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Abstract We describe a general target selection algorithm that is applicable to any
survey in which the number of available candidates is much larger than the number of
objects to be observed. This routine aims to achieve a balance between a smoothly-
varying, well-understood selection function and the desire to preferentially select cer-
tain types of targets. Some target-selection examples are shown that illustrate different
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possibilities of emphasis functions. Although it is generally applicable, the algorithm
was developed specifically for the LAMOST Experiment for Galactic Understanding
and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou
Jing Telescope. In particular, this algorithm was designedfor the portion of LEGUE
targeting the Galactic halo, in which we attempt to balance avariety of science goals
that require stars at fainter magnitudes than can be completely sampled by LAMOST.
This algorithm has been implemented for the halo portion of the LAMOST pilot sur-
vey, which began in October 2011.

Key words: surveys: LAMOST — Galaxy: halo — techniques: spectroscopic

1 INTRODUCTION

This document describes the algorithms used to select stellar targets for the Milky Way structure sur-
vey known as LEGUE (LAMOST Experiment for Galactic Understanding and Exploration). LEGUE
is one component of the LAMOST Spectrocopic Survey (see Zhaoet al. 2012 for an overview) that
will be carried out on the Chinese Guo Shou Jing Telescope (GSJT). The GSJT has a large (3.6–
4.9-meter, depending on the direction of pointing) aperture and a focal plane populated with 4000
robotically-positioned fibers that feed 16 separate spectrographs, providing the opportunity to effi-
ciently survey large sky areas to relatively faint magnitudes.

The motivation for this algorithm was a desire for a well-understood and reproducible selection
function that will enable statistical studies of Galactic structure. A continuous selection function is
desirable, rather than assigning targets by, for example, ranges in photometric color, and excluding
targets outside the color-selection ranges. Another motivation for this scheme was the opportunity
provided by the sheer scale of the planned LAMOST survey; thepossibility of observing a large
fraction of the available Galactic stars (at high latitudes, at least) along any given line of sight al-
lows for less stringently-defined target categories, sincea more general selection scheme can gather
(nearly) all of the stars in particular target categories, while simultaneously sampling all other re-
gions of parameter space. This opens up a large serendipitous discovery space while also enabling
studies of all components of the Milky Way.

The LEGUE survey will obtain an unprecedented catalog of millions of stellar spectra to rela-
tively faint magnitudes (to at least 19th magnitude in the SDSSr-band) covering a large contiguous
area of sky. The only large-scale spectroscopic survey of comparable depth is the Sloan Extension
for Galactic Understanding and Exploration (SEGUE; Yanny et al. 2009a), which has been an enor-
mously valuable resource for studies of Milky Way structure(e.g., Allende Prieto et al. 2006; Carollo
et al. 2007; Xue et al. 2008; Dierickx et al. 2010; Chen et al. 2011; Lee et al. 2011; Cheng et al. 2012;
Smith et al. 2012) and substructure (see Newberg et al. 2002;Yanny et al. 2003; Belokurov et al.
2006; Grillmair & Dionatos 2006; Newberg et al. 2007; Klement et al. 2009; Schlaufman et al. 2009;
Smith et al. 2009; Yanny et al. 2009b; Xue et al. 2011)1. However, the SEGUE survey was limited to
∼ 300 000 stellar spectra in∼ 600 separate 7 square degree plates spread over the Sloan Digital Sky
Survey Data Release 8 (DR8; Aihara et al. 2011) footprint. The separation of SEGUE into discrete
“plates,” while providing sparse coverage of all of the Galactic components (as well as sampling
a number of known substructures), creates some difficulty ininterpreting results from SEGUE. In
addition, the limited number of targets observed by SEGUE necessitated selecting small numbers
of stars from carefully defined target categories, most of which were delineated by selections in
photometric color (Yanny et al. 2009a). This “patchy,” non-uniform selection function makes sta-
tistical studies of Galactic structures difficult. The large contiguous sky coverage and sheer number

1 Note that these reference lists are meant only to give some representative Galactic (sub-)structure studies from SDSS,
and are far from complete.
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of targets that will be observed by LAMOST can help to overcome the limitations of SEGUE for
studies of Galactic structure; however, this requires thatthe selection of LEGUE targets be done in
a well-understood, simply-defined manner.

Other spectroscopic surveys of large numbers of stars have focused on magnitude-limited sam-
ples. For example, the Radial Velocity Experiment (RAVE; Steinmetz et al. 2006), is a survey of∼
one million stars to a limiting magnitude ofI = 12 in the southern hemisphere. Upcoming surveys,
such as the HERMES Galactic Archaeology project (e.g., Barden et al. 2008; Freeman & Bland-
Hawthorn 2008; Freeman 2010) will also observe magnitude-limited samples of stars (in this case,
to V = 14). Obviously, a magnitude limited survey does not require careful selection of subsets of
available targets, as is required for deeper surveys such asSEGUE or LAMOST.

