
Research in Astron. Astrophys.2012Vol. 12No. 6, 625–635
http://www.raa-journal.org http://www.iop.org/journals/raa

Research in
Astronomy and
Astrophysics

Cosmological perturbations in a noncommutative braneworld
inflation

Kourosh Nozari and Siamak Akhshabi

Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box
47416-95447, Babolsar, Iran;knozari@umz.ac.ir; s.akhshabi@umz.ac.ir

Received 2011 October 5; accepted 2012 March 2

Abstract We use the smeared, coherent state picture of noncommutativity to study
evolution of perturbations in a noncommutative braneworldscenario. Within the stan-
dard procedure of studying braneworld cosmological perturbations, we study the evo-
lution of the Bardeen metric potential and curvature perturbations in this model. We
show that in this setup, the early stage of the universe’s evolution has a transient phan-
tom evolution with imaginary effective sound speed.
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1 INTRODUCTION

Inspired by some aspects of string theory and loop quantum gravity, the fuzziness of a spacetime
manifold can be expressed through the following relation for non-commutativity of coordinate op-
erators (Douglas & Nekrasov 2001; Szabo 2003; Seiberg & Witten 1999; Connes & Marcolli 2006;
Connes 2000; Konechny & Schwarz 2002; Chaichian et al. 2003;Micu & Sheikh-Jabbari 2001;
Chamseddine & Connes 2010; Veneziano 1986; Amati et al. 1987, 1988, 1989, 1990; Gross &
Mende 1988)

[x̂i, x̂j ] = iθij , (1)

whereθij is a real, antisymmetric matrix, with the dimension of length squared which determines the
fundamental cell discretization of the spacetime manifold. As a consequence of the above relation,
the notion of a point in the spacetime manifold becomes obscure as there is a fundamental uncertainty
in measuring the coordinates

∆xi∆xj ≥ 1

2
|θij |. (2)

This finite resolution of the spacetime points especially affects cosmological dynamics in early stages
of the universe’s evolution. On the other hand, inflation hasbeen identified as a great opportunity
to test theories of Planck scale physics including noncommutative geometry. Essentially, effects
of trans-Planckian physics should be observable in the cosmic microwave background radiation
(Easther et al. 2001, 2002, 2003; Kaloper et al. 2002; Bergström & Danielsson 2002; Martin &
Brandenberger 2003; Maartens et al. 2000).

For this reason, various attempts to construct noncommutative inflationary models have been
done by adopting different approaches. These approaches include using relation (1) for space-space
(Chu et al. 2001; Lizzi et al. 2002; Hassan & Sloth 2003) and space-time (Brandenberger & Ho 2002)
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coordinates and constructing a noncommutative field theoryon the spacetime manifold by replacing
the ordinary product of fields by a Weyl-Wigner-Moyal∗ − product. Another way to incorporate
effects of high energy physics in inflationary models is by using the generalized uncertainty prin-
ciple (GUP) which is a manifestation of the existence of a fundamental length scale in the system
(Alexander et al. 2003; Alexander & Magueijo 2001; Koh & Brandenberger 2007).

Recently a new approach to noncommutative inflation has beenproposed by Rinaldi (2011)
using the coherent state picture of noncommutativity introduced in Smailagic & Spallucci (2003a,b,
2004). This model is free from some of the problems that plagued models based on a∗ − product,
such as unexpected divergences and UV/IR mixing (see Nicolini 2009 for a comprehensive review).
The key idea in this model is that noncommutativitysmears the initial singularity and as a result there
will be an smooth transition between pre and post big bang eras via an accelerated expansion. It has
been shown that noncommutativity eliminates point-like structures in favor of smeared objects in flat
spacetime. As Nicolini et al. have shown (Nicolini 2005; Nicolini et al. 2006; Spallucci et al. 2006)
(see also Rizzo 2006; Ansoldi et al. 2007; Spallucci et al. 2009; Nozari & Mehdipour 2008, 2009 for
some other extensions), the effect of smearing is mathematically implemented as a substitution rule:
the Dirac-delta function representing position is replaced everywhere with a Gaussian distribution
of minimal width

√
θ. In this framework, they have chosen the mass density of a static, spherically

symmetric, smeared, particle-like gravitational source as follows

ρθ(r) =
M

(2πθ)
3

2

exp
(

− r2

4θ

)

. (3)

As they indicated, the particle massM , instead of being perfectly localized at a point, is diffused
throughout a region of linear size

