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Abstract We use the smeared, coherent state picture of noncomnitytativstudy
evolution of perturbations in a noncommutative branewscienario. Within the stan-
dard procedure of studying braneworld cosmological pbetions, we study the evo-
lution of the Bardeen metric potential and curvature pétions in this model. We
show that in this setup, the early stage of the universe’sigeo has a transient phan-
tom evolution with imaginary effective sound speed.
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1 INTRODUCTION

Inspired by some aspects of string theory and loop quantavityy the fuzziness of a spacetime
manifold can be expressed through the following relatiamfmn-commutativity of coordinate op-
erators (Douglas & Nekrasov 2001; Szabo 2003; Seiberg &Wit999; Connes & Marcolli 2006;
Connes 2000; Konechny & Schwarz 2002; Chaichian et al. 2M&; & Sheikh-Jabbari 2001,
Chamseddine & Connes 2010; Veneziano 1986; Amati et al. 19888, 1989, 1990; Gross &
Mende 1988)

&, 2] = 07, 1)
whered% is a real, antisymmetric matrix, with the dimension of lénggjuared which determines the
fundamental cell discretization of the spacetime manifélsla consequence of the above relation,
the notion of a pointin the spacetime manifold becomes alessithere is a fundamental uncertainty
in measuring the coordinates

Az’ Az > %|9”| 2

This finite resolution of the spacetime points especiafigcs cosmological dynamics in early stages
of the universe’s evolution. On the other hand, inflation beasn identified as a great opportunity
to test theories of Planck scale physics including noncotative geometry. Essentially, effects
of trans-Planckian physics should be observable in the wosmtrowave background radiation
(Easther et al. 2001, 2002, 2003; Kaloper et al. 2002; Bergst® Danielsson 2002; Martin &
Brandenberger 2003; Maartens et al. 2000).

For this reason, various attempts to construct noncomivetiiflationary models have been
done by adopting different approaches. These approactiesi@using relation (1) for space-space
(Chuetal. 2001; Lizzi et al. 2002; Hassan & Sloth 2003) arategtime (Brandenberger & Ho 2002)
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coordinates and constructing a noncommutative field thenthe spacetime manifold by replacing
the ordinary product of fields by a Weyl-Wigner-Moyal- product. Another way to incorporate
effects of high energy physics in inflationary models is bingghe generalized uncertainty prin-
ciple (GUP) which is a manifestation of the existence of adimental length scale in the system
(Alexander et al. 2003; Alexander & Magueijo 2001; Koh & Bdamberger 2007).

Recently a new approach to noncommutative inflation has pegposed by Rinaldi (2011)
using the coherent state picture of noncommutativity thiiced in Smailagic & Spallucci (2003a,b,
2004). This model is free from some of the problems that maguodels based onsa— product,
such as unexpected divergences and UV/IR mixing (see Nic0i09 for a comprehensive review).
The key idea in this model is that noncommutatigtyearsthe initial singularity and as a result there
will be an smooth transition between pre and post big barg\deaan accelerated expansion. It has
been shown that noncommutativity eliminates point-likesiures in favor of smeared objects in flat
spacetime. As Nicolini et al. have shown (Nicolini 2005; dlini et al. 2006; Spallucci et al. 2006)
(see also Rizzo 2006; Ansoldi et al. 2007; Spallucci et dR20lozari & Mehdipour 2008, 2009 for
some other extensions), the effect of smearing is mathealigtimplemented as a substitution rule:
the Dirac-delta function representing position is reptheeerywhere with a Gaussian distribution
of minimal width /6. In this framework, they have chosen the mass density oftie,sspherically
symmetric, smeared, particle-like gravitational sourséotiows

r2

po(r) = #GXP(—E)- 3)

As they indicated, the particle mads, instead of being perfectly localized at a point, is diffdise
throughout a region of linear sizg¢f. This is due to the intrinsic uncertainty as has been shown in
the coordinate commutators (1).

