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Abstract We have calculated the structural properties of a strange quark star with a
static model in the presence of a strong magnetic field. To this end, we use the MIT
bag model with a density dependent bag constant. To parameterize the density depen-
dence of the bag constant, we have used our results for the lowest order constrained
variational calculation of the asymmetric nuclear matter. By calculating the equation
of state of strange quark matter, we have shown that the pressure of this system in-
creases by increasing both density and magnetic field. Finally, we have investigated
the effect of density dependence of the bag constant on the structural properties of a
strange quark star.
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1 INTRODUCTION

The core of a neutron star forms from nuclear matter, composed of neutrons, protons, electrons (to
ensure negation of electric charge) and other particles like pions, mesons, etc (Lattimer & Prakash
2004). It is known that nuclear matter is meta-stable, and, after releasing a lot of energy, can convert
into strange quark matter (SQM) to achieve stability. This type of quark matter is the most stable
state of matter currently known. Thus, there is a new class of compact stars that comes from the
collapse of neutron stars, and is more stable compared to neutron stars (Farhi & Jaffe 1984). The
best candidates for this conversion are neutron stars with masses of 1.5 − 1.8 M� and fast spins
(Drake et al. 2002; Li et al. 1999; Weber 2005).

The collapse of a neutron star may lead to a strange quark star (SQS) or a hybrid star. Also
under special conditions, an SQS may be directly born from the core collapse of a type II supernova.
An SQS, from its center to surface, is made from SQM, and on its surface there may exist a layer
of nuclear matter (Glendenning & Weber 1992). Hybrid stars are the ones with cores composed of
SQM (Bhattacharyya et al. 2006). Here, we just consider the structural properties of an SQS.

The mass and density of an SQS is between the mass and density of a neutron star and that
of a black hole. However, the mass-radius relation for an SQS is M ∝ R3, which is different
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from that of a neutron star. This star does not have a minimum value for mass. For an SQS with
1M� ≤M ≤ 2M�, the radius is about 10 km (Alcock et al. 1986; Shapiro & Teukolsky 1983).

Recent observations indicate that the object SWIFT J1749.4–2807 may be an SQS (Yu & Xu
2010). The results given by Chandra observations also show that the objects RX J185635–3754 and
3C 58 may be bare strange stars (Prakash et al. 2003). It is known that compact objects such as
neutron stars, pulsars, magnetars and SQSs are under the influence of strong magnetic fields which
are typically about 1015 − 1019 G (Kouveliotou et al. 1998, 1999; Haensel et al. 2007; Glendenning
2000; Weber 1999; Camenzind 2007). Therefore, in astrophysics, it is of special interest to study
the effect of a strong magnetic field on the properties of SQM. We note that in the presence of a
magnetic field, the conversion of neutron stars to bare quark stars cannot take place unless the value
of the magnetic field exceeds 1020 G (Ghosh & Chakrabarty 2001).

In recent years, we have calculated the maximum gravitational mass and other structural prop-
erties of a neutron star with a quark core at zero (Bordbar et al. 2006) and finite temperatures
(Yazdizadeh & Bordbar 2011). We have also computed the structural properties of an SQS at zero
temperature (Bordbar et al. 2009) and finite temperature (Bordbar et al. 2011), as well as calculated
the structure of a magnetized SQS using the MIT bag model with a fixed bag constant (90MeV

fm3 )
(Bordbar & Peivand 2011). In the present work, we investigate the effect of density dependence of
the bag constant on the structure of an SQS in the presence of a strong magnetic field.

2 COMPUTATION OF THE EQUATION OF STATE FOR STRANGE QUARK MATTER
IN THE PRESENCE OF A MAGNETIC FIELD

The equation of state (EOS) of SQM plays an important role in determining the structure of
stars at high densities. To obtain the EOS of SQM, there are different models based on Quantum
Chromodynamics (QCD). At present, it is not possible to derive an exact EOS of SQM from first
principles of QCD. Therefore, scientists have tried to find approximate methods by combining the
basic features of QCD, for example, the MIT bag model (Chodos et al. 1974; Weber 1999; Peshier
et al. 2000; Alford et al. 2005), the NJL model (Rehberg et al. 1996; Hanauske et al. 2001; Rüster
& Rischke 2004; Menezes et al. 2006), and the perturbative QCD model (Baluni 1978; Fraga et al.
2001; Farhi & Jaffe 1984).