In this paper, we present a general target selection algorithm designed for surveys such as
LAMOST where the number of available candidates is much larger than the number of objects
to be observed. The method is sufficiently general to be extensible to any target selection process,
and can use any number of observables (i.e., photometry, astrometry, etc.) to perform the selections.
The paper is organized as follows: we introduce a general target selection algorithm and show some
examples of different selection biases that can be applied.We follow this with a hypothetical survey
design, discussing the priorities for target selection in this mock survey, then show examples of the
adopted target selection parameters for a moderate latitude (b ∼ 30◦) and a high latitude (b ∼ 60◦)
field. This hypothetical survey has target priorities similar to those outlined by Deng et al. (2012),
based on LEGUE’s science goals. More details of the use of ourtarget selection algorithm for the
LEGUE pilot survey can be found in Yang et al. (2012), which discusses the dark nights portion of
the pilot survey, and Zhang et al. (2012), where a summary of the bright nights observing program
is given (see also Chen et al. 2012 for discussion of an alternative target selection process that was
applied to the Galactic disk portion of the LEGUE pilot survey). We follow the example survey
illustration with some discussion about the difficulty in recreating a “statistical sample” of stellar
populations from the observed set of spectra. The algorithms developed here have been used mostly
with Sloan Digital Sky Survey (SDSS) photometry as inputs (though see Zhang et al. 2012 for an
example using 2MASS data), but in practice any photometric,astrometric, spectroscopic, or other
data known about the input catalog stars can be used in the selection process. The target selection
programs discussed in this work were developed in the programming language IDL.

2 TARGET SELECTION ALGORITHMS

We initially set out to solve the general spectroscopic survey target selection problem: starting with
an input catalog of stars with any number of “observables” (for example SDSS, withugriz magni-
tudes, positions, proper motions, etc.), define a general target selection algorithm that is capable of
producing the desired distribution of targets. The assumption is that one begins with a large input
catalog, where the number of sources is larger than the number of objects that can be observed with
LAMOST. An input catalog would be a data table withNS stars for which we haveNO observables
(such as right ascension, declination, magnitude, color, proper motion component, etc.)

λ = [λi]j , (1)

wherej = 1, 2, ..., NS denotes any one ofNS stars in the input catalog, andi = 1, 2, ..., NO denotes
any of theNO observables which are available for every star. To select targets for a spectroscopic
survey such as LEGUE, one would minimally require sky coordinates and a magnitude (NO ≥ 3).

For every LAMOST field, a number of stars can be randomly selected as targets (based on
how many fibers are available) among stars which are located in the field, and for which each was
assigned a statistical weight. This statistical weight canbe assigned according to a functionP =
P (λ1, λ2, ..., λNO) of theNO observables, such that the probability for selecting starj as a target
can be expressed as

Pj = P ([λ1]j , [λ2]j , ..., [λNO ]j) (2)
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with the requirement
NS
∑

j

Pj = 1. (3)

The trivial case would be for every star to have the same probability of being selected (P1 =
P2 = ... = Pj , ∀ j). Calling this trivial case “model A,” and denoting its probability functionPj,A,
we then have

Pj,A = (NS)−1. (4)

Alternatively, one could base the selection on the statistical distribution,Ψ0, of the values taken by
the observables. DefiningΨ0 as a continuous function over theNO observables, one would have

Ψ0 = Ψ0(λ1, λ2, ..., λNO) ≡ Ψ0(λi), (5)

which represents the density of recorded values for the observables, normalized following

∫

Ψ0(λi)

NO
∏

i

dλi = 1. (6)

One way to determineΨ0 for the input catalog would be to calculate the local densityof sources
at (λ1, λ2, ..., λi), estimated by counting the number of starsj whose observables satisfy the condi-
tion

√

∑

i

(λi − [λi]j)2 < ∆λ, (7)

where∆λ defines the size of the volume in the space of observables overwhich the stars are be-
ing counted, i.e., the resolution of the functionΨ0. For example, one could determine the density
functionΨ0 = Ψ0(g, g − r), calculating how many stars can be found within 0.1 magnitudes of the
parameter space location(g, g − r), which would mean using∆(g, g − r) = 0.1 mag. This can be
extended to any number of observables to define a “density” over multiple parameters; an example
would be using additional colors, calculating the number ofstars within 0.1 magnitude of (g, u − g,
g − r, r − i,...).

An example of aΨ0 function can be seen in Figure 1, which shows the statisticaldistribution of
g − r color for all stars in two sample LAMOST plates as the solid black histograms. These have
been normalized so that the sum of all bins equals one, and canthus be thought of as probability
functions (in this case,Ψ0 = Ψ0(g − r)). A similar plot is seen in Figure 2 forr magnitudes in
the same two plates. For the remainder of this paper, we will use examples from the simple case of
the local density defined by the number of stars within 0.1 magnitudes inr, g − r andr − i, i.e.
Ψ0 = Ψ0(r, g − r, r − i).

It is useful to point out that if one performs a target selection following method “A,” then the
density distribution of the target stars, denotedΨA, would be approximately the same as the statisti-
cal distribution in the input catalog, to within the Poissonerrors, i.e.ΨA(λi) ≈ Ψ0(λi).

