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Abstract We propose a flare prediction method based on the AdaBoaostitalg,
which constructs a strong prediction model from a combamadif several basic mod-
els. Three predictors, extracted from the photospherichatagrams, are applied as
features to predict the occurrence of flares with a certail lever 24 hours following
the time when the magnetogram is recorded. To demonstrateffiactiveness of the
proposed method, comparisons of experimental resultsreghect to some existing
methods are given. The results show that an improvemenhiswad in predicting the
occurrences of large flares.
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1 INTRODUCTION

Solar flares are the result of a sudden and intense releasagffatic energy stored in the solar
corona (Dauphin et al. 2007; Du & Wang 2012). The releasethgni@ the form of electromagnetic
emissions and particle acceleration, can have an impartlnence on communication systems,
space based systems, and even human life or health. Theri¢fisra significant task to understand
the mechanism of solar flares and forecast them. Severalanechs have been developed to explain
the occurrence of solar flares, such as flux emergence anélzdion (Gan et al. 1993; Zhang
et al. 2001), kink instability of coronal flux ropes (Sakut&76; Li & Gan 2011), and magnetic
reconnection (Forbes et al. 2006; Fang et al. 2010; Fang)2011

There are two main aspects in flare prediction, namely totoactsnformative predictors, and to
build powerful prediction models. Many predictors haverbpeoposed, and the predictors derived
from the magnetic observation have recently aroused a desdiof interest. Of the proposed mea-
surements, the predictors proposed by Jing et al. (2006Tandt al. (2006) have been extensively
investigated (Song et al. 2009; Yuan et al. 2010; Yu et al92@010a,b). On the other hand, flare
prediction actually can be regarded as a classification #@&sla result, several machine learning
approaches have been applied to develop solar flare p@dittodels, such as Bayesian network
(Yu et al. 2010b), neural network (Qahwaji & Colak 200#earest neighbors (Li et al. 2007), and
C4.5 decision tree (Yu et al. 2009). Promising results hasnkachieved.
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Based on Song et al.’s work (Song et al. 2009), Yuan et al.qRpdoposed a method by comb-
ing an ordinal logistic regression (LR) model and a supperdter machine (SVM) classifier to
predict the occurrence of a certain level of flares within ®difls. The experimental results inspire
us to build a prediction model by combining some existingsofiderefore, a method, based on the
AdaBoost algorithm (Freund & Schapire 1997) is proposedléoe prediction in this paper because
Adaboostis a meta-algorithm which can be used in conjunetith many other prediction methods.
Comparison of results shows an improvement in the accuridlely and X-class flare prediction.

The remainder of the paper is organized as follows. In Se&johe three predictors used in this
paper are briefly reviewed. The proposed method is givenati®e3, and experiments and results
are shown in Section 4. In the last section, some conclusigngiven.

2 DESCRIPTION OF PREDICTORS

To make a reasonable and fair comparison, the predictappped by Song et al. (2009), are used
in this paper. The predictors are composed of:

— Total unsigned magnetic flu% .

Taux = / / |B.|dxdy, (1)

where B, is the pixel intensity of MDI magnetographig,x denotes the integration of pixel
intensity over the area of an active region.
— Length of the strong-gradient magnetic polarity inveméine,Lgpi, which is measured by the

total number of pixels on which the gradiéRt, B. | is greater than0 G Mm ™ *. The definition
of |V B.|is given as

1/2
dB.\? (dB.\”
V.B.| = 2
voml= | () + () @
— Total magnetic energy dissipatiofgjgs
dB.\?® [dB,\* dB, dB.\"
Eygiss = 4 2 dxd 3
diss // (dw>+(dy) <dw+dy> g ©

where the integration is performed over the area of an artyi®n.

For more details on the predictors, please refer to Jing €2@06) and Song et al. (2009).

3 ADABOOST ALGORITHM

As mentioned before, the proposed prediction method ischaseAdaBoost. In this section, we
briefly review the AdaBoost algorithm. AdaBoost, deriveahfrBoost, is one of the most important
schemes in ensemble learning. It was first introduced byrferéu Schapire (1997), whose main
idea was to combine several basic or weak prediction modgkther to develop a more effective
and practical model. In this work, a very simple version obAdost is used.

