexed|ζ̄T | according to Eq. (19) whenh = 0.1 andδGR

∆tT /∆t =

1.0 s yr−1. Panel (b) is similar to (a) except thatδGR

∆tT /∆t = 0.1 s yr−1.
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Fig. 2 Panel (a) shows the color indexed|ζ̄T | according to Eq. (19) whenm = 0.1m⊙ andh = 0.1
and Panel (b) shows the color indexed|ζ̄T | whenm = 0.1m⊙ andδGR

∆tT /∆t = 1.0 s yr−1.

PPN secular TTVs to test fundamental laws of gravity in transiting systems. We find that if one can
measure the difference between observed and predicted general relativistic secular TTVs to1 s yr−1

in a transiting system with a Sun-like mass, a period of∼ 1 day and a relatively small eccentricity
of ∼ 0.1, GR will be tested to the level of∼ 6%.

However, exoplanetary systems are full of complexity, so many sources can trigger secular
TTVs, such as additional planets and tidal deformations. Separating and discriminating them need
theoretical and numerical models of dynamics and observables up to a level compatible with astro-
nomical observations. Other important timings, like variations in transit duration, transit to occulta-
tion time and transit to occultation duration ratio, will beour next goal for studying their possibilities
to test GR. Another interesting and promising direction forthis line of research is to combine various
observational datasets from astrometry, radial velocity and transit timing, which will be analogous
to constructing ephemerides of the Solar System and using them to test GR (Pitjeva 2005; Folkner
2010; Fienga et al. 2011).

Furthermore, transiting exoplanets might also be used to detect other non-standard effects which
may show up through TTVs and other observables. These interesting features are the effect of a
steady mass loss in the host star (or of a change inG ) (e.g. Iorio 2010a,c; Li 2012a,c, 2013; Pitjeva
& Pitjev 2012), dark matter in exoplanetary systems (e.g. Iorio 2006b, 2010b,d; Griest et al. 2011;
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Hooper & Steffen 2012; Iorio 2013) and fifth force-like Yukawa-type effects (e.g. Iorio 2002, 2007a;
Haranas et al. 2011; Deng & Xie 2013).
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Appendix A: PPN 2-BODY PROBLEM

Under the conditions of weak gravitational fields and low velocities, the two-body problem in the
PPN formalism can be treated as Keplerian motion with PPN perturbations. The Gaussian perturba-
tion equations read as

da

dt
=

2

n
√

1 − e2
[Se sin f + T (1 + e cos f)], (A.1)

de

dt
=

√
1 − e2

na
[S sin f + T (cos f + cosE)], (A.2)

di

dt
=

r cosu

na2
√

1 − e2
W, (A.3)

dΩ

dt
=

r sin u

na2
√

1 − e2 sin i
W, (A.4)

dω

dt
=

√
1 − e2

nae

[

− S cos f + T

(

1 +
r

p

)

sin f

]

− cos i
dΩ

dt
, (A.5)

dM

dt
= n −

√

1 − e2
dω

dt
−

√

1 − e2 cos i
dΩ

dt
− 2

na2
Sr , (A.6)

in which u = f + ω, p = a(1 − e2) andS, T andW are the radial, transverse and out-of-plane
components of the perturbing acceleration respectively (Soffel et al. 1987).

S =
Gm

c2r2

[

2(β + γ + ν)
Gm

r
− (γ + 3ν)v2 +

(

2γ + 2 − 1

2
ν

)

ṙ2

]

, (A.7)

T =
Gm

c2r2
(2γ + 2 − 2ν)

n2a3

r
e sin f , (A.8)

W = 0 , (A.9)

whereG is the gravitational constant,c is the speed of light,m = m1 + m2 andν = m1m2/m2.
With the help of Keplerian relations

v2 = m

(

2

r
− 1

a

)

, (A.10)

ṙ2 = m

(

2

r
− 1

a

)

− m
p

r2
, (A.11)
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we can have

S = −
(

γ − 7

2
ν + 2

)

1

a

Gm2

c2r2
+ (2β + 4γ − 5ν + 4)

Gm2

c2r3

−
(

2γ + 2 − 1

2
ν

)

Gm2p

c2r4
, (A.12)

T = 2(γ + 1 − ν)
Gm

c2
n2e

a3

r3
sin f , (A.13)

W = 0 . (A.14)

After averaging over a period, we obtain the secular evolution of the orbital elements as
〈

da

dt

〉

= 0, (A.15)
〈

de

dt

〉

= 0, (A.16)

〈

di

dt

〉

= 0, (A.17)
〈

dΩ

dt

〉

= 0, (A.18)

〈

dω

dt

〉

= (2γ + 2 − β)
Gm

c2

n

p
, (A.19)

〈

dM

dt

〉

= n − (3β + 6γ − 9ν + 6)
√

1 − e2
Gmn

c2p

+(2γ − 7ν + 4)(1 − e2)
Gmn

c2p
, (A.20)

which identically match those given by Soffel et al. (1987).
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