√
θ. This is due to the intrinsic uncertainty as has been shown in

the coordinate commutators (1).
Before sketching the platform of our work in this paper, we emphasize two important issues:

First the noncommutative relations (1) are written in thecomoving coordinates. The commutators
betweenphysical spatial coordinates involve the scale factor. As a result, the physical noncommu-
tative scale will become extremely small at earlier scales,and one would expect that this prevents
the noncommutative effects from becoming too large at earlier times. This could be desirable, since
such effects break rotational invariance. So, in the physical frame, all the subsequent equations are
still valid but noncommutative parameterθ will be time dependant in this frame. Secondly, in the
cosmology emerging from our model, time runs from−∞ to +∞ and the timet = 0 corresponds to
when the typical scale of the universe coincides with the non-commutativity scale. As we will show
(see also Nozari & Akhshabi 2010), it is the cosmological evolution aroundt = 0 which shows the
features which differentiate this cosmology from the usualone. In particular, it is in this time region
that the phantom divide is crossed. This may raise a question: why should the Friedmann equations
be applicable on these scales where non-local physics is important? To address this problem and de-
rive a solution in the absence of complete noncommutative Einstein field equations, we assume that
at a semiclassical level, noncommutativity only alters thesource side of the Einstein field equations
and does not change the left hand side. In other words, we suppose that noncommutativity acts on
the matter sector of the theory and leaves the geometric partunaltered. In this manner we can still
use the usual Einstein (Friedmann) equations but with a noncommutative source smeared through a
small region of spacetime.

Recently we have constructed a noncommutative braneworld inflation scenario (Nozari &
Akhshabi 2010) based on the idea that initial singularity issmeared in a noncommutative back-
ground. Within the same streamline, the purpose of this paper is to study the time evolution of
cosmological perturbations in a braneworld inflation scenario in the context of spacetime noncom-
mutativity.
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2 COSMOLOGICAL DYNAMICS IN THE NONCOMMUTATIVE RS II MODEL

The 5D field equations in the Randall-Sundrum (RS) II (Randall & Sundrum 1999) setup are

(5)GAB = −Λ5
(5)gAB + δ(y)

8π

M3
5

[−λgAB + TAB] , (4)

wherey is a Gaussian normal coordinate orthogonal to the brane (thebrane is localized aty = 0),
λ is the brane tension, andTAB is the energy-momentum tensor of particles and fields confined to
the brane. The effective field equations on the brane are derived from the Gauss-Codazzi equations
and junction conditions (usingZ2-symmetry) (Shiromizu et al. 2000; Binétruy et al. 2000; Maartens
2004)

Gab = −Λgab + κ2Tab + 6
κ2

λ
Sab − Eab , (5)

whereSab ∼ (Tab)
2 is the high-energy correction term, which is negligible forρ≪λ, whileEab is the

projection of the bulk Weyl tensor on the brane. The general form of the brane energy-momentum
tensor for any matter fields (scalar fields, perfect fluids, kinetic gases, dissipative fluids, etc.), in-
cluding a combination of different fields, can be covariantly given in terms of a chosen 4-velocity
uµ as

Tµν = ρuµuν + phµν + πµν + qµuν + qνuµ . (6)

Hereρ andp are the energy density and isotropic pressure andq andπ are the momentum density
and anisotropic stress respectively.hµν defined as

hµν = gµν + uµuν = (5)gµν − nµnν + uµuν (7)

projects into the comoving rest space at each event wherenν is the spacelike unit normal to the
brane. The modified Friedmann and Raychaudhuri equations inthe background are (Shiromizu et al.
2000; Binétruy et al. 2000)

H2 =
κ2

3
ρ
(

1 +
ρ

2λ

)

+
C

a4
+

1

3
Λ − K

a2
, (8)

and

Ḣ = −κ2

2
(ρ + p)

(

1 +
ρ

λ

)

− 2
C

a4
+

K

a2
, (9)

respectively. By definition,C = κ2

3 ρε0a
4
0 whereρε0 is the dark radiation energy density. For a matter

content consisting of a perfect fluid or a minimally coupled scalar field, the total effective energy
density, pressure, momentum density and anisotropic stress can be written as (Maartens 2004)

ρeff = ρ

(

1 +
ρ

2λ
+

ρε

ρ

)

, (10)

peff = p +
ρ

2λ
(2p + ρ) +

ρε

3
, (11)

qeff
a = qε

a , (12)

