
Research in Astron. Astrophys.2012Vol. 12No. 8, 891–916
http://www.raa-journal.org http://www.iop.org/journals/raa

Research in
Astronomy and
Astrophysics

Emergent perspective of gravity and dark energy

T. Padmanabhan

IUCAA, Pune University Campus, Ganeshkhind, Pune 411007, India;paddy@iucaa.ernet.in

Received 2012 July 3; accepted 2012 July 6

Abstract There is sufficient amount of internal evidence in the natureof gravitational
theories to indicate that gravity is an emergent phenomenonlike, e.g, elasticity. Such
an emergent nature is most apparent in the structure of gravitationaldynamics. It is,
however, possible to go beyond the field equations and study the space itself as emer-
gent in a well-defined manner in (and possiblyonly in) the context of cosmology. In
the first part of this review, I describe various pieces of evidence which show that
gravitational field equations are emergent. In the second part, I describe a novel way
of studying cosmology in which I interpret the expansion of the universe as equivalent
to the emergence of space itself. In such an approach, the dynamics evolves towards a
state of holographic equipartition, characterized by an equality in the number of bulk
and surface degrees of freedom in a region bounded by the Hubble radius. This prin-
ciple correctly reproduces the standard evolution of a Friedmann universe. Further, (a)
it demandsthe existence of an early inflationary phase as well as late time accelera-
tion for its successful implementation and (b) allows us to link the value of late time
cosmological constant to thee-folding factor during inflation.

Key words: cosmology: theory — cosmology: cosmological parameters — emergent
gravity — holographic principle

1 INTRODUCTION

There is strong evidence in the structure of classical gravitational theories to suggest that gravi-
tational field equations in a wide class of theories, including but not limited to Einstein’s general
relativity, have the same status as the equations of fluid mechanics or elasticity, which are examples
of emergent phenomena (For a review, see Padmanabhan 2010a,2011b; for a small sample of work
in the same spirit, see Sakharov 1968; Jacobson 1995; Volovik 2003; Hu 2011; Barceló et al. 2005;
Verlinde 2011). Given the intimate connection between gravity and cosmology, such a change in
perspective has important implications for cosmology. In particular, ideas of emergence of space-
time find a natural home in the cosmological setting and provide a novel — but mathematically
rigorous and well-defined — way of interpreting cosmological expansion as emergence of space (as
cosmic time progresses). This, in turn, leads to a deep relation between the inflationary phase of the
early universe and the late time accelerated expansion of the universe. In this review, I will describe
various facets of this approach, concentrating on the cosmological context.

The plan of the review is as follows. The next section describes the evidence which has led to the
interpretation that gravitational field equations are emergent. In Section 3, I discuss how these ideas
allow us to obtain the gravitational field equations by maximizing the entropy density of spacetime
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instead of using the usual procedure of varying the metric asa dynamical variable in an action
functional. In Section 4, I describe the implications of this approach for cosmology and how the
cosmic evolution can be thought of in a completely new manner. Section 5 uses these ideas to connect
up the two phases of the universe in which exponential expansion took place, viz. the inflationary
phase in the early universe and the late time accelerating phase at the present epoch. Among other
things, this approach allows us to link the current value of the cosmological constantΛ to thee-
folding factorN during inflation by

ΛL2
P ≃ 3 exp(−4N) ≃ 10−122 (1)

for N ≃ 70 which is appropriate.Astronomers and those who are essentially interested in cosmology
can skip Sections 2 and 3, and go directly to Section 4.

2 THE EVIDENCE FOR GRAVITY BEING AN EMERGENT PHENOMENON

2.1 Spacetimes, Like Matter, can be Hot

I will begin by describing several pieces of internal evidence in the structure of gravitational theories
which suggest that it is better to think of gravity as an emergent phenomenon. To understand these
in proper perspective, let us begin by reviewing the notion of an emergent phenomenon.

Useful examples of emergent phenomena include gas dynamicsand elasticity. The equations
governing the behavior of a gas or an elastic solid can be written down entirely in terms of certain
macroscopic variables (like density, velocity, shape etc.) without introducing notions from micro-
scopic physics like the existence of atoms or molecules. Such a description will involve certain
phenomenologically determined constants (like specific heat, Young’s modulus etc.) which can only
be calculated when we know the underlying microscopic theory. In the thermodynamic description
of such systems, we however work with suitably defined thermodynamic potentials (like entropy,
free-energy, enthalpy etc. which can depend on these constants), the extremization of which will
lead to the equilibrium properties of the system.

As an example, consider an ideal gas kept in a container of volumeV . The thermodynamic
description of such a system will lead to the phenomenological result that(P/T ) ∝ (1/V ) whereP
is the pressure exerted by the gas on the walls of the container andT is the temperature of the gas.
One can obtain this result by maximizing a suitably defined entropy functionalS(E, V ) or the free-
energyF (T, V ). It is, however, impossible to understandwhysuch a relation holds within the context
of thermodynamics. As pointed out by Boltzmann, the notion of heat and temperaturedemandsthe
existence of microscopic degrees of freedom in the system which can store and exchange energy.
When we introduce the concept of atoms, we can re-interpret the temperature as the average kinetic
energy of randomly moving atoms and the pressure as the momentum transfer due to collisions of the
atoms with the walls of the container. One can then obtain theresult(P/T ) = (NkB/V ) in a fairly
straightforward manner from the laws governing the microscopic degrees of freedom. As a bonus,
we also find that the proportionality constant in the phenomenological relation,(P/T ) ∝ (1/V ),
actually givesNkB which is a measure of the total number of microscopic degreesof freedom.

We now proceed from the description of an ideal gas to the description of spacetime. Decades
of research have shown that one can associate notions of temperature and entropy with any null
surface in a spacetime which blocks information from a certain class of observers. Well known
examples of such null surfaces are black hole horizons (Bekenstein 1972; Hawking 1975) and the
cosmological event horizon (Gibbons & Hawking 1977; Lohiya1978) in the de Sitter spacetime.
The result, however, is much more general and can be stated asfollows: Any observer in a spacetime
who perceives a null surface as a horizon will attribute to ita temperature

kBT =
~

c

κ

2π
, (2)
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whereκ is a suitably defined acceleration of the observer. The simplest context in which this result
arises is in flat spacetime itself. An observer who is moving with an accelerationκ in flat space-
time will think of the spacetime as endowed with a temperature given by Equation (2). This re-
sult, originally obtained by Davies (1975) and Unruh (1976)for a uniformly accelerated observer,
can be generalized to any observer whose acceleration varies sufficiently slowly, in the sense that
(κ̇/κ2) ≪ 1.

This result shows that near any event in spacetime there exists a class of observers who sees
the spacetime as hot. Such observers, called Local Rindler Observers, can be introduced along the
following lines: Around any eventP in the spacetime, one can introduce the coordinate system
appropriate for a freely falling observer who does not experience the effects of gravity in a local
region. The sizeL of such a region is limited by the conditionL2 . (1/R) whereR is the typical
value of the spacetime curvature at the eventP . We can now introduce the local Rindler observer as
someone who is accelerating with respect to the freely falling observer with an accelerationκ. By
making the accelerationκ sufficiently large, (so thaṫκ/κ2 ≪ 1, κ2 ≫ R) we can ensure that this
observer attributes the temperature in Equation (2) to the spacetime in the local region. Thus, just
as one can introduce freely falling observers around any eventP , we can also introduce accelerated
observers around any event and work with them.

Equation (2) is probably the most beautiful result to have come out of combining the principles
of relativity and quantum theory. One key consequence of this result is thatall notions of thermo-
dynamics are observer dependentwhen we introduce non-inertial observers; e.g., while the inertial
observer will consider the flat spacetime to have zero temperature, an accelerated observer will at-
tribute to it a non-zero temperature. In fact, such an observer dependence of thermodynamic notions
exist even in other — more well known — examples like the blackhole spacetime. While an ob-
server who remains stationary outside the black hole horizon will attribute a temperature to the black
hole (in accordance with Equation (2) whereκ is the proper acceleration of the observer with respect
to local freely falling observers), another observer who isfreely falling through the horizon will not
associate any temperature with the horizon. The relationship between the observer at rest outside the
black hole horizon and the freely falling observer is exactly the same as the relationship between
an accelerated observer and an inertial observer in flat spacetime. The temperature inbothcases is
observer dependent and can be interpreted in terms of Equation (2). In fact, the result for Rindler
observers in flat spacetime can be obtained as a limiting caseof a black hole with very large mass.

The notion that spacetimes appear to be hot, endowed with a non-zero temperature, as seen by
a certain class of observers, already suggests that the description of spacetime dynamics could be
analogous to the dynamics of a hot gas described using the laws of thermodynamics. If this is the
case, one should be able to describe the field equations of gravity in terms of thermodynamic notions.
This is the first evidence that gravity is an emergent phenomenon, which I will now describe.

2.2 Gravitational Field Equations as a Thermodynamic Identity

To see the relationship between gravitational field equations and thermodynamics in the simplest
context (Padmanabhan 2002), let us consider a static, spherically symmetric spacetime with a hori-
zon, described by a metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2 . (3)

The location of the horizon is the radiusr = a at which the functionf(r) vanishes, so thatf(a) = 0.
Using the Taylor series expansion off(r) near the horizon asf(r) ≈ f ′(a)(r − a) one can easily
show that the surface gravity at the horizon isκ = (c2/2)f ′(a). Therefore, using Equation (2) we
can associate a temperature

kBT =
~cf ′(a)

4π
(4)
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with the horizon. This temperature knows nothing about the dynamics of gravity or Einstein’s field
equations.