Before sketching the platform of our work in this paper, wepbiasize two important issues:
First the noncommutative relations (1) are written in toenoving coordinates. The commutators
betweerphysical spatial coordinates involve the scale factor. As a redudt,physical noncommu-
tative scale will become extremely small at earlier scadesl one would expect that this prevents
the noncommutative effects from becoming too large ateatilines. This could be desirable, since
such effects break rotational invariance. So, in the playsiame, all the subsequent equations are
still valid but noncommutative paramet@mwill be time dependant in this frame. Secondly, in the
cosmology emerging from our model, time runs fremo to +oc and the time = 0 corresponds to
when the typical scale of the universe coincides with thecmmmutativity scale. As we will show
(see also Nozari & Akhshabi 2010), it is the cosmological@ton around: = 0 which shows the
features which differentiate this cosmology from the usuna. In particular, it is in this time region
that the phantom divide is crossed. This may raise a questioy should the Friedmann equations
be applicable on these scales where non-local physics isriant? To address this problem and de-
rive a solution in the absence of complete noncommutatiustEin field equations, we assume that
at a semiclassical level, noncommutativity only alterssberce side of the Einstein field equations
and does not change the left hand side. In other words, weoseghat noncommutativity acts on
the matter sector of the theory and leaves the geometriaupaitered. In this manner we can still
use the usual Einstein (Friedmann) equations but with agronwutative source smeared through a
small region of spacetime.

Recently we have constructed a noncommutative branewnfldtion scenario (Nozari &
Akhshabi 2010) based on the idea that initial singularitgriseared in a noncommutative back-
ground. Within the same streamline, the purpose of this p&pt® study the time evolution of
cosmological perturbations in a braneworld inflation scienia the context of spacetime noncom-
mutativity.
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2 COSMOLOGICAL DYNAMICS IN THE NONCOMMUTATIVE RS Il MODEL
The 5D field equations in the Randall-Sundrum (RS) Il (Ran&&undrum 1999) setup are

s
Mg
wherey is a Gaussian normal coordinate orthogonal to the brané(tee is localized ag = 0),

A is the brane tension, arilds 5 is the energy-momentum tensor of particles and fields comfioe
the brane. The effective field equations on the brane argatefiom the Gauss-Codazzi equations
and junction conditions (usings-symmetry) (Shiromizu et al. 2000; Binétruy et al. 2000;avtans
2004)

ClGap = —As Vgap +3(y) [—AgaB + Tasl, (4)

2

Gab - _Agab + KQTab + 6HTSab - gab 3 (5)

whereS,;, ~ (T,;)? is the high-energy correction term, which is negligiblefex A, while £,; is the
projection of the bulk Weyl tensor on the brane. The genenahfof the brane energy-momentum
tensor for any matter fields (scalar fields, perfect fluidegkc gases, dissipative fluids, etc.), in-
cluding a combination of different fields, can be covarigagtiven in terms of a chosen 4-velocity
ut as

T,uz/ = pUpUy + phm/ + Tpy + qutiv + Gy (6)
Herep andp are the energy density and isotropic pressureqaddr are the momentum density
and anisotropic stress respectivély, defined as

hMU = Gy T Uply = (S)Q;UJ — NNy + Uy (7)

projects into the comoving rest space at each event whgrie the spacelike unit normal to the
brane. The modified Friedmann and Raychaudhuri equatidhe ibackground are (Shiromizu et al.
2000; Binétruy et al. 2000)

2

2 _ K7 r ¢ 1 K
H? = 3p(1+2)\)+a4+3A = ®)
and ) c

K P_,C K

== (p+p) (1+5) —25+ 5, (9)

respectively. By definition = %zpsoag wherep,. is the dark radiation energy density. For a matter
content consisting of a perfect fluid or a minimally coupledlar field, the total effective energy
density, pressure, momentum density and anisotropicsstesbe written as (Maartens 2004)

off p P

= 1+ = 4+ = 10
p p( toyt p) ; (10)
off p p°

— £ (9 £ 11
p p+2/\(p+p)+3, (11)
<" =q . (12)
T = Tap (13)

where superscript denotes the contribution of the bulk Weyl tensor which entidre modi-
fied Friedmann equation as a non-local dark radiation tersmndJthese definitions, the modified
Friedmann and Raychaudhuri equations can be rewritten as