The AdaBoost algorithm takes the following input data sBt: = {(z1,y1), (@2,92),

-, (®m,ym)}, wherex; is a predictor vector in the input data belonging to the classand
yi € {+1,—1}. In this paper, the predictor vector consistsigf;x, Lgpj, and Egjss mentioned in
Section 2y; = +1 denotes that there will be an eruption of a flare with the mtedivectorz;, and
vice versa. In fact, the flare prediction discussed hereus/atgnt to a binary classification problem.
Suppose there afE basic binary classifier§ = {z1(x), z2(x), - - - , zr(x)} which are included in
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Fig. 1 The weighto, for each basic classifier.

Adaboost. AdaBoost repeatedly performs one basic clasditfunction over a series of time steps
t=1,2,---,Tinorder to calculate a weight, for z;(x). oy, represents the contribution of(x) to
the derived classifier, and is determined by the total ptedie@rrorss, of z;(x). Thereforez;(x)
will be given a largery; on the condition that, is smaller to improve the accuracy of the derived
classifier. As an example, Figure 1 illustrates the weighised in the following experiment. We can
observe thady, is different for each basic classifier. In addition, the inpaining data are given with
equally initialized weightsv,, w», - - - ,w,,,, and these weights will be changed during the training
process. The outline of AdaBoost is given as follows.

Input: Training dataD, and the basic classifier sBt

Output: A strong classifief! .

Step 1: Initialize the weights fab, namelyw; = 1/m;
Step 2: Repeatedly execute the following sub-steps frenl, 2, --- | T,

(1) Calculate the prediction resulgsand total erroe; of z;:
Ui = Sign(z(4)),i = 1,2, ,m, ande; = > w;(; # i),
i=1

where sign(.) is the signum function for a nonzero element.
(2) Calculate the weight;, for z;:
1 1-— Et
oy = = log ;
2 Et

(3) Update the weights,, wa, - - -, wy, for D:

3

wi = w;exp(—agze(x;)g;), 1 =1,2,-- ,m;

(4) Normalizew; in the following way:

m
Wy :Wi/ E Wi 3
i=1
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Step 3: The final strong classifier is:

T
H = sign <Z atzt(w)> .

For more details on the AdaBoost algorithm, see Freund & [@oh&1997) and Schapire (2003).

4 EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed methalasuated by some experiments. The
data set (Song et al. 2009) is applied in the paper, whichatm®230 active regions extracted from
SOHO/MDI magnetograms. The flares in these active regions aretddms level zero to level three
according their intensity, such that level zero means thatfiaring quiet or A and/or B class flare,
while level three represents the occurrence of at least eo@ss flare in the active region. All the
three predictors are extracted from the active regionslaenl tised to make a prediction.

We compare the proposed method with LR, SVM, and LR+SVM mtémhi models. All the
methods are tested similarly to Yuan’s work. The leave-onecross-validation approach is applied
in the following experiments, namely for 230 samples, 228@as are used as training input data,
and the remaining one is for testing. As a result, the prosesspeated 230 times to test every
sample. The prediction results are recorded in Table 1.

Table 1 A Sample Contingency Table

Observation Positive  Observation Negative

Prediction Positive a b
Prediction Negative c d

Based on the results given in Table 1, seven measurementalatgated as follows to assess
the performance of all the methods from different aspeats¥et al. 2010).

— Correctness= (a+d)/(a + b+ c+ d);

— True Positive= a/(a + b);

— True Negative= d/(c + d);

— Weighted True Rate- a/(a+b)* (a+c¢)/(a+b+c+d)+d/(c+d)* (b+d)/(a+b+c+d);
— Positive Accuracy= a/(a + c);

— Negative Accuracy= d/(b + d);

— Weighted Accuracy= a/(a+c)*(a+c)/(a+b+c+d)+d/(b+d)x(b+d)/(a+b+c+d).

Tables 2 and 3 show the binary prediction results of all teeneethods for level zero to three
respectively. Observing the results, we can find that nonbetest methods can obtain the best
results for all types of flare levels. For level zero, as shawiTable 3, performances of SVM,
LR+SVM, and the proposed method are almost the same. Inith&tisn, the Positive Accuracy of
the LR-based method is higher than other methods’ resuitgsiNegative Accuracy is lower. When
considering level one, as illustrated in Table 3, the LRedasethod surpasses the other methods in
all aspects.