Typically, however, one may want to obtain a list of targets whose statistical distribution differs
from the distribution in the input catalog. For instance, one may want to overselect objects in a given
color/magnitude range, or pay more attention to outliers orunusual stars. One possibility, which we
will call “Method B,” is to assign a selection probability that is inversely proportional to the local
density in the space of observables

Pj,B =
KB

Ψ0([λ1]j , [λ2]j , ..., [λNO ]j)
, (8)

whereKB is a normalization constant to ensure that
∑

j Pj,B = 1. In Method B, the statistical
distribution of the selected stars (ΨB) over the observables (λi) is different from that of the input
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Fig. 1 Fractional distribution ofg − r color for stars in two sample regions of the sky6◦

× 6◦

in size (slightly larger than the area of a LAMOST plate); alldata are selected from SDSS DR8.
The left panel is for a field spanning(α, δ) = (130◦

− 136◦, 0◦

− 6◦), corresponding to a field
center in Galactic coordinates of(l, b) ≈ (225◦, 28◦). This field contains a total of 102 199 stars
between14.0 < r < 19.5. The right panel shows a field at(α, δ) = (170◦

− 176◦, 0◦

− 6◦), or
(l, b) ≈ (261◦, 59◦), containing a total of 44 566 stars. In both panels, the blacksolid line represents
all stars in the field. The dashed histogram represents the stars selected by our algorithm as input to
the LAMOST fiber-assignment program (∼600 per square degree), and the dash-dotted line shows
the resulting distribution of spectroscopic targets in a single LAMOST plate (∼ 4000 stars assigned
to fibers). Each histogram has been normalized to one, so thatthe bin heights represent the fraction
of targets within each bin.

catalog (Ψ0), and in fact it is to first order uniform over all values ofλi, i.e.ΨB(λi) ≈ KB. Examples
of this type of selection are seen in panels (b) of Figures 3 and 4. Note, however, that because the
local density was calculated usingr, g − r andr − i, the distribution does not look uniform in the
color-magnitude diagrams (top and middle rows). However, the distribution in three-dimensional
parameter space defined byλi = r, g − r, r − i should be roughly uniform.

As a generalization, one can assign probability that is inversely proportional to some power of
the local density, i.e.,[Ψ0]

−α. In this case, which we will call Method C,

Pj,C =
KC

[Ψ0([λ1]j , [λ2]j , ..., [λNO ]j)]α
(9)

whereKC is a normalization constant to ensure that
∑

j Pj,C = 1. One can now see that Methods A
and B represent special cases whereα = 0 andα = 1, respectively. The random selection approach
(α = 0) would be ideal if one simply wanted a selection that samplesall of parameter space with the
same frequency as the input catalog. A weighting by1/Ψ0 (α = 1), on the other hand, produces an
output catalog that samples the space of observables more evenly, and thus contains a much larger
fraction of “rare” objects (i.e., those in less-populated regions of parameter space, and de-emphasizes
regions of higher local density relative to the input catalog; see, e.g., panels (b) of Figs. 3 and 4).
Adopting a value0 < α < 1 would result in a selection intermediate between these two scenarios;
one that increases the chances of rare objects entering the selection, but still robustly samples the
high-density regions of the input distribution. The effects of usingα = 1/2 are seen in panels (c) of
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Fig. 2 Fractional distribution ofr magnitude for stars in the same two example regions as in Fig.1.
The line styles and colors are also the same as in Fig. 1. Each histogram has been normalized so that
the bin heights represent the fraction of targets within each bin; this distribution can be thought of as
a probability distribution,Ψ0(r), of finding a star in each magnitude range.

Figures 3 and 4. In the case where one would like to place a particular emphasis on rare objects, a
value ofα > 1 could be used, which would introduce a bias against the selection of more common
objects as targets. (Also, note that if there are fewer starsin a given region of parameter space than
are selected in the more densely populated regions, that region will continue to be under-dense no
matter what emphasis is applied.)

In any case, one may also be interested in over-selecting objects occupying a particular region of
parameter space (for example, a narrow color or magnitude range, or simply selection of more blue
than red stars). To achieve this, an overemphasis can be included that favors the selection of stars in a
particular range of an observable by including a bias explicitly in the selection probability function.
Any functional form of each of the observables,λi, can be introduced to achieve the desired effect

Pj,D =

∏

i fi([λi]j)

[Ψ0([λ1]j , [λ2]j , ..., [λNO ]j)]α
. (10)

Here thefi(λi) can be any function of the observablesλi.
Two examples that are currently implemented for the LAMOST pilot survey are a local emphasis

over a specific range of colors, and a general bias over the magnitude range to emphasize brighter
stars or fainter stars. A local emphasis is achieved using a function of the form

fi(λi) = 1 + Aie
−

(λi−xi)
2

σ2
i , (11)

wherexi is the central value of interest for the observableλi (to emphasize the center of the color or
magnitude range),σi is the range of interest, andAi is the “over-selection” factor (how strongly you
wish to overemphasize these objects compared to stars outside of this range). An example is shown
in panels (d) of Figures 3 and 4, where the region of interest is centered atg − r = 0.8, with a range
σg−r = 0.2 and an overemphasis factorA = 10.
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Fig. 3 Color-magnitude Hess diagrams for different selections ofstars in the region(α, δ) =
(130◦