2
2 _ K w1, K
H® = Y4 +3A+a2’ (14)
2
: __i eff eff 5
H === (" +p7)+ . (15)
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The tracefree property @ in Equation (5) implies that the pressure ob&ys= %pa.
The local conservation equations on the brane are (Maa2@iw)
p+0O(p+p) =0, (16)
Dap + (p+p)Aa =0, 7)
where® is the volume expansion rate, which reduces b in the Friedmann-Robertson-Walker
background { is the background Hubble ratel,, is the 4-acceleration, anB, is the covariant

derivative in the rest space. The non-local conservatiaagons for the dark radiation matter can
be expressed as (Maartens 2004)

4
p7+ 500"+ D% =0, (18)

(p+p)
A
We now suppose that the initial singularity that leads to R§gebmetry afterwards is smeared due
to spacetime noncommutativity. A newly proposed model fainailar scenario in the usual 4D
universe suggests that one could write the energy densifRRiaaldi 2011; Nozari & Akhshabi

2010)

1 4
4o +4Hq, + gDaPs + gpsAa + D5y = — Dap. (19)

1 2
t) = /8 20
p(t) = 55 3g5¢ (20)

Note that we suppose that the universe enters the RS Il gepinemnediately after the initial
smeared singularity which is a reasonable assumption iffitamnce, from an M-theory perspec-
tive of the cyclic universe this assumption seems to bebigjasee Steinhardt & Turok 2002, 2003;
Khoury et al. 2004; Turok & Steinhardt 2005; Bojowald et €02). Using Equation (20), and set-
ting A = 0 = K, the Friedmann Equation (14) in noncommutative space cbeldewritten as
follows

2

H? = =" (1), (21)

wherep°f is given by Equation (10). From Equation (16) one can find ffectve noncommutative
pressure using Equation (20) as

t 2
p=—p+gpe £/80 (22)
So, the equation of state parameter will be
16
w=—1+ 7 tet"/80 (23)
and the speed of sound is
o P —3t—64027%e /30 4 3207212 /30

o 3t
Using Equations (10) and (11) we can find dffective equation of state and speed of sound. To this
end, we note that there are constraints from nucleosyrstbesihe value op° so that%s < 0.03 at
the time of nucleosynthesis (Burles et al. 1999; Langlo&.€2001). In this respect, we can neglect
this contribution to find

(24)

. 1 +2 —¢2 —¢2 —2
Wt = 0% e 3T { —1927%0%\ + 1024 te 50 7403\ — 3e 50 + 32te497r29]

1 242 =2\ _—2g-2y-1 ?
x{9{64 (64779)\4—6 9)71' 02\
-1

wn20-- e | L (6472020 1 050 ) n-26-22-1 25
o1 + ; (25)
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Fig.1 (a) Evolution of the noncommutative equation of state pataméolid line) and the non-
commutative effective equation of state parametiast{-dotted line) versus the cosmic time. (b)
Evolution of the noncommutative effective speed of sourdugthe cosmic time. For> 0 and in
the high energy noncommutative reginejs imaginary (a phantom evolution).

which simplifies to the following equation for the high engrggime (> \)
w14 3—327r29te_t2/89 . (26)
Similarly, the effective speed of sound in the high energyme will be

16

_$2 2
() ~ ?Wgete—ﬁ/&é) + —3t — 640°m2e " /80 4 3252261 /80 .

3t

(27)

Figure 1(a) shows the evolution of the equation of statemater and the effective equation of
state parameter as given by Equations (23) and (25) regplscths one can see from this figure,
there is a small variation i andw* around the smeared singularity.