However, predicting the occurrence of large flares is a migifcant and meaningful goal.
For flares at level two or three, LR-based methods do not werl well. At the same time, the
proposed method outperforms the other three test methdltlssat levels. Considering level two, the
number of correct predictions of flare eruption for LR, SVMRtSVM, and the proposed method
are 10, 9, 15, and 21 respectively. The Positive Accurachefproposed method (0.31) is twice
that of the LR-based method’s result (0.15). For the flare\atllthree, the proposed method is able
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Table 2 Experimental Results

Level Observation Positive Observation Negative
LR SVM LR+SVM AdaBoost LR SVM LR+SVM AdaBoost
0 Prediction Positive 52 46 45 46 28 16 14 14
Prediction Negative 11 17 18 17 139 151 153 153
1 Prediction Positive 17 12 9 11 7 16 8 19
Prediction Negative 48 53 56 54 158 149 157 146
2 Prediction Positive 10 9 15 21 2 14 27 26
Prediction Negative 58 59 53 47 160 148 135 136
3 Prediction Positive 1 7 7 13 0 12 9 7
Prediction Negative 33 27 27 21 196 184 187 189

Table 3 Comparison of All the Methods

Level Correctness Trpg Truq Weighted  Positive  Negative Weighted
Positive  Negative True Rate Accuracy Accuracy Accuarcy

0 LR 0.83 0.65 0.93 0.85 0.83 0.83 0.83
SVM 0.85 0.74 0.89 0.85 0.73 0.9 0.85

LR+SVM 0.86 0.76 0.89 0.86 0.72 0.92 0.86
AdaBoost 0.87 0.77 0.9 0.86 0.73 0.92 0.87

1 LR 0.76 0.71 0.77 0.75 0.26 0.96 0.76
SVM 0.7 0.43 0.74 0.65 0.18 0.9 0.7

LR+SVM 0.72 0.53 0.74 0.67 0.14 0.95 0.72
AdaBoost 0.68 0.37 0.73 0.63 0.17 0.88 0.68

2 LR 0.74 0.83 0.73 0.76 0.15 0.93 0.74
SVM 0.68 0.39 0.72 0.62 0.13 0.93 0.68

LR+SVM 0.65 0.35 0.72 0.61 0.22 0.83 0.65
AdaBoost 0.68 0.45 0.74 0.66 0.31 0.84 0.68

3 LR 0.86 1 0.86 0.88 0.03 1 0.86
SVM 0.83 0.37 0.87 0.8 0.21 0.94 0.83

LR+SVM 0.84 0.44 0.87 0.81 0.21 0.95 0.84
AdaBoost 0.88 0.65 0.9 0.86 0.38 0.96 0.88

to correctly predict 13 of the 34 samples, but the resulthefdther methods are only 1, 7, and
7 respectively. As a result, we may conclude that the LR-dbasethod is almost ineffective for
forecasting the occurrences of large flares, while the pegonethod reveals the best performance
for this task. Besides, the parameté@ndc in Table 1 are also important aspects in evaluation of
all the methods. Some resources are needed to perform ttexfive behavior. If the expected flare
does not occur, the resources are wasted, and they can bdeégas a loss. However, the eruption
of an unexpectedly large flare may cause enormous damageatelhtes or spacecraft that does
not perform protective measures. On the other hand, if the i§eover-predicted, there will also be
interruptions in satellite operation due to more times e équipment being off. From this point
of view, the proposed method is also superior to the othehoust As illustrated in Table 2 we can
find that the parametetsandc of the proposed method are 7 and 21, which are both smaller tha
SVM and LR+SVM methods’ results.

5 CONCLUSIONS

In this paper, we have proposed a flare prediction approasbdoan the AdaBoost algorithm.
Experimental results on 230 active regions extracted fradS/MDI magnetograms show the
effectiveness of the proposed method to predict differerels of flares. Based on the experimental
results, we may find that none of the test methods can obtaibékt results in all situations. The
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LR based method performs better for the prediction of sneaitls of flares, while the proposed
method achieves better results in predicting the occueatlarge flares. In the future, we will try
to improve the AdaBoost algorithm to predict low level flaraad derive several novel predictors
from the active regions for flare prediction.
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