− 136◦, 0◦

− 6◦), corresponding to a field center in Galactic coordinates of(l, b) ≈

(225◦, 28◦). Panel (a) shows all of the 102 199 SDSS stars between14.0 < r < 19.5 in this field of
view. Panels (b)–(e) show the results of selecting 600 starsper square degree in this field, with differ-
ent selections (based on local density in three-dimensional r, g−r, r−i space, orΨ0(r, g−r, r−i))
represented in each panel. Panel (b) stars were selected withα = 1, and panel (c) depicts theα = 0.5
case. Theα = 1 selection (i.e., weighting by the inverse ofΨ0) in panel (b) strongly de-emphasizes
high-density regions of the CMD in favor of rare stars. M-stars atg−r ∼ 1.5 appear oversampled in
this figure; this arises because they are more spread out inr− i colors than ing− r, causing them to
be emphasized by the density weighting in 3-D parameter space. The overemphasis of rare objects is
slightly less pronounced forα = 0.5 (panel (c)), with a significant number of stars selected fromthe
high-density regions of the CMD. In panel (d) we illustrate the results of selection withα = 0.5 and
with an over-selection of the region centered atg− r = 0.8 with width σg−r = 0.2 and overempha-
sis factorA = 10. This selection produces an overselection of stars centered atg − r = 0.8, while
retaining some stars from the remaining parameter space. Finally, panel (e) illustrates a selection
with α = 0.5 and a linear bias in color beginning atg − r = 1.1 and sloping upward toward bluer
colors with slope 2.5, and also a linear magnitude emphasis beginning atr = 17.5 with slope 1.0
toward brighter magnitudes.
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Fig. 4 As in Fig. 3, but for a different field located at(α, δ) = (170◦

− 176◦, 0◦

− 6◦), or (l, b) ≈
(261◦, 59◦). This higher-latitude field contains a total of 44 566 SDSS stars between 14.0< r <19.5.

Likewise, a general bias is introduced by the use of a linear function of the form

fi(λi) = 1 − mi(Xi − λi), (12)

wheremi is the slope of the linear emphasis function, andXi is the limiting value where the linear
emphasis ends (either the minimum or maximum allowed value of λi). This produces a function that
is 1.0 at one extremity, and increases to higher values from the limiting valueXi. An example of
this would be to use a linear function that increases toward lower values to overselect stars of bluer
colors and/or brighter magnitudes. The effects from this type of selection bias are shown in panels
(e) of Figures 3 and 4; the color selection is anchored atg−r = 1.1 with slope 2.5 increasing toward
bluer colors, and the magnitude emphasis has slope 1.0 anchored atr = 17.5, increasing toward the
bright end.
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2.1 Selecting Stars Using the Assignment Probabilities

Here we describe the method we have implemented to select target stars based on the selection
probability function (i.e.,Pj). Once the assignment probability for each star in the inputcatalog has
been defined, a cumulative probability is calculated for each star in the list which consists of the sum
of the probabilities of all stars in the list up to (and including) that particular star

Pcum,j =

j
∑

k=0

Pcum,k, (13)

where “j” is the index of each star. A random number is then generated (using a uniform distribution
from 0.0 to 1.0), and one star from the list is identified for which the random number is less than the
cumulative probability, but greater than the cumulative probability of the previous element (where
Pcum,j−1 < randnum< Pcum,j). This star is placed in the list of “selected” stars and removed from
the sorted list of candidates for selection. The assignmentprobabilities are then renormalized so that
they sum to unity once more, and the cumulative probabilities are recalculated. (Note that the order
the stars appear in the input catalog does not matter, since astar with a larger selection probability
will carve out a larger range of the cumulative probability space, and thus be more likely to be se-
lected.) The process is repeated until the desired number ofstars has been selected. Selecting targets
in this manner has the effect of preferentially choosing stars with higher selection probabilities, but
still selecting some stars from the entire range of parameter space. This also means that the stars
selected near the beginning will have different “demographics” (i.e., occupy different distributions
in parameter space) than those selected later. Thus if a region of sky is revisited for a second (or
more) observation, the distribution of targets in the observables will differ from the overall distribu-
tion in that same field of view. This in turn means that the selection probability as a function of the
observables will also differ when revisiting a region of sky.