In the MIT bag model, the quarks in the bag are considered to be a free Fermi gas, and the
energy per volume for SQM is equal to the kinetic energy of the free quarks plus a bag constant (B)
(Chodos et al. 1974). The bag constant B can be interpreted as the difference between the energy
densities of the noninteracting quarks and the interacting ones. Dynamically, its role is to maintain
the pressure that keeps the quark gas at a constant density and potential. In the first MIT bag model,
different values such as 55 and 90 MeV fm−3 were considered for the bag constant. As far as we
know, the density of SQM increases from the surface to the core of an SQS, therefore using a density
dependent bag constant instead of a fixed bag constant is more suitable.

2.1 Density Dependent Bag Constant

The analysis of the experimental data obtained at CERN shows that the quark-hadron transition
happens at a density about seven times the normal nuclear matter energy density (156 MeV fm−3)
(Heinz 2001; Heinz & Jacob 2000; Farhi & Jaffe 1984). However theoretically, there is no density-
independent value of the bag constant for the hadron to quark matter transition to occur (Burgio et al.
2002). Therefore, it is essential to use a density dependent bag constant. Recently, a density depen-
dent form has also been considered for B (Adami & Brown 1993; Jin & Jennings 1997; Blaschke
et al. 1999; Burgio et al. 2002). The density dependence of B is highly model dependent. According
to the hypothesis of a constant energy density along the transition line, Burgio et al. tried to deter-
mine a range of possible values for B by exploiting the experimental data obtained at the CERN SPS
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(Burgio et al. 2002). By assuming that the transition to quark-gluon plasma is only determined by
the value of the energy density, they estimated the value of the bag constant and its possible den-
sity dependence. They attempted to provide effective parameterizations for this density dependence,
trying to cover a wide range by considering some extreme choices in such a way that at asymptotic
densities, the bag constant has some finite value. They employed a Gaussian form as follows

B(ρ) = B∞ + (B0 − B∞)e−γ(ρ/ρ0)2 . (1)

The parameter B0 = B(ρ = 0) is constant and equal to B0 = 400 MeV fm−3. In the above equation,
γ is a numerical parameter which is usually equal to ρ0 ≈ 0.17 fm−3, the normal nuclear matter
density. B∞ depends only on the free parameter B0.

The value of the bag constant (B) should be compatible with the experimental data. The experi-
mental results at CERN SPS confirm a proton fraction xpt = 0.4 (Heinz 2001; Heinz & Jacob 2000;
Burgio et al. 2002). Therefore, we use the EOS of asymmetric nuclear matter to evaluate B∞. We use
the lowest order constrained variational (LOCV) many-body method based on the cluster expansion
of the energy for calculating the EOS of asymmetric nuclear matter as follows (Bordbar & Modarres
1997, 1998; Modarres & Bordbar 1998; Bordbar & Bigdeli 2007a,b, 2008a,b; Bigdeli et al. 2009,
2010).

The asymmetric nuclear matter is defined as a system consisting of Z protons (pt) and N neu-
trons (nt) with the total number density ρ = ρpt + ρnt and proton fraction xpt = ρpt

ρ , where ρpt

and ρnt are the number densities of protons and neutrons, respectively. For this system, we consider
a trial wave function of the form,

ψ = Fφ, (2)

where φ is the slater determinant of the single-particle wave function, and F is the A-body correla-
tion operator (A = Z +N ) which is given by

F = S
∏
i>j

f(ij). (3)

In the above equation, S is a symmetrizing operator.
For asymmetric nuclear matter, the energy per nucleon up to the two-body term in the cluster

expansion is as follows

E([f ]) =
1
A

〈ψ|H |ψ〉
〈ψ|ψ〉 = E1 + E2. (4)

The one-body energy,E1, is

E1 =
2∑

i=1

∑
ki

�
2k2

i

2m
, (5)

where labels 1 and 2 are used for proton and neutron respectively, and ki is the momentum of particle
i. The two-body energy,E2, is given by

E2 =
1

2A

∑
ij

〈ij|V(12)|ij − ji〉, (6)

where

V(12) = − �
2

2m
[f(12), [∇2

12, f(12)]] + f(12)V (12)f(12). (7)

In Equation (7), f(12) and V (12) are the two-body correlation and nucleon-nucleon potential,
respectively. In our calculations, we use UV14 + TNI nucleon-nucleon potential (Lagaris &
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Pandharipande 1981a,b). We minimize the two-body energy with respect to the variations in the cor-
relation functions subject to the normalization constraint. From the minimization of the two-body
energy, we get a set of differential equations. By numerically solving these differential equations,
we can calculate the correlation functions. The two-body energy is obtained using these correlation
functions and then we can calculate the energy of asymmetric nuclear matter. The procedure of these
calculations has been fully discussed in Bordbar & Modarres (1998).