Let us next write down the Einstein equation for the metric inEquation (3), which is given by
(1−f)−rf ′(r) = −(8πG/c4)Pr2 whereP = T r

r is the radial pressure of the matter source. When
evaluated on the horizonr = a this equation becomes

c4

G

[
1

2
f ′(a)a − 1

2

]

= 4πPa2 . (5)

This textbook result does not appear to be very thermodynamic! To see its hidden structure, consider
two solutions to Einstein’s equations differing infinitesimally in the parameters such that horizons
occur at two different radiia anda + da. If we multiply Equation (5) byda, we get

c4

2G
f ′(a)ada − c4

2G
da = P (4πa2da) . (6)

The right hand side is justPdV whereV = (4π/3)a3 is what is called the areal volume, which is
the relevant quantity to use while considering the action ofpressure on a surface area. In the first
term on the left side,f ′(a) is proportional to horizon temperature in Equation (4) and we can rewrite
this term in terms ofT by introducing an~ factor (by hand, into an otherwise classical equation) to
bring in the horizon temperature. We then find that Equation (6) reduces to

~cf ′(a)

4π
︸ ︷︷ ︸

kBT

c3

G~
d

(
1

4
4πa2

)

︸ ︷︷ ︸

dS

− 1

2

c4da

G
︸ ︷︷ ︸

−dE

= Pd

(
4π

3
a3

)

︸ ︷︷ ︸

P dV

. (7)

Each of the terms has a natural — and unique — thermodynamic interpretation as indicated by the
labels. Thus the gravitational field equation, evaluated onthe horizon, now becomes the thermody-
namic identityTdS = dE + PdV , allowing us to read off the expressions for entropy and energy

S =
1

4L2
P

(4πa2) =
1

4

AH

L2
P

; E =
c4

2G
a =

c4

G

(
AH

16π

)1/2

. (8)

HereAH is the horizon area andL2
P = G~/c3 is the square of the Planck length.

We see that the entropy associated with the horizon is one quarter of its area in Planck units.
By taking the limit of a black hole with very large mass, we will reduce the problem to one of
accelerated observers in flat spacetime. So we find that theseaccelerated observers around any event
will attribute not only a temperature but also an entropy to the horizon; the latter being one quarter
per unit area of the horizon expressed in Planck units.

It is well-known that black holes satisfy a set of laws similar to laws of thermodynamics, includ-
ing the first law and the result derived above has a superficialsimilarity to it. However, the above
result isquite differentfrom the standard first law of black hole dynamics. One key difference is that
our result is local and does not use any property of the spacetime metric away from the horizon.
So, thesame result holds even for a cosmological horizon like a de Sitter horizononce we take into
account the fact that we are sitting inside the de Sitter horizon (Padmanabhan 2002). In this case we
obtain the temperature and entropy of the de Sitter spacetime to be

kBT =
~H

2π
; S =

πc2

L2
P H2

. (9)
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Just as the result in Equation (2), this result also generalizes to other Friedmann universes (whenH
is not a constant) and gives sensible results; we will discuss these aspects in Section 41.

Unlike the temperature, the entropydid depend on the field equations of the theory. What hap-
pens if we consider a different theory compared to Einstein’s general relativity or even some cor-
rection terms to Einstein’s theory? Remarkably enough, theabove result (viz. the field equations
becomeTdS = dE + PdV ) continues to hold for a very wide class of theories! In the more general
class of theories, one can define a natural entropy for the horizon called the Wald entropy (Wald
1993) and we again get the same result with the correct Wald entropy (for a sample of results see
Kothawala et al. 2007; Paranjape et al. 2006; Cai et al. 2008b; Cai & Kim 2005; Cai et al. 2008a;
Akbar & Cai 2007; Cai & Cao 2007; Gong & Wang 2007; Cai et al. 2009).

For example, there exists a natural extension of Einstein’stheory into higher dimensions,
called Lanczos-Lovelock models (Lanczos 1932, 1938; Lovelock 1971). The field equations in
any Lanczos-Lovelock model, when evaluated on a static solution of the theory which has a hori-
zon, can be expressed (Kothawala & Padmanabhan 2009) in the form of a thermodynamic identity
TdS = dEg + PdV whereS is the correct Wald entropy,Eg is a purely geometric expression pro-
portional to the integral of the scalar curvature of the horizon andPdV represents the work function
of the matter source. The differentialsdS, dEg etc. should be thought of as indicating the difference
in the physical quantitiesS, Eg etc. between two solutions of the theory in which the location of the
horizon is infinitesimally different.

The gravitational field equations, being classical, have no~ in them while the Davies-Unruh
temperature does. But note that the Davies-Unruh temperature in Equation (2) scales as~ and the
entropy scales as1/~ (due to the1/L2

P factor), makingTdS independent of~! Without such scal-
ing we could not have reduced classical field equations to a thermodynamic identity involving a
temperature that depends on~. This fact strengthens the emergent perspective because this result is
conceptually similar to the fact that, in normal thermodynamics,T ∝ 1/kB while S ∝ kB making
TdS independent ofkB. The effects due to microstructure are indicated by~ in the case of gravity
and bykB in the case statistical mechanics. This dependence disappears in the case of continuum
limit thermodynamics describing the emergent phenomenon.

2.3 Einstein’s Equations are Navier-Stokes Equations

The discussion so far dealt withstaticspacetimes analogous to states of a system in thermodynamic
equilibrium differing in the numerical values of some parameters. What happens when we consider
time dependent situations? One can again establish a correspondence between gravity and the ther-
modynamic description, even in the most general case. It turns out that the Einstein’s field equations,
when projected on toanynull surface inanyspacetime, reduce to the form of Navier-Stokes equa-
tions in suitable variables (Padmanabhan 2011a; Kolekar & Padmanabhan 2012). This result was
originally known in the context of black hole spacetimes (Damour 1979; Price & Thorne 1986) and
is now generalized to any null surface perceived as a local horizon by suitable observers. I will not
discuss the details of this result here due to lack of space.

2.4 Field equations as an Entropy Balance Condition

The most general — and possibly the most direct — evidence foran emergent nature of the field
equations is that they can be reinterpreted as an entropy balance condition on spacetime. We will

1 Incidentally, there are several other crucial differencesbetween our result and the first law of black hole mechanics which
will become, in the present context,TdS = dE while we have an extra termPdV . The energyE used in the conventional
first law is defined in terms of matter source while theE in our relation is purely geometrical; see, for a detailed discussion
(Kothawala 2011).



896 T. Padmanabhan

illustrate this result for the Friedmann universe in GR and then mention how it can be generalized to
arbitrary spacetime in more general theories (Padmanabhan2010d).

Let us consider a Friedmann universe with expansion factora(t) and letH(t) = ȧ/a. We
will assume that the surface with radiusH−1 (in units with c = 1, kB = 1) is endowed with the
entropyS = (A/4L2

P ) = (π/H2L2
P ) and temperatureT = ~H/2π. During the time interval

dt, the change of gravitational entropy isdS/dt = (1/4L2
P )(dA/dt) and the corresponding heat

flux is T (dS/dt) = (H/8πG)(dA/dt). On the other hand, the Gibbs-Duhem relation tells us that
for matter in the universe, the entropy density issm = (1/T )(ρ + P ) and the corresponding heat
flux is TsmA = (ρ + P )A. Balancing the two gives us the entropy (or heat) balance condition
TdS/dt = smAT which becomes

H

8πG

dA

dt
= (ρ + P )A . (10)

UsingA = 4π/H2, this gives the result

Ḣ = −4πG(ρ + P ) , (11)

which is the correct Friedman equation. Combining with the energy conservation for matterρda3 =
−Pda3, we immediately find that

3H2

8πG
= ρ + constant= ρ + ρΛ , (12)

whereρΛ is the energy density of the cosmological constant (withPΛ = −ρΛ) which arises as an
integration constant. We thus see that the entropy balance condition correctly reproduces the field
equation — but with an arbitrary cosmological constant arising as an integration constant. This is
obvious from the fact that, treated as a fluid, the entropy density [sΛ = (1/T )(ρΛ + PΛ) = 0]
vanishes for a cosmological constant. Thus one can always add an arbitrary cosmological constant
without affecting the entropy balance.

This is a general feature of the emergent paradigm and has important consequences for the
cosmological constant problem. In the conventional approach, gravity is treated as a field which
couples to theenergy densityof matter. The addition of a cosmological constant — or equivalently,
the shifting of the zero level of the energy — is not a symmetryof the theory and the field equations
(and their solutions) change under such a shift. In the emergent perspective, it is theentropy density
rather than theenergy densitywhich plays a crucial role. When the spacetime responds in a manner
maintaining entropy balance, it responds to the combination ρ + P [or, more generally, toTabn

anb

wherena is a null vector] which vanishes for the cosmological constant. In other words, shifting of
the zero level of the energy is the symmetry of the theory in the emergent perspective and gravity
does not couple to the cosmological constant. Alternatively, one can say that the restoration of this
symmetry allows us to gauge away any cosmological constant,thereby setting it to zero. From this
point of view, the vanishing of the bulk cosmological constant is a direct consequence of symmetry
in the theory. We will see later in Section 4 that the presenceof a small cosmological constant or
dark energy in the universe has to be thought of as a relic fromquantum gravity when this symmetry
is broken. The smallness of the cosmological constant then arises as a consequence of the smallness
of the symmetry breaking.

One can, in fact, reinterpret the field equations inanygravitational theory, inanyspacetime, as
an entropy balance equation by a slightly different procedure involving virtual displacements of local
Rindler horizons (Padmanabhan 2010d). To obtain this result, consider an infinitesimal displacement
of a patch of the local Rindler horizonH in the direction of its normalra, by an infinitesimal proper
distanceǫ. It can be shown that the virtual loss of matter entropy to theoutside observer, because the
horizon has engulfed some matter, is given by

δSm = δE/Tloc = βlocT
ajξarjdVprop . (13)
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Hereβloc = 2πN/κ is the reciprocal of the redshifted local temperature, withN =
√−g00 being

the lapse function, andξa is the approximate Killing vector corresponding to translation in the local
Rindler time coordinate. We next need an appropriate notionof the gravitational entropy which can
be extracted from the definition of the Wald entropy. It is possible to show that the corresponding
change in the gravitational entropy is given by

δSgrav ≡ βlocraJadVprop , (14)

whereJa is known as the Noether current corresponding to the local Killing vectorξa. (Once again
the cosmological constant will not contribute toδSgrav or δSm when evaluated on the horizon.)
For a general gravitational theory with field equations given by 2Ga

b = T a
b (where the left hand

side is a generalization of the Einstein tensorGa
b in general relativity), this current is given by

Ja = 2Ga
b ξb + Lξa whereL is the gravitational Lagrangian. Using this result and evaluating it on

the horizon, we get the gravitational entropy to be

δSgrav ≡ βξaJadVprop = 2βGajξaξjdVprop . (15)

Comparing this with Equation (13), we find that the field equations2Ga
b = T a

b can be reinterpreted
as the entropy balance conditionδSgrav = δSmatt on the null surface. This is possibly the most
direct result showing that gravitational field equations are emergent.