In the case of the LAMOST pilot survey, the number of targets to select is set by the fiber-
assignment software’s requirement that the input catalog contain roughly three times the desired
number of spectroscopic targets. Thus, since LAMOST contains 200 fibers per square degree in the
focal plane, we select 600 stars deg−2 in the input catalogs (though this target density is a param-
eter that can be set when running the program). This is achieved by dividing the sky into2◦ × 2◦

blocks, and selecting targets in each block until the targetdensity has been reached. Defining the lo-
cal density separately for each of these blocks has the benefit of mitigating the effects of large-scale
spatial variations of stellar populations within the survey footprint on the defined local densities (and
thus the target selection probabilities). Note, however, that because three times the fiber density is
required in the input catalog, only 1/3 of the targets selected for input to the fiber assignment al-
gorithm will be observed. If the target selection was being done at the same time the fibers were
being assigned to objects, one could maximize the probability that objects in a particular parameter
range were selected by assigning a very large probability inthat range. Because the probabilities are
pre-assigned separately from the fiber assignment process,we have implemented a priority scheme
to preserve information about which objects would have beenselected first. In the absence of this
priority scheme, all objects sent to the fiber assignment algorithm would be observed with a proba-
bility of ∼ 1/3, so it would be impossible to regularly observe more than 1/3of any type of object.
Of course, revisiting the same plate multiple times increases the chance of observing all objects with
certain selection criteria, since those that were unable tobe assigned on the first plate can be picked
up on later observations.

The LAMOST target assignment algorithm allows us to assign priorities from 0–99 for each
of the selected objects, with lower numbers indicating higher priority for selection by a fiber. The
probability for selection calculated by the target selection algorithm must be converted to an integer
priority value for the fiber assignment program, rather thanbeing used directly to assign targets
to fibers. When each fiber is being assigned a target, all of thepossible targets within its patrol
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radius are examined, and the one with the lowest priority value is assigned. If all targets have been
given equal priority, then the fiber will be assigned to the target closest to its “home” position;
such an instance would thus produce a uniform spatial distribution of targets, ignoring any selection
preferences based on photometry or other properties. This also means that if multiple high-priority
targets are within the patrol radius of a single fiber, only one of them will be assigned to a fiber. To
ensure that the desired target distribution in parameter space is achieved, one would ideally assign
as many priority values as possible, so that the probabilitydistribution created by the target selection
algorithm would be closely followed. To do this, we assign priorities from 1–M (whereM < 99;
for the pilot survey we usedM = 80, with the remaining priorities being reserved for other possible
uses) to the 600 stars selected in each square degree of sky. The priorities are assigned by taking
the total number of targets desired in a given region (in thiscase, 600 per square degree), dividing
by M , then looping from 1–M , and assigning this number of targets to each priority value. Since
the probability weighting should preferentially select targets of higher interest at the beginning of
the selection process, this method ensures that lower priority values (i.e., higher chance of being
assigned) are predominantly given to the objects with high probability for assignment, with lower-
probability stars mostly having priorities that will make them less likely to be assigned. In practice,
this complicates the statistical understanding of the target distribution, but our tests have shown that
this method in effect reproduces our desired target distributions.

3 A SAMPLE HYPOTHETICAL SURVEY

3.1 Survey Goals and Target Categories

With a general target selection algorithm developed, we nowexplore the question of what combi-
nations of parameters can be used to achieve different target selection goals. In a non-magnitude-
limited spectroscopic survey with multiple science goals (for example, LEGUE), there will typically
be certain types of objects that are valued more than others.An example might be blue horizontal-
branch (BHB) star candidates. These are an extremely valuable resource for Galactic structure stud-
ies because they are relatively rare, intrinsically bright(making them ideal probes of the distant
Milky Way halo), trace metal-poor populations typical of the halo, easy to derive distances for, and
occupy regions in photometric colors that are not confused with many other types of objects. So,
for example, a study that is interested in BHB stars could tryto simply select all stars with SDSS
colors(g − r) < 0.0 and(u − g) colors unlike those of QSOs. With our target selection algorithm,
these objects could easily be preferentially selected without resorting to something like an abrupt
cutoff at a certain photometric color. This can be achieved in one of two ways (or a combination of
both): first, an emphasis on rare objects (BHB stars have relatively low densities in color-magnitude
or color-color diagrams; see, e.g., Fig. 1 for an illustration of the paucity of such blue stars) can be
achieved via weighting by the inverse of the local density incolor/color/magnitude space (or, even
better, weighting byα = 1/2), and secondly, by adding a linear emphasis that increases blueward of
some cutoff color. Examples of the density weighting are shown in panels (b) and (c) of Figures 3
and 4, illustrating the effect of weighting byα = 1 andα = 1/2, respectively. The number of
rare, blue objects is enhanced in these relative to the fraction of blue stars in the input catalog. An
additional linear weighting can be applied; for example, one could choose to multiply the local den-
sity by a linear function beginning atg − r = 0.3 and increasing blueward. Both of these methods
will increase the number of blue stars selected, while avoiding an abrupt cutoff for the selection at
g − r = 0.0.

Within a given collaboration, there may be many science goals (for example see Deng et al.
2012 for a discussion of LEGUE’s science aims). Balancing the need for a well-understood selection
function with numerous target types is easily done with the method we have outlined. Here we create
a hypothetical survey to use as an example. Our example survey (which happens to very closely
resemble many of LEGUE’s goals) aims to study the Galactic halo, while also sampling a large
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number of nearby stars of all types for studies of the Galactic disk. The survey will use only SDSS
photometry for target selection, with no constraints on proper motions or other properties, selecting
among stars with14 < r < 19.5.

