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Abstract Under the standard model extension (SME) framework, Lorentz invariance
is tested in five binary pulsars: PSR J0737–3039, PSR B1534+12, PSR J1756−2251,
PSR B1913+16 and PSR B2127+11C. By analyzing the advance of periastron, we
obtain the constraints on a dimensionless combination of SME parameters that is sen-
sitive to timing observations. The results imply no evidence for the break of Lorentz
invariance at the10−10 level, one order of magnitude larger than the previous estima-
tion.
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1 INTRODUCTION

Unification of general relativity (GR) and quantum mechanics is a great challenge in the realm of
fundamental physics. Some candidates of a self-consistentquantum theory of gravity emerge from
tiny violations of Lorentz symmetry (Kostelecký 2005; Mattingly 2005). To describe observable
effects of these violations, effective field theories couldbe a theoretical framework for tests.

The standard model extension (SME) is one of those effectivetheories. It includes the Lagrange
densities for GR and the standard model for particle physicsand allows possible breaking of Lorentz
symmetry (Bailey & Kostelecký 2006). The SME parameterss̄µν control the leading indicators of
Lorentz violation for gravitational experiments in the case of the pure-gravity region of the minimal
SME. By analyzing archival lunar laser ranging data, Battatet al. (2007) constrained these dimen-
sionless parameters in the range from10−11 to 10−6, which means there is no evidence for Lorentz
violation at this level.

However, tighter constraints on̄sµν would be hard to obtain in the solar system because the
gravitational field is weak. Thus, for this purpose, binary pulsars provide a good opportunity.Because
of their stronger gravitational fields, for example the relativistic periastron advance in binary pulsars
could exceed the corresponding value for Mercury by a factorof ∼ 105, these systems are taken as
an ideal and clean test-bed for testing GR, alternative relativistic theories of gravity and modified
gravity, such as the works by Bell et al. (1996), Damour & Esposito-Farèse (1996), Kramer et al.
(2006), Deng et al. (2009) and Deng (2011).
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Motivated by this advantage of binary pulsars, we will try totest Lorentz invariance under the
SME framework with five binary pulsars: PSR J0737–3039, PSR B1534+12, PSR J1756–2251, PSR
B1913+16 and PSR B2127+11C. In Section 2, the orbital dynamics of binary pulsars in the SME
will be briefed. Observational data will be used to constrain the SME parameters in Section 3. The
conclusions and discussions will be presented in Section 4.

2 ORBITAL DYNAMICS OF BINARY PULSARS IN SME

When the pure-gravity region of the minimal SME is considered, it will cause secular evolutions of
the orbits of binary pulsars. Since timing observations of binary pulsars can obtain its value very
precisely, the periastron advance plays a much more important role in constraininḡsµν and, with
widely used notations in celestial mechanics, it reads as (Bailey & Kostelecký 2006)
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whereM = m1 + m2, δm = m2 −m1 (m2 > m1) andε = 1− (1− e2)1/2. In this expression, the
coefficients̄s
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for Lorentz violation with subscriptsP , Q andk are projections of̄sµν along

the unit vectorsP , Q andk respectively. The unit vectork is perpendicular to the orbital plane of
the binary pulsar,P points from the focus to the periastron, andQ = k × P . By definitions given
by (Bailey & Kostelecký 2006),
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However, according to Equation (1), it is easy to see that themeasurement oḟω is sensitive to a
combination ofs̄µν instead of its individual components. Bailey & Kostelecký(2006) defined the
combination as
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and crudely estimated its value at the level of10−11.
Together with the contribution from GR, the total secular periastron advance of a binary pulsar
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The quantityx in Equation (4) is the projected semi-major axis, which is usually given by the timing
observations, but, in some cases,s can be measured directly so that there is no need to evaluate it
from this equation. In this work, Equation (3) will be taken to find the constraints on̄sω with timing
measurements of binary pulsars.
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Table 1 Timing Parameters of the Binary Pulsars

PSR Pb (d) M (M⊙) e s ω̇ (◦ yr−1) Reference

J0737–3039 0.10225156248 2.58708 0.0877775 0.99974 16.89947(68) Kramer et al. (2006)
B1534+12 0.420737299122 2.678428 0.2736775 0.975 1.755789(9) Stairs et al. (2002)
J1756–2251 0.319633898 2.574 0.180567 0.961a 2.585(2) Faulkner et al. (2005)
B1913+16 0.322997448911 2.828378 0.6171334 0.733650a 4.226598(5) Weisberg et al. (2010)
B2127+11C 0.33528204828 2.71279 0.681395 0.76762a 4.4644(1) Jacoby et al. (2006)

aDerived value according to Eq. (4).