2.5 The Avogadro Number of the Spacetime and Holographic Equipartition

The results described so far show that there is a deep connection between horizon thermodynamics
and gravitational dynamics. The spacetime seems to behave as a hot fluid, with the microscopic
degrees of freedom of the spacetime playing a role analogousto the atoms in a gas. In the long
wavelength limit, one obtains smooth spacetime with a metric, curvature etc., which are analogous
to the variables like pressure, density etc. of a fluid or gas.

If we know the microscopic description (as in the case of the statistical mechanics of a gas), we
can use that knowledge to determine various relationships (like the ideal gas lawP/T = NkB/V )
between the macroscopic variables of the system. But in the context of spacetime we do not know
the nature of microscopic degrees of freedom or the laws which govern their behavior. In the absence
of our knowledge of the relevant statistical mechanics, we have to take a “top-down” approach and
try to determine their properties from the known thermodynamic behavior of the spacetime. Let us
see one important consequence of such an approach.

Given the fact that spacetime appears to be hot, just like a body of gas, we can apply the
Boltzmann paradigm (“If you can heat it, it has microstructure”) and study the nature of the mi-
croscopic degrees of freedom of the spacetime — exactly the way people studied gas dynamics
beforethe atomic structure of matter was understood. There is an interesting test of this paradigm
which, as we shall see, it passes with flying colors.

One key relation in such an approach is the equipartition law∆E = (1/2)kBT∆N relating
the number density∆N of microscopic degrees of freedom we need to store an energy∆E at tem-
peratureT . (This number is closely related to the Avogadro number of a gas, which was known
even before people figured out what it was counting!). If gravity is the thermodynamic limit of the
underlying statistical mechanics, describing the ‘atoms of spacetime,’ we should be able to relateE
andT of a given spacetime and determine the number density of microscopic degrees of freedom of
the spacetime when everything is static. Remarkably enough, we can do this directly from the grav-
itational field equations (Padmanabhan 2004, 2010b,c). Einstein’s equationsimply the equipartition
law between the energyE in a volumeV bounded by an equipotential surface∂V and degrees of
freedom on the surface

E =
1

2

∫

∂V

√
σ d2x

L2
P

~

c

{
Naµnµ

2π

}

≡ 1

2
kB

∫

∂V

dn Tloc , (16)
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wherekBTloc ≡ (~/c) (Naµnµ/2π) is the local acceleration temperature and∆n ≡ √
σ d2x/L2

P

with dA =
√

σ d2x being the proper surface area element. This allows us to readoff the number
density of microscopic degrees of freedom. We see that, unlike normal matter — for which the
microscopic degrees of freedom scale in proportion to the volume and one would have obtained an
integral over the volume of the formdV (dn/dV ) — the degrees of freedom now scale in proportion
to areaof the boundary of the surface. In this sense, gravity is holographic.

In Einstein’s theory, the number density(dn/dA) = 1/L2
P is a constant with every Planck area

contributing a single degree of freedom. The true importance of these results again rests on the fact
that they remain valid for all Lanczos-Lovelock models withcorrect surface density of degrees of
freedom (Padmanabhan 2010c).

Considering the importance of this result for our later discussions, I will provide an elementary
derivation of this result in the Newtonian limit of general relativity, to leading order inc2. Consider a
region of 3-dimensional spaceV bounded by an equipotential surface∂V , containing mass density
ρ(t, x) and producing a Newtonian gravitational fieldg through the Poisson equation−∇ · g ≡
∇2φ = 4πGρ. Integratingρc2 over the regionV and using Gauss’ law, we obtain

E = Mc2 =
c2

4πG

∫

V

dV ∇ · g =
c2

4πG

∫

∂V

dA (−n̂ · g) . (17)

Since∂V is an equipotential surface−n̂ · g = g is the magnitude of the acceleration at any given
point on the surface. Once again, introducing an~ into this classical Newtonian law to bring in the
Davies-Unruh temperaturekBT = (~/c) (g/2π) we obtain the result

E =
c2

4πG

∫

∂V

dAg =

∫

∂V

dA

(G~/c3)

1

2

(
~

c

g

2π

)

=

∫

∂V

dA

(G~/c3)

(
1

2
kBT

)

, (18)

which is exactly the Newtonian limit of the holographic equipartition law in Equation (16).
In the still simpler context of spherical symmetry, the integration overdA becomes multipli-

cation by4πR2 whereR is the radius of the equipotential surface under consideration and we can
write the equipartition law as

Nbulk = Nsur , (19)

where

Nbulk ≡ E

(1/2)kBT
; Nsur =

4πR2

L2
P

; E = M(< R)c2; kBT =
~

c

GM

2πR2
. (20)

In this form, we can think ofNbulk ≡ [E/(1/2)kBT ] as the degrees of freedom of the matter
residing in the bulk and Equation (20) can be thought of as providing the equality between the
degrees of freedom in the bulk and the degrees of freedom on the boundary surface. We will call this
holographic equipartition, which among other things, implies a quantization condition on the bulk
energy contained inside any equipotential surface.

In the general relativistic case, the source of gravity is proportional toρc2 +3P rather thanρ. In
the non-relativistic limit,ρc2 will dominate overP and the equipartition lawE = (1/2)NsurkBT
relates the rest mass energyMc2 to the surface degrees of freedomNsur. If we instead decide to use
the normal kinetic energyEkin = (1/2)Mv2 of the system (wherev = (GM/R)1/2 is the typical
velocity determined through, say, the virial theorem2Ekin + Ugrav = 0), then we have the result

Ekin =
v2

2c2
E =

v2

2c2

(
1

2
NsurkBT

)

≡ 1

2
NeffkBT , (21)

where

Neff ≡ v2

2c2
Nsur = 2π

MRc

~
(22)
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can be thought of as theeffectivenumber of degrees of freedom which contributes to holographic
equipartition with the kinetic energy of the self-gravitating system. In virial equilibrium, this ki-
netic energy is essentiallyEkin = (1/2)|Ug| and hence the gravitational potential energy inside an
equipotential surface is also determined byNeff by

|Ugrav| =
1

8πG

∫

V

dV |∇φ|2 = 2Ekin = NeffkBT = 2π
MRc

~
kBT . (23)

We thus find that, for a non-relativistic Newtonian system, the rest mass energy corresponds to
Nsur ∝ (R2/L2

P ) of surface degrees of freedom in holographic equipartitionwhile the kinetic energy
and gravitational potential energy corresponds to the number of degrees of freedomNeff ∝ MR,
which is smaller by a factorv2/c2. In the case of a black hole,M ∝ R, makingMR ∝ R2 leading
to the equality of all these expressions. We will see later that the difference(Nsur − Nbulk) plays a
crucial role in cosmology and I will discuss its relevance for Newtonian gravitational dynamics in a
future publication.

2.6 Gravitational Action as Free Energy of Spacetime

In obtaining the previous results we have used the equationsof motion of classical gravity and hence
we can think of these results as being “on-shell.” In the standard approach one obtains the field
equations by extremizing a suitable action functional withrespect to the metric tensor. Because the
field equationsallow a thermodynamic interpretation, one would suspect that theaction functional
of any gravitational theory must also encode this fact in itsstructure.

This is indeed true. There are several peculiar features exhibited by the action functional in a
very wide class of gravitational theories, which make it stand apart from other field theories like
gauge theories. In the conventional approach, there is no simple interpretation for these features and
they have to be taken as some algebraic accidents. On the other hand, these features find a natural
explanation within the emergent paradigm and I will briefly discuss a couple of them.

One of the key features of the action functional describing Einstein’s general relativity is that
it contains a bulk term (which is integrated over a spacetimevolume) and a surface term (which
is integrated over the boundary of the spacetime volume). Toobtain the field equations, one either
has to cancel out the variations in the surface term by addinga suitable counter-term (Gibbons &
Hawking 1977; York 1988) or use special boundary conditions. In either case, the field equations
arise essentially from the variation of the bulk term with the boundary term of the action playing
absolutely no role.

What is remarkable is that, if we now evaluate the boundary term on the surface of the horizon
which occurs in any solution of the field equation, we obtain the entropy of the horizon! This raises
the question: How can the boundary term know anything about the bulk term (and the properties
of the solution obtained by varying the bulk term), especially because we threw away the surface
term right at the beginning? The reason for this peculiar feature has to do with a special relationship
between the bulk and the boundary terms leading to the duplication of information between the bulk
and the boundary. It can be shown that, not only in general relativity but in all Lanczos-Lovelock
models, the bulk and surface terms in the Lagrangian are related by

√−gLsur = −∂a

(

gij
δ
√−gLbulk

δ(∂agij)

)

. (24)

More importantly, it is possible to provide an interpretation of gravitational action as the free-
energy of the spacetime for static metrics which possess a horizon. The boundary term of the action
gives the entropy while the bulk term gives the energy with their sum representing the free-energy of
the spacetime. As an illustration of this result, let us consider the metrics of the form in Equation (3)
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for which the scalar curvature is given by the expression

R =
1

r2

d

dr
(r2f ′) − 2

r2

d

dr
[r(1 − f)] . (25)

Since this is a total divergence, the integral ofR over a region of space bounded by the radiusr
will receive contribution only from the boundary. Taking the boundary to be the horizon with radius
r = a (wheref(a) = 0) and temperatureT = f ′(a)/4π, one can easily show that the Lagrangian
becomes

L =
1

16πG

∫ a

4πr2 dr R = (TS − E) , (26)

whereE = (a/2G) andS = (πa2/G) stand for the usual energy and entropy of such spacetimes,
but are now defined purely locally near the surfacer = a. (Note that, in the integral in Eq. (26) we
have not specified the second limit of integration and the contribution is evaluated essentially from
the surface integral on the horizon. In this sense, it is purely local.) This shows that the Lagrangian in
this case actually corresponds to the free-energy of the spacetime, even at the level of action without
using the field equations. Remarkably enough, this result also generalizes to all Lanczos-Lovelock
models with correct expressions forS andE (Kolekar et al. 2012).