Figure 1(b) shows the evolution of the effective speed ofhsolt is obvious from this figure
that int > 0 and in the high energy noncommutative regimeis imaginary. In this respect, the
evolution of the universe in the early, inflationary staga ghantom evolution.

We use these results in the next section to determine timatevo of the cosmological pertur-
bations.

3 EVOLUTION OF LARGE SCALE SCALAR PERTURBATIONS

The evolution of cosmological perturbations in the Ran@alhdrum braneworld scenario has been
studied extensively (see for instance Maartens 2000; BafrMaartens 2002; Maartens et al. 2000;
Copeland et al. 2001; Langlois et al. 2000; Mukohyama 20@0glois 2001 and references therein).
To analyze the scalar perturbations in our noncommutattaps we define energy density and
expansion perturbations following Maartens (2002) whalubke covariant 3+1 analysis developed
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in Gordon & Maartens (2001)

a2

A= —D?%, Z =a*D%0. (28)
P

Similarly, the perturbations in nonlocal quantities asst@al with the dark radiation matter are de-
fined as

2
1
U="D%,  0=%D%, TI=-D%". (29)
p p p

With these definitions, the equations governing the evatutif perturbations (Egs. (16)—(19)) will
take the following forms

A = 3wHA - (1+w)Z, (30)
: o 2 2 Lo P e N\ pf
U= (3w—1)HU + e PN aa— (22 4 D?Q (32)
= W 1+w p 3p “ ’
. 1 2 1 4c¢2 \ pf p
= ~1)HQ — —U — ZaD*I + — =) — —3(1 =l A 33
@ = Gu-nHQ- v~ o'+ | ({5 ) £ s s k) 4, (33)

wherep, w andc, are given by Equations (20), (23) and (24), respectively.

In general, scalar perturbations on the brane cannot becpeedoy brane observers without
additional information from the bulk because there is ncagign forll in the above set of equations.
Nevertheless, it has been shown that on large scales onegattitheD?I1 term in Equation (33).
So, on large scales, the system of equations closes on the,l@ad brane observers can predict
scalar perturbations from initial conditions intrinsicttee brane without the need to solve the bulk
perturbation equations (Maartens 2002; Gordon & Maart&@4.p

To solve the above system of equations using the simplifinatientioned, we introduce two
new variables; the first is a scalar covariant curvatureupleation variable

C =a*D*R = —4a’HZ + 2k%d*p (1 + %) A+ 2r%a%pU | (34)

whereR is the Ricci curvature of the surfaces orthogonalto The second variable is a covariant
analog of the Bardeen metric potentia;,

d = k%a?pA. (35)

Along each fundamental world-line, covariant curvaturgyobation,C, is locally conserved

C:COa COZO (36)
With these new variables, the system of equations reduces to
. ﬁzp P a2f$4p2 52/)
b= -H [1+(1+w)m (HX)} o - [(1+w) 2H } U+ [(1+w)ﬁ} Co, (37)
. 2K2p° 2p° p 6c2H? p°
U__HP_&WFMP} _mnm[ X‘ﬁ:ﬂﬁ%] [5%5%%*%)

If there is no dark radiation in the backgroupd,= 0, then

U = Upexp [/(311} - 1)dN] , (39)
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whereN is the number of e-folds. In this case, the above system esdiaca single equation fdr
which is

e (1 +w)k?p p (1 +w)k?p 3(1+w)agp] on
KA PO ) Y U | I S Gl ) 3 PG B ol Gl ) LT . (40
aN " { g (1 5) | ¢ e o U 40

whereU is given by Equation (39). We use these results in the nexibseto study noncommutative
modifications of the dynamics of scalar perturbations.

