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Abstract We propose a flare prediction method based on the AdaBoost algorithm,
which constructs a strong prediction model from a combination of several basic mod-
els. Three predictors, extracted from the photospheric magnetograms, are applied as
features to predict the occurrence of flares with a certain level over 24 hours following
the time when the magnetogram is recorded. To demonstrate the effectiveness of the
proposed method, comparisons of experimental results withrespect to some existing
methods are given. The results show that an improvement is achieved in predicting the
occurrences of large flares.
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1 INTRODUCTION

Solar flares are the result of a sudden and intense release of magnetic energy stored in the solar
corona (Dauphin et al. 2007; Du & Wang 2012). The released energy, in the form of electromagnetic
emissions and particle acceleration, can have an importantinfluence on communication systems,
space based systems, and even human life or health. Therefore, it is a significant task to understand
the mechanism of solar flares and forecast them. Several mechanisms have been developed to explain
the occurrence of solar flares, such as flux emergence and cancellation (Gan et al. 1993; Zhang
et al. 2001), kink instability of coronal flux ropes (Sakurai1976; Li & Gan 2011), and magnetic
reconnection (Forbes et al. 2006; Fang et al. 2010; Fang 2011).

There are two main aspects in flare prediction, namely to construct informative predictors, and to
build powerful prediction models. Many predictors have been proposed, and the predictors derived
from the magnetic observation have recently aroused a greatdeal of interest. Of the proposed mea-
surements, the predictors proposed by Jing et al. (2006) andCui et al. (2006) have been extensively
investigated (Song et al. 2009; Yuan et al. 2010; Yu et al. 2009, 2010a,b). On the other hand, flare
prediction actually can be regarded as a classification task. As a result, several machine learning
approaches have been applied to develop solar flare prediction models, such as Bayesian network
(Yu et al. 2010b), neural network (Qahwaji & Colak 2007),k-nearest neighbors (Li et al. 2007), and
C4.5 decision tree (Yu et al. 2009). Promising results have been achieved.
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Based on Song et al.’s work (Song et al. 2009), Yuan et al. (2010) proposed a method by comb-
ing an ordinal logistic regression (LR) model and a support vector machine (SVM) classifier to
predict the occurrence of a certain level of flares within 24 hours. The experimental results inspire
us to build a prediction model by combining some existing ones. Therefore, a method, based on the
AdaBoost algorithm (Freund & Schapire 1997) is proposed forflare prediction in this paper because
Adaboost is a meta-algorithm which can be used in conjunction with many other prediction methods.
Comparison of results shows an improvement in the accuracy of M- and X-class flare prediction.

The remainder of the paper is organized as follows. In Section 2, the three predictors used in this
paper are briefly reviewed. The proposed method is given in Section 3, and experiments and results
are shown in Section 4. In the last section, some conclusionsare given.

2 DESCRIPTION OF PREDICTORS

To make a reasonable and fair comparison, the predictors, proposed by Song et al. (2009), are used
in this paper. The predictors are composed of:

– Total unsigned magnetic flux,Tflux,

Tflux =

∫ ∫

|Bz |dxdy, (1)

whereBz is the pixel intensity of MDI magnetographs.Tflux denotes the integration of pixel
intensity over the area of an active region.

– Length of the strong-gradient magnetic polarity inversion line,Lgpi, which is measured by the

total number of pixels on which the gradient|∇⊥Bz| is greater than50 G Mm−1. The definition
of |∇⊥Bz| is given as

|∇⊥Bz | =

[
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dBz
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)2

+
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dBz
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)2
]1/2

. (2)

– Total magnetic energy dissipation,Ediss,

Ediss=

∫ ∫

4

[
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+ 2

(

dBz

dx
+

dBz

dy

)2

dxdy, (3)

where the integration is performed over the area of an activeregion.

For more details on the predictors, please refer to Jing et al. (2006) and Song et al. (2009).

3 ADABOOST ALGORITHM

As mentioned before, the proposed prediction method is based on AdaBoost. In this section, we
briefly review the AdaBoost algorithm. AdaBoost, derived from Boost, is one of the most important
schemes in ensemble learning. It was first introduced by Freund & Schapire (1997), whose main
idea was to combine several basic or weak prediction models together to develop a more effective
and practical model. In this work, a very simple version of Adaboost is used.