The experimental results at CERN SPS confirm a proton fraction xpt = 0.4 (Heinz 2001; Heinz
& Jacob 2000; Burgio et al. 2002). Therefore, to calculate B∞, we use our results of the above
formalism for the asymmetric nuclear matter characterized by a proton fraction xpt = 0.4. By
assuming that the hadron-quark transition takes place at the energy density equal to 1100 MeV fm−3

(Heinz 2001; Burgio et al. 2002), we find that the baryonic density of nuclear matter corresponding
to this value of the energy density is ρB= 0.98 fm−3 (transition density). At densities lower than this
value, the energy density of SQM is higher than that of the nuclear matter. By increasing the baryonic
density, these two energy densities become equal at the transition density, and above this value, the
nuclear matter energy density always remains higher. Later, we determine B∞ = 8.99 MeV fm−3 by
setting the energy density of SQM and that of the nuclear matter equal to each other.

2.2 Energy Density Calculation of Strange Quark Matter in the Presence of a Magnetic Field

We consider SQM composed of u, d and s quarks with spin up (+) and down (−). We denote the
number density of quark iwith spin up by ρ(+)

i and spin down by ρ(−)
i . We introduce the polarization

parameter ξi by

ξi =
ρ
(+)
i − ρ

(−)
i

ρi
, (8)

where 0 ≤ ξi ≤ 1 and ρi = ρ
(+)
i + ρ

(−)
i . Under the conditions of beta-equilibrium and charge

neutrality, we get the following relation for the number density,

ρ = ρu = ρd = ρs, (9)

where ρ is the total baryonic density of the system.
Within the MIT bag model, the total energy of SQM in the presence of magnetic field (B) can

be written as

Etot = EK + B + EM, (10)

where EM is the contribution of magnetic energy, B is the bag constant (in this article, we use a
density dependent bag constant (Eq. (1)), and EK is the total kinetic energy of SQM. The total
kinetic energy of SQM is as follows,

EK =
∑

i=u,d,s

Ei, (11)

where Ei is the kinetic energy of quark i,

Ei =
∑
p=±

∑
k(p)

√
m2

i c
4 + �2k(p)2c2. (12)

We ignore the masses of u and d quarks, while we assume ms = 150 MeV for s quarks. After
performing some algebra, supposing that ξs = ξu = ξd = ξ, we obtain the following relation for the
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total kinetic energy density (εK = EK
V ) of SQM,

εK =
3

16π2�3

∑
p=±

[
�

c2
k

(p)
F E

(p)
F (2�

2k
(p)2

F c2 +m2
sc

4) −m4
sc

5 ln
(

�k
(p)
F + E

(p)
F /c

msc

)]

+
3�cπ2/3

4
ρ4/3[(1 + ξ)4/3 + (1 − ξ)4/3], (13)

where
k

(±)
F = (π2ρ)1/3(1 ± ξ)1/3, (14)

and
E

(±)
F = (�2k

(±)2

F c2 +m2
sc

4)1/2. (15)

For SQM, the contribution of magnetic energy is EM = −M · B. If we assume that the magnetic
field is along the z direction, the contribution of the magnetic energy of SQM is given by

EM = −
∑

i=u,d,s

M (i)
z B, (16)

where M (i)
z is the magnetization of the system corresponding to particle i which is given by

M (i)
z = Niμiξi. (17)

In the above equation, Ni and μi are the number and magnetic moment of particle i, respectively.
By some simplification, the contribution of the magnetic energy density (εM = EM

V ) of SQM can be
obtained as follows

εM = −
∑

i=u,d,s

ρiμiξiB. (18)

Using the above equation and ρ = ρu = ρd = ρs, along with the assumption that ξ = ξu = ξd = ξs,
we have

εM = −(ρBξμs + ρBξμu + ρBξμd). (19)

Now, we take advantage of numerical values of the magnetic moment for quarks (Wong 2007) :
μs = −0.581 μN , μu = 1.852 μN , μd = −0.972 μN .

Using Equation (19) and the above values, we conclude that

εM = −0.299 ρ ξ μNB, (20)

where μN = 5.05 × 10−27 (J/T ) is the magneton of the nucleus.

2.3 The Results of Energy Calculations of Strange Quark Matter in the Presence of a
Magnetic Field

We have calculated the properties of SQM in the presence of a magnetic field with the density
dependent bag constant (Eq. (1)). Our results are as follows.