Studying the halo requires intrinsically bright, easily identified tracers such as BHB stars or
K/M-giants to probe to large distances, and also a large sample of F-type turnoff stars at all magni-
tudes. F-type stars occupy a color range of relatively unambiguous luminosity classification (other
than the occasional asymptotic giant-branch star). The BHBstars are very blue (g − r < 0.0), while
K/M giants are red stars withg − r > 1.0. F-turnoff stars have colors of roughly0.2 < g − r < 0.5.
BHB stars (and to a lesser extent, K/M giants) occupy a regionof low stellar density in color-
magnitude space, while F-turnoff stars are very common. This proposed survey would also like to
obtain spectra of metal-poor M subdwarfs, which are not distinguishable in theg − r band from all
other M-dwarfs, but separate clearly inr − i colors, while still sampling a large number of nearby
M-dwarfs that can be used to probe local kinematics. There isalso interest in following up interest-
ing discoveries with high-resolution spectroscopy, so we wish to overemphasize bright stars within
reach of echelle-resolution spectrographs. Finally, there is a desire to sample all stellar populations,
but preferentially observe rare objects first, in order to open up the discovery space to rare (and per-
haps previously unknown) stellar types. Briefly, then, the target selection categories are as follows:

– Sample a larger fraction of “rare” stars than the “less rare” cases. As shown in Section 2, this is
exactly what is achieved by the use of local density weighting, Pj ∝ [Ψ0(λi)

−α]j , in assigning
selection probabilities to each star. In particular, we have shown examples ofα = 1 andα =
1/2; the α = 1 case predominantly selects rarer objects (i.e., it under-emphasizes parameter
spaces of high stellar density) than theα = 1/2 density weighting.

– Select nearly all stars with0.1 < (g − r) < 1.0 andr < 17 at high Galactic latitudes, and
sub-sample atb < 40◦.

– Select nearly all stars withg − r < 0.0 andu − g colors that are unlike those of quasars (BHB
and blue straggler candidates).

– Select a significant fraction of the stars with0.0 < (g − r) < 1.0, 17 < r < 19.5 andu − g
colors that suggest they are not quasars. The bluer side of the color range should be selected
with a probability about twice the redder side of the range toemphasize the F-type turnoff stars.

– Select a large number of M dwarfs at all magnitudes.

We note that the above discussion refers to a survey with multiple visits to each sky position,
which can thus meet the requirements of nearly-complete samples of some subsets of stellar types
(for example, the very blueg − r < 0 stars). However, in practice not all of the high priority targets
can be placed on one observation due to constraints on fiber positioning. Thus, for a survey where
only a single visit to each sky area is planned, these “requirements” should be considered to mean
that one would like as many as possible of the stars in these categories.

3.2 Adopted Target Selection Parameters

Through many tests, it was determined that the simplest combination of parameters striking a good
balance between all these desired categories of targets is

– α = 0.5, which weighs by the inverse square root of the local density.
– Linear ramp bias function ing − r, beginning atg − r = 1.1 and increasing blueward with a

slope of 2.5.
– Linear ramp bias function inr magnitude, beginning atr = 17.5, increasing toward brighter

stars with slope of 1.0.

The particular values of these parameters (and particularly of α = 0.5) were determined somewhat
subjectively based on visual examination of the selected targets and statistical distributions of targets
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Fig. 5 Left panel: Color-magnitude Hess diagram of all 112 099 stars between14 < r < 19.5
selected from SDSS DR8 at(α, δ)J2000 = (130◦

−136◦, 0◦

−6◦). Center panel: Result of selecting
600 targets per square degree from the stars in the left panel. The target selection usedα = 0.5 (to
emphasize rare objects) with a ramp in color (to increase thefraction of blue stars selected) anchored
at g − r = 1.1 and increasing blueward with slope of 2.5, and a ramp in magnitude (to weight
bright stars more heavily) starting atr = 17.5 and increasing with slope of 1.0 toward the bright
end. This selection represents 21.1% of the stars in the fieldof view. Right panel: Distribution of
targets assigned to LAMOST fibers upon running the catalog from the center panel through the fiber-
assignment software. This panel contains a total of 3715 stars, or 3.6% of the total number within
the field of view.

from separate categories (as seen in Table 1, which will be discussed in more detail below). Of
course, detailed analysis could be done to optimize these target selection parameters if desired.
However, in the case of a survey such as LAMOST, which will observe large numbers of stars with a
variety of science goals, we simply select these parametersto produce input catalogs that are broadly
consistent with the desired target distributions and sample all of parameter space to some extent.