This result suggests that, in using the standard action principle in gravitational theories, we are
actually extremizing the free-energy of the spacetime, treated as a functional of the metric, and raises
the possibility that one could write a more direct expression for a thermodynamic functional of the
spacetime (like the entropy density, free-energy density etc. associated with local null surfaces) and
extremize it to obtain the field equations. This program actually works and I will now briefly describe
how this can be achieved.

3 FIELD EQUATIONS FROM A THERMODYNAMIC EXTREMUM PRINCIPLE

In the previous sections, we examined some of the features ofthe gravitational theories and showed
that they naturally lead to an alternative thermodynamic interpretation. For example, the results in
Section 2.5 were obtained by starting from the field equations of the theory, establishing that they
can be expressed as a law of equipartition and thus determining the density of microscopic degrees
of freedom. But if these ideas are correct, it must be possible to treat spacetime as a thermodynamic
system endowed with certain thermodynamic potentials. Then extremizing these potentials with re-
spect to suitable variables should lead to the field equations of gravity, rather than us starting from
the field equations and obtaining a thermodynamic interpretation. We will now see how this can be
achieved.

Since any null surface can be thought of as a local Rindler horizon to a suitable class of ob-
servers, any deformation in a local patch of a null surface will change the amount of information
accessible to these observers. It follows that such an observer will associate a certain amount of
entropy density with the deformation of the null patch with normalna. So extremizing the sum of
gravitational and matter entropy associated withall null vector fieldssimultaneously, could lead to a
consistency condition on the background metric which we interpret as the gravitational field equation
(Padmanabhan & Paranjape 2007; Padmanabhan 2008).

This idea is a natural extension of the procedure we use to determine the influence of gravity
on matter in the spacetime. If we introduce freely falling observers around all events in a spacetime
and demand that laws of special relativity should hold for all these observerssimultaneously, we
can obtain the usual, generally covariant, versions of the equations of motion obeyed by matter in a
background spacetime. That is, the existence of freely falling observers around each event is space-
time can be exploited to determine the kinematics of gravity(‘how gravity makes matter move’).
To determine thedynamicsof gravity (‘how matter makes spacetime curve’), we use the same strat-
egy but now by filling the spacetime with local Rindler observers. Demanding that a local entropy
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functional associated with every null vector in the spacetime should be an extremum, we will again
obtain a set of equations that will fix the gravitational dynamics.

There is no a priori reason for such a program to succeedand hence it is yet another success of
the emergent perspective that one can actually achieve this. Let us associate with every null vector
field na(x) in the spacetime a thermodynamic potentialℑ(na) (say, entropy) which is given by

ℑ[na] = ℑgrav[n
a] + ℑmatt[n

a] ≡ −
(
4P cd

ab∇cn
a∇dn

b − Tabn
anb

)
. (27)

The quadratic form is suggested by analogy with elasticity and P cd
ab andTab are two tensors which

play the role analogous to elastic constants in the theory ofelastic deformations. If we extremize this
expression with respect tona, we will normally get a differential equation forna involving its second
derivatives. In our case, we instead demand that the extremum holds for allna, thereby constraining
the backgroundgeometry. Further, a completely local description of null-surface thermodynamics
demands that the Euler derivative of the functionalℑ(na) should only be a functional ofna and must
not contain any derivatives ofna.

It is indeed possible to satisfy all these conditions by the following choice: We takeP cd
ab to

be a tensor having the symmetries of curvature tensor and being divergence-free in all its indices;
we takeTab to be a divergence-free symmetric tensor. The conditions∇aP ab

cd = 0, ∇aT a
b = 0

can be thought of as describing the notion of “constancy” of elastic constants of spacetime. (Once
we determine the field equations we can read offTab as the matter energy-momentum tensor; the
notation anticipates this result.) It can be shown that anyP abcd with the assigned properties can
be expressed asP cd

ab = ∂L/∂Rab
cd whereL is the Lagrangian in the Lanczos-Lovelock models and

Rabcd is the curvature tensor (Padmanabhan 2010a). This choice also ensures that the resulting field
equations do not contain any derivatives of the metric of higher order than second.

It is now straightforward to work out the extremum conditionδℑ/δna = 0 for the null vectors
na with the conditionnana = 0 imposed by adding a Lagrange multiplier functionλ(x)gabn

anb to
ℑ[na]. We obtain (on using the generalized Bianchi identity and the condition∇aT a

b = 0) the result
(Padmanabhan & Paranjape 2007; Padmanabhan 2008)

Ga
b = Ra

b − 1

2
δa
b L =

1

2
T a

b + Λδa
b ; Ra

b ≡ P aijk Rbijk , (28)

whereΛ is an integration constant. These are precisely the gravitational field equations for a theory
with Lanczos-Lovelock LagrangianL with an undetermined cosmological constantΛ which arises
as an integration constant. The simplest of the Lanczos-Lovelock models is, of course, Einstein’s
theory characterized byL ∝ R andP ab

cd ∝ δa
c δb

d − δa
dδb

c. In this case,Ra
b reduces to a Ricci tensor

andGa
b reduces to the Einstein’s tensor, and we recover Einstein’sequations from the thermodynamic

perspective.
If we integrate the densityℑ[na] over a region of space or a surface (depending on the context),

we will obtain the relevant thermodynamical potential. Thecontribution from the matter sector is
proportional toTabn

anb which will pick out the contribution(ρ + P ) for an ideal fluid, viz. the
enthalpy density. On multiplication byβ = 1/T , this becomes the entropy density because of the
Gibbs-Duhem relation. When the multiplication byβ arises due to integration over(0, β) of the time
coordinate (in the Euclidean version of the local Rindler frame), the corresponding potential can be
interpreted as entropy and the integral over space coordinates alone can be interpreted as rate of
generation of entropy.

We again note that the procedure links gravitational dynamics toTabn
anb ∝ (ρ + P ), which

vanishes for the cosmological constant. Thus, in this approach we again restore the symmetry of the
theory with respect to changing the zero level of the energy.In other words, one can gauge away
the bulk cosmological constant and any residual cosmological constant must be thought of as a relic
related to the weak breaking of this symmetry.
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4 EMERGENCE OF COSMIC SPACE

In the discussion of emergent paradigm so far, we argued thatthefield equations are emergentwhile
assuming the existence of a spacetime manifold, metric, curvature etc. as given structures. In that
case, we interpret the field equations as certain consistency conditions obeyed by the background
spacetime.

A more ambitious project will be to give meaning to the concept that the “spacetime itself is an
emergent structure.” The idea here is to build up the spacetime from some underlying pre-geometric
variables, along the lines we obtain macroscopic variableslike density, temperature etc. from atomic
properties of matter. While this appears to be an attractiveidea, it is not easy to give it a rigorous
mathematical expression consistent with what we already know about space and time. In attempting
this, we run into (at least) two key difficulties that need to be satisfactorily addressed.

The first issue has to do with the role played by time, which is quite different from the role
played by space in the description of physics. It is conceptually very difficult to treat time as being
emergent from some pre-geometric variable if it has to play the standard role of a parameter that
describes the evolution of the dynamical variables. It is seems necessary to treat time differently
from space, which runs counter to the spirit of general covariance.

The second issue has to do with space aroundfinite gravitating systems, like the Earth, Sun,
Milky Way, etc. It seems quite incorrect to argue that space is emergent around suchfinitegravitating
systems because direct experience tells us that space around them is pre-existing. So any emergent
description of the gravitational fields offinite systemshas to work with space as a given entity —
along the lines we described in the previous sections. Thus,when we deal withfinite gravitating
systems, without assigning any special status to a time variable, it seems impossible to come up with
a conceptually consistent formulation for the idea that “spacetime itself is an emergent structure.”

What is remarkable is the fact that both these difficulties disappear (Padmanabhan 2012) when
we consider spacetime in the cosmological context! Observations show that there is indeed a special
choice of time variable available in our universe, which is the proper time of the geodesic observers
who see the cosmic microwave background radiation as homogeneous and isotropic. This fact justi-
fies treating time differently from space in (andonly in) the context of cosmology. Further, the spatial
expansion of the universe can certainly be thought of as equivalent to the emergence of space as the
cosmic time flows forward. All these suggest that we may be able to make concrete the idea that
cosmic space is emergent as cosmic time progressesin a well defined manner in the context of cos-
mology. This is indeed the case and it turns out that these ideas can be developed in a self-consistent
manner.

4.1 What Makes Space Emerge?

Once we assume that the expansion of the universe is equivalent to emergence of space, we need to
ask why this happens. In the more conservative approach described in earlier sections, the dynamics
of spacetime are governed by gravitational field equations and we can obtain the expanding universe
as a special solution to these equations. But when we want to treat space itself as being emergent,
one cannot start with gravitational field equations; instead we need to work with something more
fundamental.