The AdaBoost algorithm takes the following input data set:D = {(x1, y1), (x2, y2),
· · · , (xm, ym)}, wherexi is a predictor vector in the input data belonging to the classyi, and
yi ∈ {+1,−1}. In this paper, the predictor vector consists ofTflux, Lgpi, andEdiss mentioned in
Section 2.yi = +1 denotes that there will be an eruption of a flare with the predictor vectorxi, and
vice versa. In fact, the flare prediction discussed here is equivalent to a binary classification problem.
Suppose there areT basic binary classifiersZ = {z1(x), z2(x), · · · , zT (x)} which are included in
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Fig. 1 The weightαt for each basic classifier.

Adaboost. AdaBoost repeatedly performs one basic classification function over a series of time steps
t = 1, 2, · · · , T in order to calculate a weightαt for zt(x). αt represents the contribution ofzt(x) to
the derived classifier, and is determined by the total prediction errorsεt of zt(x). Therefore,zt(x)
will be given a largerαt on the condition thatεt is smaller to improve the accuracy of the derived
classifier. As an example, Figure 1 illustrates the weightαt used in the following experiment. We can
observe thatαt is different for each basic classifier. In addition, the input training data are given with
equally initialized weightsω1, ω2, · · · , ωm, and these weights will be changed during the training
process. The outline of AdaBoost is given as follows.

Input: Training dataD, and the basic classifier setZ.
Output: A strong classifierH .

Step 1: Initialize the weights forD, namelyωi = 1/m;
Step 2: Repeatedly execute the following sub-steps fromt = 1, 2, · · · , T ,

(1) Calculate the prediction results̄yi and total errorεt of zt:

ȳi = sign(zt(xi)), i = 1, 2, · · · , m, and εt =

m
∑

i=1

ωi(ȳi 6= yi),

where sign(.) is the signum function for a nonzero element.
(2) Calculate the weightαt for zt:

αt =
1

2
log

1 − εt

εt
;

(3) Update the weightsω1, ω2, · · · , ωm for D:

ωi = ωi exp(−αtzt(xi)ȳi), i = 1, 2, · · · , m;

(4) Normalizeωi in the following way:

ωi = ωi/

m
∑

i=1

ωi;
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Step 3: The final strong classifier is:

H = sign

(

T
∑

t=1

αtzt(x)

)

.

For more details on the AdaBoost algorithm, see Freund & Schapire (1997) and Schapire (2003).

4 EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed method isevaluated by some experiments. The
data set (Song et al. 2009) is applied in the paper, which contains 230 active regions extracted from
SOHO/MDI magnetograms. The flares in these active regions are denoted as level zero to level three
according their intensity, such that level zero means that it is flaring quiet or A and/or B class flare,
while level three represents the occurrence of at least one X-class flare in the active region. All the
three predictors are extracted from the active regions and then used to make a prediction.

We compare the proposed method with LR, SVM, and LR+SVM prediction models. All the
methods are tested similarly to Yuan’s work. The leave-one-out cross-validation approach is applied
in the following experiments, namely for 230 samples, 229 samples are used as training input data,
and the remaining one is for testing. As a result, the processis repeated 230 times to test every
sample. The prediction results are recorded in Table 1.

Table 1 A Sample Contingency Table

Observation Positive Observation Negative

Prediction Positive a b

Prediction Negative c d

Based on the results given in Table 1, seven measurements arecalculated as follows to assess
the performance of all the methods from different aspects (Yuan et al. 2010).

– Correctness= (a + d)/(a + b + c + d);
– True Positive= a/(a + b);
– True Negative= d/(c + d);
– Weighted True Rate= a/(a+ b)∗ (a+ c)/(a+ b+ c+d)+d/(c+d)∗ (b+d)/(a+ b+ c+d);
– Positive Accuracy= a/(a + c);
– Negative Accuracy= d/(b + d);
– Weighted Accuracy= a/(a+ c)∗ (a+ c)/(a+ b+ c+d)+d/(b+d)∗ (b+d)/(a+ b+ c+d).

Tables 2 and 3 show the binary prediction results of all the test methods for level zero to three
respectively. Observing the results, we can find that none ofthe test methods can obtain the best
results for all types of flare levels. For level zero, as shownin Table 3, performances of SVM,
LR+SVM, and the proposed method are almost the same. In this situation, the Positive Accuracy of
the LR-based method is higher than other methods’ results, but its Negative Accuracy is lower. When
considering level one, as illustrated in Table 3, the LR-based method surpasses the other methods in
all aspects.