4 NONCOMMUTATIVE MODIFICATIONS

Now we want to solve Equation (40) using explicit noncomrtiuéaforms ofp, H, w andU given
by (20), (21), (23) and (39) respectively. To this end, wednhteespecify the noncommutative form
of N which has appeared in Equation (39). As we have shown in N&zAkhshabi (2010), the
noncommutative number of e-folds is given by

ty
N = Hdt ~ gm-;ng {\/ 0 erf(

+§7r1<;2p0 {\/_9 erf( \/_) + = \/—9 erf(1 \/\/_E ) 1], (41)

whereerf(z) denotes the error function. By expanding the error funstiosnEquation (41) in a
series, the number of e-folds (supposing that the univer®the inflationary phase immediately
after the big bang, thatig; = 0 andt; = t) will be given by
t3 1 1 V23 1 V28
+5(2t- ¢ vae 1 var
6 /02 40 VT3

3
\/_)—i— V2 rf(1 \/gj)/\ ]

8 o
N~ —-mrk“pp |t — — — =
3 12 \/_92 160 JToz 2

Now we can integrate Equation (40) to find

))\1} . (42)

pAK2C)
2H2XA + (1 4+ w)(K2pX + K2p?)
H?pXag?Uexp (3wa—3wag — a+ ag) —t2
6H2\ + (1 4+ w)(KZ2pA + K2p?) P ( 40 )
1 2H?XA + (1 4+ w)(k2p A + K2p?) 2
2 H2) 80|

1

—6(1 +w)

+exp

(43)

Figure 2 shows the evolution @f for both the usual braneworld scenario and our noncommuta-
tive setup in the high energy inflation regimex \). One should note that the subsequent evolution
of the universe after times greater than a f¢ should be governed by a matter contetitferent
than the one used in Equation (21) (i.e. energy density ofrtitial singularity smeared by non-
commutativity). So, the evolution af, ¢2 and® in the low energy regime should essentially be
different. As Figure 2 shows, since for large times the larggiale of the fluctuation mode is large,
the noncommutativity should have no effect. In fact, dudtoexponentially decaying profile of the
source term, the right hand side of the Friedmann equatioishas after a short time. In addition,
note that at large times, the time dependences of the twasuware not the same. This is because
the standard case contains an inflation field which esshriias a different cosmological evolution
relative to our smeared initial singularity picture. ThHere, only around = 0 do we expect to have
a similar behavior between the two scenarios.

1 See for instance Parker (1969) for particle creation in graesling universe.
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Fig. 2 Evolution of the parametep which is an analog of the Bardeen metric potential as defimed i
(35) for both the usual braneworld scenaidiaghed line) and our noncommutative setugolid line)
when &t = 10'°. We assumed that no dark energy is present in the backgraordery.

The solution (43) is valid when there is no dark radiatiorhi& background. I5° # 0, then one
should solve the system of Equations (37) and (38) usingxpkcé form of p°. Generally the time
dependence gf for a brane observer is not determined. Here we introducesilple candidate for
this quantity: as we have mentioned previously, the comgtfilmom nucleosynthesis on the value of
peis therefore%a < 0.03 at the time of nucleosynthesis. Based on this constraintameassume for
instance thap® is a small fraction op at a given time. Since the time evolution @fs determined
by Equation (20), the time evolution pf can be assumed to be

0 2
(1) = —1°/40
whered is a small constant less th&rD3. This form of p°(¢) can be used to explicitly solve the
system of Equations (37) and (38). Nevertheless, this piureaneeds a lot of calculations with very
lengthy solutions, so we ignore their presentation here.
The curvature perturbation defined in a metric-based pgwation theory is

op

TR

(44)
which reduces t&® on hypersurfaces with uniform density(= 0). If there is no dark radiation in

the background® = 0), the total curvature perturbation on a large scale is ginethe following
differential Equation (45)

feff _ fm 2_l p+p 6p5
=t *H{CS 3+(p+A)} ESETDN (42)

where¢™ is a matter perturbation which is zero for adiabatic pewtidms. Since the time variations
of p, H, p, cs anddp® are given by Equations (20), (21), (22), (24) and (39) retpely, we can
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Fig. 3 Evolution of the parametef defined in Equation (44) (with the same parameter values as in
Fig. 2) when&2 = 10'° and no dark radiation is present in the background geometry.