Table 1 Fraction of Stars from Each Target Category Assigned to Fibers in a Single LAMOST Plate

RA Dec l b Total stars Assigned % Assigned Very blue Bluish, Bright Bluish, Faint Red
(◦) (◦) (◦) (◦) (%) (%) (%) (%) (%)

133±3 3±3 225 28 102199 3715 3.6 22.6 6.7 2.7 2.1
173±3 3±3 261 59 44566 3722 8.4 27.0 15.5 6.9 5.7

3.3 Sample Target Selections

In this section, we show examples of outputs from the target selection code, and follow this by
selecting stars for targeting from among these using the LAMOST fiber-assignment routine. These
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Fig. 6 As in Fig. 5, but for the higher-latitude field at(α, δ)J2000 = (170◦

− 176◦, 0◦

− 6◦). This
field of view contains a total of 44 566 stars, of which 48.4% were selected for the center panel. Of
these, 3722 (seen in the right panel), or 8.4%, were assignedto fibers.

examples use the data from the same two fields presented earlier in this work, selected from6 × 6◦

fields at(α, δ)J2000 = (130◦−136◦, 0◦−6◦) and(α, δ)J2000 = (170◦−176◦, 0◦−6◦). These fields
were chosen to show an example of a field at somewhat low latitude (b ∼ 30◦), and another at high
latitude (b ∼ 60◦). The local density,Ψ0, is calculated in each of these fields usingr magnitudes
andg − r, r − i colors. For reference, ther vs. g − r color-magnitude distribution of all 102 199
stars in theα ∼ 133◦ field of view is seen in the left panel of Figure 5, and the 44 566stars in the
lower-latitudeα ∼ 173◦ field in Figure 6 (note that these are the same as panels (a) in Figs. 3 and 4).

The center panels of Figures 5 and 6 show the results of running the target selection routine
on the input catalogs, usingα = 1/2, a linear ramp in color, beginning atg − r = 1.1 and rising
blueward with slope 2.5, and a ramp in magnitude, increasingfrom r = 17.5 with slope 1.0 toward
bright stars. These selections contain 600 stars per squaredegree, the required target density to be
input into the fiber assignment program. In the field atα ∼ 133◦ (Fig. 5), 21.1% of the 112 099 total
stars in the region were selected as candidates, and in the higher-latitudeα ∼ 173◦ field (Fig. 6) this
number rises to 48.4% of the total available stars.

After running the catalogs selected for these two fields of view through the LAMOST fiber
assignment program,∼ 3700 stars in each of the two fields are allocated to fibers (the remaining
fibers are to be used for sky and other calibration purposes).The right panels of Figures 5 and 6 show
the stars assigned to fibers in these two fields. Generally, itis clear that quite a few “rare” objects (for
example, at intermediate colors of0.8 < g − r < 1.2, or bright M-star candidates atg − r ∼ 1.4)
are selected by this method, but that densely-populated regions of color-magnitude space are also
well-sampled. Note the fairly dramatic overemphasis of bright (r < 17), blue (g − r < 1.0) stars
achieved by the weighting scheme.

To assess how well the algorithm achieved the list of target selection goals outlined in
Section 3.1, we select stars from the color and magnitude ranges in which specific target-selection
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goals were focused, and explore the relative emphasis or de-emphasis achieved by our code. The
degree of emphasis can be seen by comparing the fraction of stars selected within a given target
category to the fraction of the total number of stars in the field. These results are given for the two
example fields in Table 1. The table lists the number of stars in each of the two fields of view (“total
stars”), followed by the number assigned to fibers for a single LAMOST plate (“assigned”), and the
percentage of the total stars that were assigned to be observed (“% assigned,” or “assigned”/“total
stars”). The following four columns represent the four categories outlined in Section 3.1: “very blue”
stars withg − r < 0, “bluish, bright” stars with0.0 < g − r < 1.0 andr < 17, “bluish, faint” stars
with 0.0 < g − r < 1.0 andr > 17, and “red” stars withg − r > 1.0. In each of these columns,
we provide the percentage of the total number of stars in the field that satisfy those criteria that were
assigned to a fiber on the plate. This percentage can be compared to the “% assigned” column to
see over- or under-emphasis; i.e., if the target selection was uniform across color-magnitude space,
one would expect roughly the same fraction of stars to have been assigned in each category. Thus,
for theα = 133◦ field, the fact that 22.6% of the very blue stars were assignedcompared to 3.6%
overall means that the “very blue” stars have been overemphasized by a factor of> 6. Examination
of Table 1 shows that, at least broadly, we have achieved our goals of strongly over-selecting very
blue objects, increasing the fraction of bright, blue starsthat gets observed, yet still retaining a sig-
nificant number of faint, bluish stars and red K- and M-star candidates (note that> 800 red stars
with g − r > 1.0 were assigned in each plate – even though they have been underemphasized, they
are still well-represented).

4 SOME CAVEATS ABOUT STATISTICAL TARGET SELECTION

Ostensibly, one of the reasons for having a smoothly-varying, well understood selection function is
to be able to infer the underlying stellar populations from agiven set of spectroscopically observed
stars. However, in order for this to be possible, detailed records of the entire target selection and
fiber assignment process need to be kept. The first issue affecting this is the need to supply the
fiber assignment routine with a catalog with higher target density than the fiber density on the sky.
Because of this, not all high priority targets will be placedon fibers. Some fibers in each observation
will inevitably fail to yield useful spectra, making it necessary to factor the “missed targets” into the
analysis.