The degrees of freedom are the basic entities in physics and the holographic principle suggests
a deep relationship between the number of degrees of freedomresiding in a bulk region of space
and the number of degrees of freedom on the boundary of this region. To seewhy cosmic space
emerges — or, equivalently, why the universe is expanding — we will use a specific version of the
holographic principle. To motivate this use, let us consider a pure de Sitter universe with a Hubble
constantH . Such a universe obeys the holographic principle in the form

Nsur = Nbulk. (29)
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HereNsur is the number of degrees of freedom attributed to a sphericalsurface of the Hubble radius
H−1, and is given by

Nsur =
4π

L2
P H2

, (30)

if we attribute one degree of freedom per Planck area of the surface.Nbulk = |E|/[(1/2)kBT ] is
the effectivenumber of degrees of freedom which are in equipartition at the horizon temperature
kBT = (H/2π) with |E| being the Komar energy|(ρ + 3P )|V contained inside the Hubble volume
V = (4π/3H3). So

Nbulk = − E

(1/2)kBT
= −2(ρ + 3P )V

kBT
. (31)

For a pure de Sitter universe withP = −ρ, our Equation (29) reduces toH2 = 8πL2
P ρ/3 which is

the standard result. Note that(ρ + 3P ) is the proper Komar energy density whileV = 4π/3H3 is
thepropervolume of the Hubble sphere. The correspondingco-movingexpressions will differ bya3

factors in both, which will cancel out, leading to the same expression forE.
This result is consistent with the equipartition law described earlier in Section 2.5 in which

we obtained the result|E| = (1/2)NsurkBT [which is, of course, the same as Equation (29)]as
a consequence ofgravitational field equations in static spacetimes. Here, we do not assume any
field equations but will consider the relation|E|/(1/2)kBT = Nsur as fundamental. Equation (29)
represents theholographic equipartitionand relates the effective degrees of freedom residing in the
bulk, determined by the equipartition condition, to the degrees of freedom on the boundary surface.
The dynamics of the pure de Sitter universe can thus be obtained directly from the holographic
equipartition condition, taken as the starting point.

Our universe, of course, is not a pure de Sitter one, but is evolving towards an asymptotically de
Sitter phase. It is therefore natural to think of the currentaccelerated expansion of the universe as an
evolution towards holographic equipartition. Treating the expansion of the universe as conceptually
equivalent to the emergence of space, we conclude that the emergence of space itself is being driven
towards holographic equipartition. Then we expect the law governing the emergence of space must
relate the availability of greater and greater volumes of space to the departure from holographic
equipartition given by the difference(Nsur − Nbulk). The simplest (and the most natural) form of
such a law will be

∆V = ∆t(Nsur − Nbulk) , (32)

whereV is the Hubble volume in Planck units andt is the cosmic time in Planck units. Our arguments
suggest that(∆V/∆t) will be some function of(Nsur−Nbulk) which vanishes when the latter does.
Then, Equation (32) represents the Taylor series expansionof this function truncated at the first
order. We will now elevate this relation to the status of a postulate which governs the emergence
of the space (or, equivalently, the expansion of the universe) and show that it is equivalent to the
standard Friedmann equation.

Reintroducing the Planck scale and setting(∆V/∆t) = dV/dt, this equation becomes

dV

dt
= L2

P (Nsur − Nbulk) . (33)

SubstitutingV = (4π/3H3), Nsur = (4π/L2
P H2), kBT = H/2π and usingNbulk in

Equation (31), we find that the left hand side of Equation (33)is proportional todV/dt ∝ (−Ḣ/H4)
while the first term on the right hand side givesNsur ∝ (1/H2). Combining these two terms and
usingḢ + H2 = ä/a, it is easy to show that this equation simplifies to the relation

ä

a
= −4πL2

P

3
(ρ + 3P ) , (34)
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Fig. 1 This figure illustrates the ideas described in this section schematically. The shaded region
represents the cosmic space that has already emerged by the time t, along with (a) the surface de-
grees of freedom (Nsur) which reside on the surface of the Hubble sphere and (b) the bulk degrees
of freedom (Nbulk) that have reached equipartition with the Hubble temperature kBT = H/2π. At
this moment in time, the universe has not yet achieved holographic equipartition. The holographic
discrepancy (Nsur − ǫNbulk) between these two drives the further emergence of cosmic space, mea-
sured by the increase in the volume of the Hubble sphere with respect to cosmic time, as indicated by
the equation in the figure. Remarkably enough, this equationcorrectly reproduces the entire cosmic
evolution.

which is the standard dynamical equation for the Friedmann model. The condition∇aT a
b = 0

for matter gives the standard resultd(ρa3) = −Pda3. Using this, Equation (34) and the de Sitter
boundary condition at late times, one recovers the standardaccelerating universe scenario. Thus, we
can describe the evolution of the accelerating universe entirely in terms of the concept of holographic
equipartition.

Let us next consider the full evolution of the universe, consisting of both the decelerating and
accelerating phases. The definition ofNbulk in Equation (31) makes sense only in the accelerating
phase of the universe where(ρ + 3P ) < 0 so as to ensureNbulk > 0. For normal matter, we would
like to use Equation (31) without the negative sign. This is easily taken care of by using appropriate
signs for the two different cases and writing

dV

dt
= L2

P (Nsur − ǫNbulk) , (35)

with the definition

Nbulk = −ǫ
2(ρ + 3P )V

kBT
. (36)

Hereǫ = +1 if (ρ + 3P ) < 0 andǫ = −1 if (ρ + 3P ) > 0. [We use the sign convention such that
we maintain the form of Equation (32) for the accelerating phase of the universe. One could have,
of course, used the opposite convention forǫ and omitted the minus sign in Equation (36).] Because
only the combination+ǫ2(ρ + 3P ) ≡ (ρ + 3P ) occurs in(dV/dt), the derivation of Equation (34)
remains unaffected and we also maintainNbulk > 0 in all situations. (See Fig. 1.)
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Treating the Hubble radiusH−1(t) as the boundary of cosmic space should not be confused with
the causal limitation imposed by light propagation in the universe. If the Hubble radius at timet1, say,
isH−1(t1), we assume that space of sizeH−1(t1) can be thought of as having emerged for allt ≤ t1.
This is in spite of the fact that, at an earlier timet < t1, the Hubble radiusH−1(t) could have been
significantly smaller. This is necessary for consistent interpretation of cosmological observations.
For example, CMBR observations allow us to probe, on thez = zrec ≈ 103 surface, length scales
which are larger than the Hubble radiusH−1(trec) atz = zrec. So, as far as observations made today
are concerned, we should assume that the size of the space that has emerged is the present Hubble
radius,H−1

0 , rather than the instantaneous Hubble radius corresponding to the redshift of the epoch
from which photons are received. In this sense, the emergence of space from pre-geometric variables
may seem to be a causal, but it is completely consistent with what we know about the universe today.

4.2 Holographic Equipartition demands a Cosmological Constant

We can understand Equation (35) better if we separate out thematter component, which causes
deceleration, from the dark energy which causes acceleration. For the sake of simplicity, we will
assume that the universe has just two components (pressureless matter and dark energy) with(ρ +
3P ) > 0 for matter and(ρ + 3P ) < 0 for dark energy. In that case, Equation (35) can be expressed
in an equivalent form as

dV

dt
= L2

P (Nsur + Nm − Nde) , (37)

where all the three degrees of freedom,Nsur, Nm, andNde, are positive (as they should be) with
(Nm − Nde) = (2V/kBT )(ρ + 3P )tot. We now see that the condition of holographic equipartition
with the emergence of space decreasing (dV/dt → 0) asymptotically, can be satisfied only if we have
a component in the universe with(ρ + 3P ) < 0. In other words,the existence of a cosmological
constant in the universe is required for asymptotic holographic equipartition.While these arguments,
of course, cannot determine the value of the cosmological constant, the demand of holographic
equipartition makes a strong case for its existence. This ismore than what any other model has
achieved2.

Given a fundamental area scale,L2
P , it makes sense to count the surface degrees of freedom

asA/L2
P whereA is the area of the surface because we do not expect bulk matterto contribute to

surfacedegrees of freedom,Nsur. The really non-trivial task is to determine the appropriate measure
for the bulk degrees of freedom which must depend on the matter variables residing in the bulk.
(It is this necessary dependence on the matter variables which prevents us from counting the bulk
degrees of freedom as a trivial expressionV/L3

P .) It is in this context that the idea of equipartition
comes to our aid. When the surface is endowed with a horizon temperatureT , we can treat the bulk
degrees of freedom which havealready emerged— along with the space — as though they are a
microwave oven with the temperature set to the surface value. Becausethesedegrees of freedom
account for an energyE, it follows thatE/(1/2)kBT is indeed the correct count foreffectiveNbulk.
This temperatureT andNbulk should not be confused with the normal kinetic temperature of matter
in the bulk and the standard degrees of freedom we associate with matter. It is more appropriate to
think of these degrees of freedom as those which have alreadyemerged, along with space, from some
pre-geometric variables. The emergence of cosmic space is driven by the holographic discrepancy
(Nsur + Nm − Nde) between the surface and bulk degrees of freedom whereNm is contributed by
normal matter with(ρ + 3P ) > 0 andNde is contributed by the cosmological constant with all the
degrees of freedom being counted as positive. In the absenceof Nde, this expression can never be
zero and holographic equipartition cannot be achieved. In the presence of the cosmological constant,

2 We are reminded of the original motivation of Einstein for introducing a cosmological constant so that the universe
will be static without expansion. Here we interpret the static condition as the constancy of Hubble volume at late time with
holographic equipartition determining its asymptotic value.
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Fig. 2 The evolution of the three degrees of freedom,Nsur (blue unbroken line),Nm (red broken
line), andNde (green broken line) in a universe with pressureless matter (with Ωm = 0.3) and dark
energy (treated as a cosmological constant withΩΛ = 0.7) plotted as a function of expansion factor
a. The y-axis is normalized toN0 ≡ Nsur[z = 0]; the asymptotic value ofNsur is N0/ΩΛ. In
the early phase of the universe,Nm ≫ Nde but Nm < Nsur so that the holographic discrepancy,
contributed byNsur − Nm, drives the expansion. The matter contributionNm reaches a maximum
around(1 + z) = (ΩΛ/Ωm)1/3 and dies down later when the universe begins to accelerate. The
Nde then catches up withNsur and, asa → ∞, we haveNsur/Nde → 1 leading to holographic
equipartition. It is obvious that matter plays a rather insignificant role in the overall scheme of things!
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Fig. 3 Same as Fig. 2 but plotted on a Log-Log scale for clarity. The thick blue curve representsNsur,
the broken red curve denotesNm and the broken green curve isNde. Early on,Nm dominates over
Nde and the emergence of space is driven by (Nsur −Nm). As seen clearly in the picture, whenNde

starts dominating overNm at late times, theNm rapidly decreases and holographic equipartition is
soon achieved betweenNsur andNde.

the emergence of space will soon lead toNde dominating overNm when the universe undergoes
accelerated expansion. Asymptotically,Nde will approachNsur and the rate of emergence of space,
dV/dt, will tend to zero allowing the cosmos to attain holographicequilibrium.