Our results for the total energy density (εtot = Etot/V ) of SQM in the presence of a magnetic
field have been plotted versus the polarization parameter in Figure 1 for various densities at B =
5 × 1018 G. We see that there is a minimum point in the energy curve for each density which shows
a meta-stable state for this system. As the density increases, the minimum point of energy shifts
to lower values of the polarization, and finally it disappears at high densities in which the system
becomes nearly unpolarized.

In Figure 2, we have plotted the polarization parameter corresponding to the minimum point of
energy versus density for two magnetic fields B = 5× 1018 G and B = 5× 1019 G. We can see that
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Fig. 1 Total energy density (εtot) as a function of the polarization parameter (ξ) for different densi-
ties (ρ).
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Fig. 4 Total energy density versus density (ρ) cal-
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have also been given for comparison.
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Fig. 5 Phase diagram for SQM in the presence of
a strong magnetic field.

the value of ξ decreases by increasing the density, and it becomes nearly zero at high densities. We
have also drawn the polarization parameter as a function of the magnetic field at different densities
in Figure 3. As this figure shows, the polarization parameter increases by increasing the magnetic
field for all densities.

For the SQM, our results for the total energy density at B = 5 × 1018 G, which were calculated
with the density dependent bag constant, have been shown as a function of density in Figure 4. The
results for B = 90 MeV fm−3 at B = 5 × 1018 G (Bordbar & Peivand 2011) are also given for
comparison. It can be observed that the total energy density has an increasing rate by increasing the
density. Also, it can be found that for ρ greater (lower) than about 0.6 fm−3, the energy of SQM
with the density dependent bag constant is lower (greater) than that with the fixed bag constant.
From Figure 4, it is seen that for ρ < 0.6 fm−3, the increasing energy has a relatively flat slope,
whereas for ρ > 0.6 fm−3 this increase shows a steeper slope.

Figure 5 shows the phase diagram for the SQM. We can see that as the density increases, the
magnetic field grows monotonically. This explicitly shows that at higher densities, the ferromagnetic
phase transition occurs at higher values of the magnetic field.

2.4 The Equation of State for Strange Quark Matter in the Presence of a Magnetic Field

In this section, we calculate the EOS of SQM in the presence of a magnetic field with a density
dependent bag constant. Generally, we can calculate the EOS using the following relation,

P (ρ) = ρ
∂εtot
∂ρ

− εtot, (21)

where P is the pressure and εtot is the energy density, which in the presence of a magnetic field, is
obtained from Equation (10).

In Figure 6, we have compared our results for the EOS of SQM at different magnetic fields. This
shows that for all magnetic fields, by increasing the density, pressure has an increasing rate. Also,
we can see that with an increasing magnetic field, the pressure increases.

In Figure 7, we have drawn the EOS of SQM for the density dependent bag constant at
B = 5 × 1018 G. The results for B = 90 MeV fm−3 at B = 5 × 1018 G (Bordbar & Peivand
2011) are also given for comparison. This figure indicates that for ρ greater than about 0.52 fm−3,
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Fig. 6 The EOS of SQM at B = 0, 5 × 1018 and 5 × 1019 G.
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Fig. 7 The EOS of SQM in the case of a density dependent bag constant (solid curve) at B =
5 × 1018 G. The results for the case of a fixed bag constant (B = 90 MeV fm−3) (dashed curve) at
B = 5 × 1018 G have also been given for comparison.

when the bag constant is density dependent, the pressure of SQM is greater than that of the density
independent case.

3 STRUCTURE OF A STRANGE QUARK STAR

Quark stars are relativistic objects, therefore we used general relativity for calculation of their struc-
tures. Since most of the massive general relativistic objects have some form of rotation (very rapid
in the case of pulsars), in these calculations, we are interested in investigating effects of the strong
magnetic field on the structure of a static SQS. Using the EOS of SQM, we can obtain the structure
of these stars by numerically integrating the general relativistic equations of hydrostatic equilibrium,
the Tolman-Oppenheimer-Volkoff (TOV) equation (Shapiro & Teukolsky 1983),

dP

dr
= −

G( ε(r)m(r)
r2 )(1 + P (r)

c2ε(r) )(1 + 4πr3P (r)
m(r)c2 )

(1 − 2Gm(r)
c2 )

,

dm

dr
= 4πr2ε(r). (22)
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In the above equations, P is pressure and ε(r) is the energy density, G is the gravitational constant
and m(r) is the mass inside radius r which is calculated as follows

m(r) =
∫ r

0

4πr′2ε(r′)dr′. (23)

Now, by selecting a central energy density εc, under the boundary conditionsP (0) = Pc andm(0) =
0, we integrate the TOV equations outwards to a radius r = R at which P vanishes (Shapiro &
Teukolsky 1983).