obtain the time evolution of the curvature perturbationliexy as follows

2
6

o~

N

é-eff _

Ei (1 3L) a2 )
1 )
30 1 e 80 lEi 1 t —ge_
3 3

96 w202\ 48 w202\ " 46

1 t 1 1 1 V2t 1
——ef [ — N —— — —af [ - 2= |V —, (46
768 (2\/5) " iz 24" (4 J@)f " - 49

whereEi(a, 2) is the exponential integral defined &8(a, z) = 2*~'T'(1 — a, 2).
Figure 3 shows the evolution ¢Ff versus the cosmic time in our noncommutative brane infla-
tion. As the figure showsg, is a constant at late times.

3

5 CONCLUSIONS

Spacetime noncommutativity, as a trans-Planckian effecid have some observable effects on the
cosmic microwave background radiation. In this respeds desirable to study an inflation sce-
nario within a noncommutative background. Recently we hsh@vn the possibility of finding a
non-singular, bouncing, early time cosmology in a noncoitative braneworld scenario (Nozari
& Akhshabi 2010). In that work, using the smeared, cohertateicture of the spacetime non-
commutativity, we have constructed a braneworld inflatfat has the potential to support the scale
invariant scalar perturbations. Here, following our poas work, we have studied the time evolution
of the perturbations in this noncommutative braneworldgetVe have neglected the contribution
of the dark radiation term (originating in the bulk Weyl tensin the background geometry to have
a closed set of equations on the brane. However, the cofitnitsuof this term in the evolution of
perturbations on the brane are taken into account. In thys lyastudying the effective quantities
(such as the effective equation of state and effective speedund on the brane) we have derived



634 K. Nozari & S. Akhshabi

the possibility of a phantom evolution in the early, infla@wy stage of the universe’s history. We
emphasize that, in general, one requires long wavelengtarpations to grow into large scale clas-
sical perturbations (around which structure eventualiynf), and whose overall amplitude depends
on the parameters of the setup and is consistent with whéisisreed (for instance by COBE nor-
malization). As another important point, we note that onedsea smaller number of e-folds in
the noncommutative regime to have a successful branewdtédion (see also Nozari & Akhshabi
2010).

It should be noted that Equation (1) was defined with resgetié comoving coordinates
which means we are considering a scenario in which noncoativity parameteld is constant
in the comoving frame. In physical coordinates this meaas¢lis growing with the scale factor,
something that seems to be reasonable and is suggestechintbory (Chu et al. 2001; Lizzi
et al. 2002; Hassan & Sloth 2003, see also Stern 2010%subsequently drops to zero, at the end of
inflation, this should yield a viable cosmology. One may aisosider the case in whi¢his constant
in the physical frame. In that case we have to use a time vgyivith an exponential decaying factor
that causes the effect of noncommutativity to get redshidieay by inflation. However so long as
6 is constant in the comoving frame and shuts down by the endflation, this can lead to a small
amount of non-gaussianity (Chu et al. 2001; Lizzi et al. 208&ssan & Sloth 2003). We also note
that in this noncommutative setup for large times, the nomoatativity should have no effect since
the length scale of the fluctuation mode is large. This carelka &y constancy & at late time in
Figure 3. This is due to the exponentially decaying profil¢hef source term on the right hand side
of the Friedmann equation which vanishes at late times.

Finally, in the cosmology emerging from this model, timesdrom —oo to +o0o and the time
t = 0 plays a crucial role. In particular, it is during this timerjoel that the phantom divide is
crossed. One may doubt the validity of the standard Friedneguation around this point. We note
that in the absence of a complete formulation of the noncotative Einstein field equations, we
can assume that noncommutativity acts on the matter setctbe theory and leaves the geometric
part unaltered. By this assumption, we still can use the [Usustein (Friedmann) equations but
with a noncommutative source smeared through a small rejispacetime.
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