4.3 New Features of the Holographic Equipartition Approach

The study of the evolution of the universe using Equation (32) is conceptually quite different from
treating the expanding universe as a specific solution of gravitational field equations. The key new
aspects are the following:
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– To begin with, the utter simplicity of Equation (32) is striking and it is remarkable that the
standard expansion of the universe can be reinterpreted as an evolution towards holographic
equipartition.If the underlying ideas are not correct, we need to explain why Equation (32)
holds in our universe!This will become yet another of the algebraic accidents in gravity, which
has no explanation in the standard approach.
The simplicity of Equation (32) itself suggests proper choices for various physical quantities.
For example, we have assumed that the relevant temperature for obtainingNbulk is given by
T = H/2π even whenH is time dependent. There is some amount of controversy in thelit-
erature regarding the correct choice for this temperature.One can obtain equations similar to
Equation (32) with other definitions of the temperature but none of the other choices lead to
equations with the compelling naturalness of Equation (32). The same is true regarding the vol-
ume elementV , which we have taken as the Hubble volume; other choices leadto equations
which have no simple interpretation.

– Second, Equation (32) is parameter-free when expressed inPlanck units and can be given a
simple combinatorial interpretation. If we think of time evolution in steps of Planck time (t =
tn, n = 1, 2, ...) and the volume of the space which has emerged by thenth step asVn, then
Equation (32) tells us that

Vn+1 = Vn + (Nsur − ǫNbulk), (38)

which is just an algorithmic procedure in integers! This is reminiscent of ideas in which one
thinks of cosmic expansion itself as an algorithmic computation. When we understand the pre-
geometric variables better, we may be able to interpret Equation (32) purely in combinatorial
terms. If the energy density measured by an observer with four-velocity ua is ρ ≡ Tabu

aub,
then the number of elementary computing operations in a volume ∆V during a time interval
∆t is essentiallyE∆t/~ = ρ∆V ∆t/~. Relating this to the area of the bounding surfaces of
∆V in Planck units will provide us with a combinatorial versionof the approach described
here. In such an approach, curvature of spacetime will be related toTab essentially through the
geometric relation (see, e.g., Loveridge 2004) between thearea of a bounding surface and the
Gaussian curvature of 2-dimensional slices around a given event.

– An immediate consequence of the discretized version of Equation (38) is that we expect signif-
icant departures from conventional evolution when the relevant degrees of freedom are of the
order of unity. Well-motivated modifications of this equation will help us to study the evolution
of the universe close to the big bang in a quantum cosmological setting when the degrees of
freedom are of order unity. However, we have now bypassed theusual complications related to
the time coordinate. Postulating suitable corrections to the “bit dynamics” in Equation (38) may
provide an alternate way of tackling the singularity problem of classical cosmology.

– Notice that, as stated, our fundamental equation, Equation (33), is first order in time and links
the direction of cosmic time with the expansion of the Hubblevolume. Algebraically, of course,
we can achieve the same objective by writing the Friedman equation as an evolution equation
for H(t), in the form of, sayḢ = −4πL2

P (ρ + P ). However the current idea — involving the
emergence of space and associated degrees of freedom — makesit natural to have “an arrow
of time.” While technically the time reversal invariance ofthe equations is maintained if we
postulateH(−t) = −H(t), this will requireV → −V under time reversal. Therefore, perhaps
one has greater hope of discussing the arrow of time in cosmology with this approach rather
than with the conventional one.

– There is an alternative interpretation possible for Equation (33) in which the contribution from
the surface degrees of freedom is treated as an effective bulk contribution. To motivate this,
consider a 3-dimensional region of sizeL with a boundary having an area proportional toL2. We
divide this region intoN microscopic cells of sizeLP and associate with each cell a Poissonian
fluctuation in energyEP ≈ 1/LP . Then the mean square fluctuation of energy in this region
will be (∆E)2 ≈ NL−2

P leading to an energy densityρ = ∆E/L3 =
√

N/LP L3. Normally
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one would have takenN = Nvol ≈ (L/LP )3, leading to

ρ =

√
Nvol

LP L3
=

1

L4
P

(
LP

L

)3/2

(bulk fluctuations). (39)

On the other hand, for holographic degrees of freedom which reside in the surface of the region,
N = Nsur ≈ (L/LP )2 and the energy density now becomes

ρ =

√
Nsur

LP L3
=

1

L4
P

(
LP

L

)2

=
1

L2
P L2

(surface fluctuations). (40)

If we takeL ≈ H−1, the surface fluctuations in Equation (40) give precisely the geometric mean√
ρUV ρIR between the UV energy densityρUV ≈ L−4

P and the IR energy densityρIR ≈ L−4,
which is indeed the energy density associated with the cosmological constant. By contrast, the
bulk fluctuationslead to an energy density which is larger by a factor(L/LP )1/2. Also note
that if — instead of considering the fluctuations in energy — we coherently add them, we will
getN/LP L3 which is1/L4

P for the bulk and(1/LP )4(LP /L) for the surface. These different
possibilities lead to the hierarchy

ρ =
1

L4
P

×
[

1,

(
LP

L

)

,

(
LP

L

)3/2

,

(
LP

L

)2

,

(
LP

L

)4

. . .

]

(41)

in which the first term corresponds to coherently adding energies(1/LP ) per cell withNvol =
(L/LP )3 cells; the second is obtained by coherently adding energies(1/LP ) per cell with
Nsur = (L/LP )2 cells; the third fromfluctuationsin energy and usingNvol cells; the fourth
arises from energy fluctuations withNsur cells; and finally the last result corresponds to the
thermal energy of the de Sitter space if we takeL ≈ H−1 making further terms irrelevant due to
this vacuum noise. We find that the viable possibility to describe our universe is obtained only
if we assume that (a) the number of active degrees of freedom in a region of sizeL scales as
Nsur = (L/LP )2 and (b) It is thefluctuationsin the energy that contribute to the cosmological
constant and the bulk energy does not gravitate.

4.4 Holographic Equipartition Law in a More General Context

It is interesting to compare the holographic equipartitiondiscussed in this section with the equipar-
tition law discussed earlier in Section 2.5 for static spacetimes. Both of them agree in the case of
a de Sitter universe since the dS line element can be expressed both in static form and in the stan-
dard Friedmann form witha(t) ∝ exp Ht. But in a general spacetime, the motion of the observer
becomes mixed up with the intrinsic time dependence of the geometry.

One possible way of studying such a situation is as follows: Consider a spacetime in which we
have introduced the usual(1 + 3) split with the normals tot = constant surfaces beingua which we
can take to be the four-velocities of a congruence of observers. Letai ≡ uj∇ju

i be the acceleration
of the congruence andKij = −∇iuj − uiaj be the extrinsic curvature tensor. We then have the
identity

Rabu
aub = ∇i(Kui + ai) + K2 − KabK

ab = ua∇aK + ∇ia
i − KijK

ij . (42)

When the spacetime is static, we can choose a natural coordinate system withKij = 0 so that
the above equation reduces to∇ia

i = Rabu
aub. Using the field equations to writeRabu

aub =
8πT̄abu

aub and integrating∇ia
i = 8πT̄abu

aub over a region of space, we can immediately obtain
the equipartition law discussed in Section 2.5.
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On the other hand, in the Friedmann universe, the natural observers are the geodesic observers
for whomai = 0. For the geodesic observers, the above relation reduces to

ua∇aK ≡ K̇ = KijK
ij + 8πT̄abu

aub . (43)

Further, in the Friedmann universe,Kα
β = −Hδα

β giving K̇ = −3Ḣ; KijK
ij = 3H2. Using these

values and dividing Equation (43) throughout byH4, it is easy to reduce it to Equation (33). We see
that the surface degrees of freedom actually arises from a term of the kindKijK

ij/K4, when one
interprets1/K as the relevant radius.

In a general spacetime, if we choose a local gauge withNα = 0, ui = −Nδ0
i , then Equation (42)

can be reduced to the form

Dµ(Naµ) = 4πρKomar + N(Kα
β Kβ

α − K̇) , (44)

where
ρKomar ≡ 2NT̄abu

aub; K̇ ≡ dK/dτ ≡ ua∇aK . (45)

Integrating this relation over a region of space, we can express the departure from equipartition, as
seen by observers following this congruence, as

E − 1

2

∫

∂V

kBTlocdn =
1

4π

∫

V

d3x
√

hN(K̇ − Kα
β Kβ

α) . (46)

This is an exact equation which can be used to study the evolution of the geometry in terms of the
departure from equipartition for both finite and cosmological systems. (I will discuss this in detail in
a future publication). It should, however, be stressed that— for reasons described in the beginning
of this section — the idea of emergence of space is untenable in the context of finite gravitating
systems treated in isolation. Such systems are probably best described by the ideas presented in the
earlier sections of this review.