In this section, we calculate the structure of the SQS with the density dependent bag constant in
the presence of a magnetic field. We should note that a strong magnetic field changes the spherical
symmetry of the system and for magnetic fields less than 1019 G, this effect is ignorable (Felipe &
Martı́nez 2009; González Felipe et al. 2011). Considering the anisotropy of the pressure from SQM
in the presence of a magnetic field, it has been shown that for vanishing anomalous magnetic mo-
ments, the perpendicular component of the pressure P⊥ goes to zero at about 2 × 1019 G (González
Felipe et al. 2008). Thus in the case of SQM, for B < 1019 G, the anisotropy in the pressures is
relatively small, i.e. P⊥ = P‖.

In Figure 8, we have drawn the gravitational mass versus the central density (εc) for an SQS in
the magnetic fields with strengthsB = 0 and 5×1018 G. We see that as the central density increases,
the gravitational mass of an SQS increases, and finally it reaches a limiting value which is called the
maximum gravitational mass.

Figure 8 shows that when the magnetic field is present, the gravitational mass decreases. The
results for B = 90 MeV fm−3 atB = 5×1018 G (Bordbar & Peivand 2011) are also given in Figure 8
for the sake of comparison. This indicates that the density dependence of the bag constant leads to
substantially higher values for the gravitational mass of an SQS. With the density dependent bag
constant, we have found that the maximum gravitational mass of an SQS is about 1.62M�, but with
the fixed bag constant, it is about 1.33M�.

We have plotted the gravitational mass of an SQS as a function of the radius (mass-radius rela-
tion) for the magnetic fields B = 0 and 5 × 1018 G in Figure 9. It is seen that for all cases of SQSs,
the gravitational mass increases by increasing the radius.
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Fig. 8 Gravitational mass versus the central en-
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Fig. 9 The gravitational mass versus radius at
B = 0 (solid curve) and B = 5× 1018 G (dashed
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dotted curve) at B = 5 × 1018 G have also been
given for comparison.
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In Figure 9, we have also compared our results for the density dependent case of the bag constant
with those of the density independent case. We can see that for the case of the fixed bag constant, the
increasing rate of gravitational mass versus radius is higher than that of the density dependent case.
However, it will be more constructive to consider the effects of rotation on the properties of the star,
which is beyond our present investigation. Some authors have shown that considering the rotation of
the star leads to a larger maximum mass for SQSs (Shen et al. 2005).

4 SUMMARY AND CONCLUSIONS

We have investigated a cold static SQS in the presence of a strong magnetic field. For this purpose,
some of the bulk properties of the SQM, such as the energy density and EOS, have been computed
using the MIT bag model with the density dependent bag constant. Calculations of the energy for
different magnetic polarizations in the presence of a magnetic field demonstrated that as the density
increases, the minimum point of energy shifts to lower values of the polarization. We have shown
that the value of the polarization parameter decreases by increasing the density, and it also increases
by increasing the magnetic field. Our results at B = 5 × 1018 G show that for both the cases of
a density dependent bag constant and fixed bag constant, the total energy density has the effect of
an increasing rate from increasing the density. We have shown that there is a ferromagnetic phase
transition at high magnetic fields. Our computations indicate that the pressure increases by increasing
the density and magnetic field. In this work, we have also studied the structural properties of SQSs.
Our results show that the gravitational mass of the SQS increases by increasing the central energy
density. It was shown that this gravitational mass reaches a limiting value at higher values of the
central energy density. We have shown that the maximum mass of the SQS reduces in the presence
of the magnetic field. Finally, a comparison has also been made between the results of the density
dependent bag constant and those of a fixed bag constant. Our calculation with the density dependent
bag constant shows a higher maximum mass with respect to that of the fixed bag constant.

One of the possible astrophysical implications of our results is calculation of the surface redshift
(zs) of an SQS. This parameter is of special interest in astrophysics and can be obtained from the
mass and radius of the star using the following relation (Camenzind 2007),

zs =
(

1 − 2GM
Rc2

)− 1
2

− 1. (24)

Our results corresponding to the maximum mass and radius of an SQS calculated by the density
dependent bag constant lead to zs = 0.534 ms−1 for the magnetic field of B = 5 × 1018 G.
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