However, predicting the occurrence of large flares is a more significant and meaningful goal.
For flares at level two or three, LR-based methods do not work very well. At the same time, the
proposed method outperforms the other three test methods atthese levels. Considering level two, the
number of correct predictions of flare eruption for LR, SVM, LR+SVM, and the proposed method
are 10, 9, 15, and 21 respectively. The Positive Accuracy of the proposed method (0.31) is twice
that of the LR-based method’s result (0.15). For the flare at level three, the proposed method is able
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Table 2 Experimental Results

Level Observation Positive Observation Negative
LR SVM LR+SVM AdaBoost LR SVM LR+SVM AdaBoost

0 Prediction Positive 52 46 45 46 28 16 14 14
Prediction Negative 11 17 18 17 139 151 153 153

1 Prediction Positive 17 12 9 11 7 16 8 19
Prediction Negative 48 53 56 54 158 149 157 146

2 Prediction Positive 10 9 15 21 2 14 27 26
Prediction Negative 58 59 53 47 160 148 135 136

3 Prediction Positive 1 7 7 13 0 12 9 7
Prediction Negative 33 27 27 21 196 184 187 189

Table 3 Comparison of All the Methods

Level Correctness
True

Positive
True

Negative
Weighted
True Rate

Positive
Accuracy

Negative
Accuracy

Weighted
Accuarcy

0 LR 0.83 0.65 0.93 0.85 0.83 0.83 0.83
SVM 0.85 0.74 0.89 0.85 0.73 0.9 0.85

LR+SVM 0.86 0.76 0.89 0.86 0.72 0.92 0.86
AdaBoost 0.87 0.77 0.9 0.86 0.73 0.92 0.87

1 LR 0.76 0.71 0.77 0.75 0.26 0.96 0.76
SVM 0.7 0.43 0.74 0.65 0.18 0.9 0.7

LR+SVM 0.72 0.53 0.74 0.67 0.14 0.95 0.72
AdaBoost 0.68 0.37 0.73 0.63 0.17 0.88 0.68

2 LR 0.74 0.83 0.73 0.76 0.15 0.93 0.74
SVM 0.68 0.39 0.72 0.62 0.13 0.93 0.68

LR+SVM 0.65 0.35 0.72 0.61 0.22 0.83 0.65
AdaBoost 0.68 0.45 0.74 0.66 0.31 0.84 0.68

3 LR 0.86 1 0.86 0.88 0.03 1 0.86
SVM 0.83 0.37 0.87 0.8 0.21 0.94 0.83

LR+SVM 0.84 0.44 0.87 0.81 0.21 0.95 0.84
AdaBoost 0.88 0.65 0.9 0.86 0.38 0.96 0.88

to correctly predict 13 of the 34 samples, but the results of the other methods are only 1, 7, and
7 respectively. As a result, we may conclude that the LR-based method is almost ineffective for
forecasting the occurrences of large flares, while the proposed method reveals the best performance
for this task. Besides, the parametersb andc in Table 1 are also important aspects in evaluation of
all the methods. Some resources are needed to perform the protective behavior. If the expected flare
does not occur, the resources are wasted, and they can be regarded as a loss. However, the eruption
of an unexpectedly large flare may cause enormous damage to a satellite or spacecraft that does
not perform protective measures. On the other hand, if the flare is over-predicted, there will also be
interruptions in satellite operation due to more times for the equipment being off. From this point
of view, the proposed method is also superior to the other methods. As illustrated in Table 2 we can
find that the parametersb andc of the proposed method are 7 and 21, which are both smaller than
SVM and LR+SVM methods’ results.

5 CONCLUSIONS

In this paper, we have proposed a flare prediction approach based on the AdaBoost algorithm.
Experimental results on 230 active regions extracted from SOHO/MDI magnetograms show the
effectiveness of the proposed method to predict different levels of flares. Based on the experimental
results, we may find that none of the test methods can obtain the best results in all situations. The
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LR based method performs better for the prediction of small levels of flares, while the proposed
method achieves better results in predicting the occurrences of large flares. In the future, we will try
to improve the AdaBoost algorithm to predict low level flares, and derive several novel predictors
from the active regions for flare prediction.
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