4.5 Holographic Evolution and Cosmic Structure Formation

One situation in which we need to handle both the dynamics of finite gravitating systems as well
as emergence of space is when we study structure formation inthe universe using these ideas.
It is quite straightforward to work out perturbation theoryin a specific gauge using a hybrid of
Newtonian gravity at small scales and general relativity todescribe the background expansion.
Because Equation (37) is identical to Equation (34), we basically reproduce the standard results,
except for the following feature.

The holographic evolution suggests that the degrees of freedom in the universe, which have al-
ready become emergent in the cosmos (from the pre-geometricvariables) at any given time, behave
as though there is an ambient temperaturekBT = ~H/2π. (This temperature, of course, should
not be confused with the normal kinetic temperature of matter.) So the dynamics of such degrees
of freedom should be studied in a canonical ensemble at this temperature and we will expect to see
thermal fluctuations at the temperaturekBT = ~H/2π to be imprinted on any sub-system which
has achieved equipartition. This effect will lead to some corrections to the cosmological perturba-
tion theory in the late universe when we do a thermal averaging. One will be led to equations like
Equation (21) and Equation (23) withkBT ∝ H so that we get, for example,〈Ugrav〉 ∝ MRH . All
this is similar in spirit to the thermal fluctuations at the deSitter temperature leaving their imprint
on the density fluctuations generated during inflation.

The formation of structures in an expanding universe also defines an arrow of time within con-
ventional cosmology. Given the fact that Einstein’s equations are invariant undert → −t, this arrow
also arises due to the specific choice of initial conditions.If we succeed in understanding the struc-
ture formation from a thermodynamic perspective, there is avery good chance that we can link the
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arrow of time in structure formation to the cosmological arrow of time determined by background
expansion.

It should be stressed that these thermal effects arein addition to (and not instead of)any imprint
of the current Hubble constantH0 on the cosmic structures due to standard processes of structure
formation. Various aspects of structure formation (e.g., formation of dark matter halos, cooling of
baryonic gas, formation of galaxies with flat rotation curves etc.) in the standardΛCDM cosmology
depend onH0 in different ways. One can take any such standard result in cosmic structure formation
theory which depends onH0, and rewrite it in terms of the horizon temperature usingH = 2π(kBT ),
and present it in an emergent/thermodynamic language. Suchan exercise, of course, does not add
anything to our understanding! One instructive example is the preferred acceleration scalea0 = cH0

which gets imprinted (see e.g., Kaplinghat & Turner 2002; Lynden-Bell 2011) on galactic scale
structures. (I chose this example because this is sometimespresented as evidence for MOND, which
is unwarranted.) It is therefore important to distinguish between (a) trivial rewriting standard results
in terms of the horizon temperature throughH = 2π(kBT ), and (b) deriving genuine effects which
arise due to the emergence of cosmic space and holographic equipartition.

5 CONNECTING THE TWO DE SITTER PHASES OF OUR UNIVERSE

The fact that an equation like Equation (37) can describe theevolution of the universe suggests that
there must exist a deep relationship between the matter degrees of freedom and dark energy degrees
of freedom. In the correct theory of quantum gravity, we expect the matter degrees of freedom to
emerge along with the space. But, even in the absence of such afundamental theory, we can use our
current knowledge about the universe to draw some curious conclusions. I will now discuss some
of these results which provide a link between the inflationary phase in the early universe and the
current phase of accelerated expansion.

5.1 Varieties of Universes

Since we have identified the increase in the Hubble volumeV = (4π/3)d3
H wheredH ≡ H−1 =

(ȧ/a)−1 with the emergence of space, let us focus on the behaviour of this length scale in our
universe. One can broadly identify three kinds of universes(see Figs. 4 and 5) based on the behavior
of dH(t).

The first type is a universe without late time accelerated expansion but with an early inflationary
phase shown in the left diagram of Figure 4. The red thick linerepresentsdH which is nearly constant
during the inflationary phase and grows steeper thana, after the end of inflation (a > aF ), in the
radiation and matter dominated phases. The quantum fluctuations generated during the inflationary
phase — which act as seeds of structure formation in the universe — can be characterized by their
physical wavelength. Consider a perturbation at some givenwavelength scale which is stretched
with the expansion of the universe asλ ∝ a(t) (line marked AB in left diagram of Fig. 4). During
the inflationary phase, the Hubble radius remains constant while the wavelength increases, so that
the perturbation will leave the Hubble radius at the point A in Figure 4. In the radiation dominated
phase, the Hubble radius isdH ∝ t ∝ a2 while in the matter dominated phase (ignored in the figures
for simplicity) dH ∝ t ∝ a3/2. In both phases,dH grows faster than the wavelengthλ ∝ a. Hence,
normally, the perturbation would re-enter the Hubble radius at some point B as shown in Figure 4.

In such a universe, one can extenddH indefinitely into the past or future, as shown by the
dashed ends of the red line. If we do this,all the perturbations can exit and re-enter the Hubble
radius. The inflationary phase is (to a high degree of accuracy) time translation invariant but the
matter dominated phase is not. So a universe like this one starts from a more symmetrical state and
ends up, all the way to eternity, in a less symmetric phase.

The second type of universe is the one which did not have an inflationary phase but has a late
time acceleration due to the presence of a cosmological constant (see the right diagram in Fig. 4).
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aF aΛ

ln L ln L

A 

B

ln a ln a

12

Fig. 4 The two diagrams contrast two types of universes. On the leftis a universe which underwent
inflation until a = aF and became radiation (and matter) dominated fora > aF . The thick line
denotes the Hubble radius which is constant during inflationand increases as a power law during
radiation and matter dominated phase. In principle, both the inflation (in the past) and matter dom-
inated expansion (in the future) can be extended indefinitely as indicated by the broken extensions
of the thick line. The wavelength of a perturbation generated during inflation is shown by the thin
line AB. The perturbation exits the Hubble radius at A and enters it again at B. In principle,all the
perturbations can exit and re-enter the Hubble radius in such a universe. On the right is a universe
which did not have an inflationary phase but underwent late time acceleration ata > aΛ due to the
presence of a cosmological constant. In this case, the wavelengths of any perturbation will be bigger
than the Hubble radius at sufficiently early times. The perturbation marked 1 will enter the Hubble
radius at some stage and exit in the late phase but perturbations with wavelengths larger than the
critical one (marked 2) willnever enter the Hubble radius.

The universe is matter (or radiation) dominated tilla = aΛ and fora > aΛ, it becomes dominated by
the cosmological constant. The proper wavelengths of all perturbations would have been larger than
the Hubble radius at sufficiently early phase of the universewhich, incidentally, causes difficulties
for generation of initial perturbations. A wavelength represented by label 1 will enter the Hubble
radius during the matter/radiation dominated phase.

More relevant for us is the fact that some perturbationsdo not enterthe Hubble radius at all and
remain outside the Hubble radius for the entire evolution ofthe universe! The line marked 2 denotes
the limiting wavelength of the perturbation which just skirts the Hubble radius ata = aΛ. Longer
wavelengths remain outside the Hubble radius. Since we consider the Hubble radius to demarcate
the space that has emerged from the space yet to emerge, we should probably be interested in the
modes which are inside the Hubble radius during at least somephase of the evolution.

It is rather remarkable that our real universe is actually a combination of both these types, shown
in Figure 5. It has an initial inflationary phase which ends ata = aF and is followed by radiation
and matter dominated phases. These give way to another de Sitter phase of late time accelerated
expansion fora > aΛ. The first and last phases are time translation invariant; that is, t → t+
constant is an (approximate) invariance for the universe inthese two phases. The universe satisfies
the perfect cosmological principle and is in steady state during these phases; these symmetries are
broken during the radiation and matter dominated phase in the middle. In principle, the two de Sitter
phases can have arbitrarily long duration (Padmanabhan 2008). From this perspective, the middle
phase — in which most of the cosmology is done — is of negligible measure in the span of time. It
merely connects two steady state phases of the universe.
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Fig. 5 The universe we live in seems to be a combination of the two universes shown in Figure 4
having two distinct de Sitter phases, one during the inflation and one during the late time accelera-
tion. While both of these phases can be extended indefinitelyinto the past and future with a constant
Hubble radius, there are physical processes which limit thephysically relevant region within the par-
allelogram ADCB. Because of the late time acceleration, theHubble radius “flattens out” fora > aΛ.
So all perturbations with wavelengths larger than a critical perturbation (shown by line AB) will
never re-enter the Hubble radius which we treat as the boundary of emergent space. Therefore, only
the perturbations which exit the inflationary phase duringaI < a < aF , along the line AD, are phys-
ically relevant. These perturbations enter the Hubble radius during the phaseaF < a < aΛ, along
the line DB and later exit duringaΛ < a < avac, along the line BC. Equating the number of degrees
of freedom involved in these perturbations, we get the result aF /aI = aΛ/aF = avac/aΛ = eN .
These equalities connect up the three different phases of the universe and allow us to express the
cosmological constant in terms of thee-folding factor during inflation asΛL2

P ≃ 3e−4N
≃ 10−122.

Such an evolution is interesting from the holographic pointof view. In the initial inflationary
phase, we have almost exact holographic equipartition between the bulk and surface degrees of
freedom and the emergence of space occurs at a very small rate. (In the conventional, slow roll-over
inflation dV/dt = (9/4L2

P )(φ̇2/V 2
0 ) which is quite small.) At the end of the inflation, the ground

state energy density of the inflation field converts itself into radiation and we could say that the
matter emerges during the reheating process. This also disturbs the holographic equipartition and
the space begins to emerge along with radiation. If there is no residual ground state energy left (that
is, if there is no cosmological constant) we will end up in a type 1 universe in which there is no hope
for late time holographic equipartition. We know from observations that this is not the case and a
non-zero cosmological constant survives, lies dormant through the radiation and matter dominated
phases of the universe and makes its presence felt at late times. We will now describe some curious
links between the two de Sitter phase evolutions in our universe.