Of course, any routine that preferentially targets certainobjects will produce different target
demographics if multiple visits to the same sky position aredesired. An illustration of this is seen
in Figure 7, which shows examples of three LAMOST plates selected in each of the two example
fields used throughout this work. The upper panels show the relatively low-latitude (b ∼ 30◦) field,
and the lower panels show theb ∼ 60◦ field. The target selection parameters were the same as those
used in Sections 3.2 and 3.3, and seen in Figures 5 and 6. In each row, the five panels showr vs.
g − r Hess diagrams of (a) the input sky distribution from SDSS, (b) the first plate selected, (c) the
second plate selected (excluding stars from plate 1), (d) the third plate selected (excluding stars from
plates 1 and 2), and (e) the sum of all three plates from (b)–(d). In the low-latitude field there are
many stars available, so that the effects of the preferential targeting categories are seen in all three
plates (especially the emphasis on bright, blue stars). However, the sum of all three plates (panel
(e)) contains representative samples from all regions of color-magnitude space. The higher-latitude
field (lower panels) is quite different. The stellar densityis much lower in this field, so that in three
LAMOST plates, a total of 24.4% of the stars between14 < r < 19.5 are assigned to fibers. The
first plate (panel (b)) appears very similar to the corresponding selection from the low-latitude field,
with bright, blue stars overemphasized (note also that manyof the very blue,g − r < 0.2 objects
are gone after the first plate). By the second and third platesin this field, however, a large fraction
of the bright, blue stars have already been assigned, and theselected stars start to cover more of
the parameter space (specifically, there are many more faintstars – especially a lot more faint, red
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Fig. 7 Color-magnitude Hess diagrams for stars selected from the low-latitude (b ∼ 30◦) field
(upper panels) and high-latitude (b ∼ 60◦) example fields. The same target selection parameters
were used as in Figures 5 and 6. In each row, the panels represent (a) all stars from SDSS in the
field of view, (b) stars selected for fiber assignment on the first LAMOST plate in this field, (c) a
second plate excluding the stars in the first assignment, (d)a third plate, excluding stars from the
first two, and (e) the sum of the three selected plates. The high-latitude field of view contains a
total of 44 566 stars, and the lower-latitude field has 102 199. Roughly 3700 stars were assigned on
each of the three plates, so that in total, 24.4% of the high-latitude stars were assigned to a fiber
on one of the three plates, and 10.8% of those at lower latitudes. In the low-latitude field there are
many stars available, so the effects (especially the emphasis on bright, blue stars) of the preferential
targeting categories are obvious in all three plates. However, the sum of all three plates (upper panel
(e)) contains representative samples from all regions of color-magnitude space. The higher-latitude
field (lower panels) has much lower stellar density. The first high-latitude plate (lower panel (b))
appears very similar to the corresponding selection from the low-latitude field, with bright, blue
stars overemphasized (also note that many of the very blue,g − r < 0.2 objects are gone after the
first plate). By the second and third plates in this field the selected stars start to cover more of the
parameter space; once a large fraction of the bright, blue stars have been assigned, many more faint,
red M-type stars get selected.

M-type stars). Thus if one pre-selected three plates in a high-latitude field, the demographics of the
stars on each observed plate would be quite different from each other. This makes reconstruction
of the underlying populations rather difficult, because a different fraction of stars from each region
of parameter space will have been observed depending on the stellar populations and stellar density
in each field. Of course, variations in the number of times a given piece of sky is covered will
dramatically alter the distribution of objects in the final catalog.
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Finally, we note that a routine that weights stars for selection based on the local density in
parameter space will produce catalogs with different target demographics for different regions of
sky. This is inevitable, because as we just showed, the stellar density on the sky actually affects the
distribution of selected stars in parameter space, such that there is no way to get identical samples
from regions of sky with different stellar densities. We also note that for a survey such as LAMOST,
with a circular field of view, it is not possible to cover the whole sky with each part sampled only
once. This will inevitably make the sampling of certain regions of sky higher than others.

Thus, to determine the underlying stellar populations based on the observed spectroscopic sam-
ple, one would need to either simulate the entire selection process, or compare the number of spectra
of each type observed in a given part of the sky to the number ofthat same type of star that was avail-
able in the photometric catalog. We note that holistic models of the Galaxy with tuneable analytic
parameters are now available (e.g., the Galaxia code; Sharma et al. 2011) which could be sampled
with the selection function of the survey and used to correctsurvey artifacts.

5 CONCLUSIONS

We have presented a general target selection algorithm thatcan be used in any instance where large
numbers of stars are to be selected from a catalog that is muchlarger than the desired number of tar-
gets. The program performs selections in multi-dimensional parameter space defined by any number
of observables (or combinations of observables). Various functions are available to emphasize cer-
tain types of targets, and the program can be readily modifiedto implement an overemphasis based
on any smooth function of the observables. This target selection algorithm was developed for the
LEGUE portion of the LAMOST survey, and has been implementedin the LAMOST pilot survey.
We have shown that careful choice of the target selection parameters can produce the desired relative
numbers of various target categories, while retaining a smooth distribution across parameter space.
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