Table 2 Values ofs̄ω

Group I Group II Predicted sensitivity
(Bailey & Kostelecký 2006)

s̄ω (−1.24 ± 0.54) × 10−10 (−1.42 ± 0.75) × 10−10 10−11

3 OBSERVATIONAL CONSTRAINTS

Long-term timing observations can determine the geometrical and physical parameters of binary
pulsars very well. Among them, PSR J0737–3039 (Kramer et al.2006), PSR B1534+12 (Stairs
et al. 2002), PSR J1756–2251 (Faulkner et al. 2005), PSR B1913+16 (Weisberg et al. 2010) and
PSR B2127+11C (Jacoby et al. 2006) are good samples for gravitational tests. Some of their timing
parameters are listed in Table 1. In terms of the estimated uncertainties given in parentheses after
ω̇, the pool of data is divided into two groups: Group I, where all the binary pulsars are taken; and
Group II, including PSR B1913+16, PSR B1534+12 and PSR B2127+11C, which have the smallest
uncertainties.

By using the method of weighted least squares, the parameters̄ω is estimated (see Table 2).
The estimation made by Group I is̄sω = (−1.24 ± 0.54) × 10−10 and Group II gives̄sω =
(−1.42 ± 0.75) × 10−10. For comparison, Bailey & Kostelecký (2006) proposed thatthe attain-
able experimental sensitivity of̄sω is 10−11, which is 10 times less than the results we obtain.

4 CONCLUSIONS AND DISCUSSION

In this work, we test Lorentz violation with five binary pulsars under the framework of SME. It is
found thats̄ω, which is a dimensionless combination of SME parameters, ison the order of10−10,
whether all five systems are taken or only the top three systems with the smallest estimated uncertain-
ties of periastron advances are used. This value, one order of magnitude greater than the estimation
by Bailey & Kostelecký (2006), implies there is no evidencefor the break of Lorentz invariance at
the10−10 level.

Nevertheless, as mentioned by Bailey & Kostelecký (2006),the secular evolution of the eccen-
tricity of binary pulsars should be included in the analysis. Its contribution is (Bailey & Kostelecký
2006)
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Here s̄e is a combination of coefficients in̄sµν and is sensitive to observations. However, there is
a lack of timing observations on binary pulsars covering a long enough time so that rare observa-
tions could show the secular change ofe. Even though a few numbers could be derived from these
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data, their uncertainties are rather larger than those of periastron advances. Timing observations can
usually only set the upper bounds, such as|ė| < 1.9 × 10−14 s−1 for PSR B1913+16 (Taylor &
Weisberg 1989) and|ė| < 3× 10−15 s−1 for PSR B1534+12 (Stairs et al. 2002). Hence, we assume
that, at least in the current stage, the constraints made byė might be looser and the resulting upper
bound is|s̄e| < 3× 10−10. Although it is consistent with the values ofs̄ω we obtain, the exact value
of s̄e remains unknown. Therefore, unless timing observations could provide much more definitive
results abouṫe, the secular changes of eccentricity would not impose a tight constraint on̄sµν or
combinations of̄sµν .

Another issue for future work is to constrain the componentsof s̄µν directly with binary pulsars.
However, the choice of a reference frame affects the values of these components so that a certain
reference frame must be specified first and the projections ofs̄µν will be along its standard unit basis
vectors. For example, for comparing the constraints due to binary pulsars and lunar laser ranging,
s̄µν has to be projected along the same triad of vectors. It means that the unit vectorsP , Q andk

(see Sect. 2) have to be decomposed in terms of these vectors,which requires information about the
geometry of the orbit of the binary pulsars, such as the orbital elementsΩ andω. Unfortunately,
timing observations are not sensitive to those two elements. This makes the components ofs̄µν hard
to directly access for now and demonstrates the advantages and availability ofs̄ω.
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Bailey, Q. G., & Kostelecký, V. A. 2006, Phys. Rev. D, 74, 045001
Battat, J. B. R., Chandler, J. F., & Stubbs, C. W. 2007, Phys. Rev. Lett., 99, 241103
Bell, J. F., Camilo, F., & Damour, T. 1996, ApJ, 464, 857
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