5.2 Linking the Late Time Acceleration with Inflation

To do this, we begin by noting that — while the two de Sitter phases can last forever, mathematically
— there are physical cut-off length scales in both of them which make the region of relevance
to us be finite. Let us first consider the accelerating phase inthe late universe. As the universe
expands exponentially, the wavelength of CMBR photons willbe redshifted exponentially. When
the temperature of the CMBR radiation drops below the de Sitter temperature (that is, when the
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wavelength of the typical CMBR photon is stretched to the size of the Hubble radiusLΛ ≡ H−1
Λ ),

the universe will be dominated by the vacuum thermal noise ofthe de Sitter phase. The universe
is, of course, in approximate holographic equipartition atthis phase and will now also reach normal
thermodynamic equilibrium with the kinetic temperature ofphotons becoming equal to the de Sitter
temperature. This happens at the point marked C when the expansion factor isa = avac determined
by the equationT0(a0/avac) = (HΛ/2π) = (1/2πLΛ). If a = aΛ is the point (marked B in Fig. 5)
at which the cosmological constant started dominating, then (aΛ/a0)

3 = (Ωmat/ΩΛ). Using these
results we find that the range of BC is

avac

aΛ

=
2πT0

HΛ

(
ΩΛ

Ωmat

)1/3

. (47)

Since the universe would be dominated by de Sitter vacuum noise beyond C, it seems reasonable to
consider BC to be the physically relevant range in the late time accelerating phase.

It turns out a natural bound exists for the physically relevant duration of inflation in any universe
which has a late time accelerating phase. We saw that, if there is no late time acceleration, thenall
wavelengths will re-enter the Hubble radius sooner or later. But if the universe enters an accelerated
expansion at late times, then the Hubble radius flattens out and some of the perturbations willnever
re-enter the Hubble radius. The limiting perturbation, which just makes it into the Hubble radius as
the universe enters its accelerated phase of expansion, is shown by the line marked AB in Figure 5.
Again since the Hubble radius is treated as the boundary of the space that has emerged, it makes sense
to consider this as a physical cut-off during the inflationary phase. This portion of the inflationary
regime is marked by AD and its range is

(
aF

aI

)

=

(
T0H

−1
Λ

TreheatH
−1
in

) (
ΩΛ

Ωmat

)1/3

=

(
avac

aΛ

)

(2πTreheatH
−1
in )−1 , (48)

whereTreheat is the reheating temperature after inflation. Normally, fora GUT scale inflation with
EGUT = 1014 GeV, Treheat = EGUT , ρin = E4

GUT we have2πH−1
in Treheat ≈ 105. But in the

context of our approach, it is more meaningful to consider a Planck scale inflation so that we can
actually think of space emerging from a Planck scale Hubble radius. Then2πH−1

in Treheat = O(1),
and we get the remarkable result that AD and BC are equal!

(
aF

aI

)

=

(
avac

aΛ

)

. (49)

The above result also holds — as can be easily verified — if we think of the pointB as defined by
the epoch at which the energy density ofradiationrather than matter is equal to the energy density in
the cosmological constant. This will just change the factor(ΩΛ/Ωmat)

1/3 by (ΩΛ/ΩR)1/4 in both
Equation (47) and in the first equality of Equation (48); these factors cancel out when we obtain
Equation (49).

What is more interesting is that if we treat DB as the Hubble radius during a radiation dominated
epoch, so thatdH ∝ a2, then we also have the result

(
aF

aI

)

=

(
avac

aΛ

)

=

(
aΛ

aF

)

. (50)

This is very easy to see from the geometrical fact that while AB is a line of unit slope, DB is a
line of slope 2. In the real universe the entire range of DB is not radiation dominated because a
small part near B is matter dominated. For the standard parameters of our universe, the radiation
dominated phase occurs when the universe cools from the re-heating temperature (which we take
to be1019 GeV in the diagram) till about 1 eV. During this phase, the universe expands by about a



914 T. Padmanabhan

factor1028. On the other hand, the universe expands only by a factor of about104 during the matter
dominated phase. For the purpose of illustrating the overall picture, we have ignored the matter
dominated phase in Figure 5. (The description of the universe in terms of these three phases was
attempted earlier by Bjorken 2004 in a completely differentcontext.) A more precise calculation
changes the diagram slightly. Clearly, there is very definitive relationship between the cosmological
constant and matter degrees of freedom, which leads to Equation (50).

In fact, one can give a more direct interpretation to the equality in Equation (50). Note that the
modes which exit the Hubble radius during AD re-enter the Hubble radius during DB and again
exit during BC. We would like to think of these modes as closely related to the physical degrees of
freedom emerging with space in the inflationary phase,because for us the Hubble radius is the edge
of the space that has emerged. Let us therefore calculate the total number of modes which cross the
Hubble radius in the interval(t1, t2) or, more conveniently, when the expansion factor is in the range
(a1, a2). Since the number of modes in thecomovingHubble volumeV = 4π/3H3a3 is given by
the integral ofdN = V d3k/(2π)3 = V k3/(2π2)d ln k, we need to compute the integral over the
relevant range ofk. We know that the condition for horizon crossing isk = Ha so that in the de
Sitter phase with constantH we haved ln k = d ln a. In the radiation dominated phaseH ∝ a−2,
so againd ln k = d lnHa = −d ln a. (We can ignore the minus sign which merely tells us that the
mode which exits last, enters first) Therefore, the total number of modes which cross the Hubble
radius duringa1 < a < a2 is given by

N(a1, a2) =

∫
V k3

2π2
d ln k =

∫
2

3π

da

a
=

2

3π
ln

a2

a1

, (51)

in all the three phases if we ignore matter. This allows us to write

a2

a1

= exp[µN(a1, a2)] , (52)

whereN(a1, a2) is the number of modes which cross the Hubble radius in the interval(a1, a2) and
µ is numerical factor of order unity which isµ = 3π/2 in the de Sitter and radiation phases. So the
equality of ratios in Equation (50) translates to the equality of the degrees of freedom, considered as
the number of modes in a Hubble volume which crosses the Hubble radius. That is we have

N(aI , aF ) = N(aΛ, aF ) = N(aΛ, avac) . (53)

This possibly provides an alternative way of understandingthe equality of the three different phases
of our universe.

6 CONCLUSIONS: THE THERMODYNAMIC UNIVERSE

The description of the universe in the last two sections provides an appealing first principle approach
towards cosmology, different from the standard one. This approach is capable of reproducing the
usual features of the universe and the evolutionary historybecause the scale factor is governed by
the standard equations of the Friedmann model. In addition,this approach provides a new vision
which holds promise for understanding many key issues in a unified manner. Let me conclude this
review by describing this broader picture.

The notion that increase in the Hubble radius represents theemergence of space is fundamental
to this approach. A static universe in this picture is represented by a universe with a constant Hubble
radius rather than by a universe with a time independent expansion factor. (Historically, this was
the original motivation for the steady state universe because an expansion factora(t) ∝ exp(Ht) is
invariant under time translation; this is precisely the de Sitter universe with constant Hubble radius.)

With such a concept for emergence of space, it seems natural to begin with an evolutionary
epoch in which the Hubble radius is of the order of Planck length. This is definitely in the quantum



Emergent Perspective of Gravity and Dark Energy 915

gravitational domain in which our lack of knowledge of pre-geometric variables prevents us from
providing a precise mathematical description. We assume that some quantum gravitational instabil-
ity triggers the universe to make a transition from this state to another one which again has a constant
Hubble radius that is significantly larger. This transitionoccurs along with the emergence of a con-
siderable amount of space and matter — originally — in the form of radiation. During this phase,
the universe essentially evolves as a radiation dominated Friedmann model. The precise description
of the transition between the two de Sitter phases is the standard domain of conventional cosmology
in which, depending on the dynamics of the matter sector, onewill have a radiation dominated phase
giving way to a very late time matter dominated phase. It is, however, obvious that in the overall cos-
mological evolution, the matter dominated phase is not of much significance since it again quickly
gives way to the second de Sitter phase dominated by the cosmological constant. Viewed in this
manner, the domain of conventional cosmology merely describes the emergence of matter degrees
of freedom along with cosmic space during the time the universe is making a transition from one de
Sitter phase to another. [The radiation dominated phase is just a transient connection between two
de Sitter phases.]

As I have already remarked, such a universe with two de Sitterphases has its relevant cosmology
contained in three separate epochs, each of equal duration in which the expansion factor increases
by eN ≈ 1030. During the first phase of expansion byeN , the perturbations generated in the Planck
scale inflation (to use a conventional terminology, though Iam not sure whether inflation is the
correct word to describe this Planck scale process) leave the Hubble radius. During the second phase
of expansion byeN , these perturbations re-enter the Hubble radius, mostly during the radiation
dominated phase and a little bit during the matter dominatedphase at the end which, as I said before,
is a minor detail and of doubtful cosmic significance. Duringthe third phase of expansion byeN ,
these perturbations again leave the Hubble radius. During this time, the radiation temperature drops
below the Hubble temperature of the cosmological constant.Once this happens, the universe is
completely dominated by vacuum noise and is in an asymptoticsteady state.

The entire evolution during the second and third phases can be completely described as that of a
system which is evolving towards holographic equipartition. The tendency of the universe to achieve
Nbulk = Nsur is what drives the cosmic evolution. Such a perfect state didexist during the initial
Planck scale phase as well. The question as to why it was unstable and made a transition to the
radiation dominated phase probably can be answered only when we understand the pre-geometric
Planck scale physics. However, it should be stressed that there have been several quantum cosmolog-
ical models in which “the creation of the universe” is linkedto quantum gravitational instabilities.
Therefore I do not consider this as a serious difficulty for this scenario.

In a way, the problem of the cosmos has now been reduced to understanding one single number
N closely related to the number of modes which cross the Hubbleradius during the three phases of
the evolution. This, in turn, will be related to the total number of matter degrees of freedom which
emerge from the pre-geometric variables along with space. The conventional question of whyΛL2

P

is approximately10−122 is answered in this approach by linking it toe−4N . Thus, I would think that
one needs to work towards providing a fundamental understanding of the results in Equation (52) –
Equation (53).
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