πeff
ab = πε

ab , (13)

where superscriptε denotes the contribution of the bulk Weyl tensor which enters the modi-
fied Friedmann equation as a non-local dark radiation term. Using these definitions, the modified
Friedmann and Raychaudhuri equations can be rewritten as

H2 =
κ2

3
ρeff +

1

3
Λ +

K

a2
, (14)

Ḣ = −κ2

2
(ρeff + peff) +

K

a2
. (15)
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The tracefree property ofEµ
ν in Equation (5) implies that the pressure obeysP ε = 1

3ρε.
The local conservation equations on the brane are (Maartens2004)

ρ̇ + Θ(ρ + p) = 0, (16)

Dap + (ρ + p)Aa = 0, (17)

whereΘ is the volume expansion rate, which reduces to3H in the Friedmann-Robertson-Walker
background (H is the background Hubble rate),Aa is the 4-acceleration, andDa is the covariant
derivative in the rest space. The non-local conservation equations for the dark radiation matter can
be expressed as (Maartens 2004)

ρ̇ε +
4

3
Θρε + Daqε = 0, (18)

q̇ε
a + 4Hqε

a +
1

3
Daρε +

4

3
ρεAa + Dbπε

ab = − (ρ + p)

λ
Daρ . (19)

We now suppose that the initial singularity that leads to RS II geometry afterwards is smeared due
to spacetime noncommutativity. A newly proposed model for asimilar scenario in the usual 4D
universe suggests that one could write the energy density as(Rinaldi 2011; Nozari & Akhshabi
2010)

ρ(t) =
1

32π2θ2
e−t2/4θ . (20)

Note that we suppose that the universe enters the RS II geometry immediately after the initial
smeared singularity which is a reasonable assumption (for instance, from an M-theory perspec-
tive of the cyclic universe this assumption seems to be reliable, see Steinhardt & Turok 2002, 2003;
Khoury et al. 2004; Turok & Steinhardt 2005; Bojowald et al. 2004). Using Equation (20), and set-
ting Λ = 0 = K, the Friedmann Equation (14) in noncommutative space couldbe rewritten as
follows

H2 =
κ2

3
ρeff(t), (21)

whereρeff is given by Equation (10). From Equation (16) one can find the effective noncommutative
pressure using Equation (20) as

p = −ρ +
t

6θ
e−t2/8θ . (22)

So, the equation of state parameter will be

ω = −1 +
16

3
π2θ te−t2/8θ (23)

and the speed of sound is

c2
s =

ṗ

ρ̇
=

−3t − 64θ2π2e−t2/8θ + 32θπ2t2e−t2/8θ

3t
. (24)

Using Equations (10) and (11) we can find theeffective equation of state and speed of sound. To this
end, we note that there are constraints from nucleosynthesis on the value ofρε so thatρ

ε

ρ ≤ 0.03 at
the time of nucleosynthesis (Burles et al. 1999; Langlois etal. 2001). In this respect, we can neglect
this contribution to find

ωeff =
1

192
e−

1

8

t2

θ

[

− 192 π2θ2λ + 1024 te
−t2

8θ π4θ3λ − 3 e
−t2

8θ + 32 te
−t2

4θ π2θ

]

×
{

θ

[

1

64

(

64 π2θ2λ + e
−t2

8θ

)

π−2θ−2λ−1

]}2

×π−2θ−4λ−1

{

e
−t2

8θ

[

1

64

(

64 π2θ2λ + e
−t2

8θ

)

π−2θ−2λ−1

]}

−1

, (25)
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Fig. 1 (a) Evolution of the noncommutative equation of state parameter (solid line) and the non-
commutative effective equation of state parameter (dash-dotted line) versus the cosmic time. (b)
Evolution of the noncommutative effective speed of sound versus the cosmic time. Fort > 0 and in
the high energy noncommutative regime,cs is imaginary (a phantom evolution).

which simplifies to the following equation for the high energy regime (ρ≫λ)

ωeff ≈ −1 +
32

3
π2θ te−t2/8θ . (26)

Similarly, the effective speed of sound in the high energy regime will be

(c2
s)

eff ≈ 16

3
π2θ te−t2/8θ +

−3t− 64θ2π2e−t2/8θ + 32θπ2t2e−t2/8θ

3t
. (27)

Figure 1(a) shows the evolution of the equation of state parameter and the effective equation of
state parameter as given by Equations (23) and (25) respectively. As one can see from this figure,
there is a small variation inω andωeff around the smeared singularity.

Figure 1(b) shows the evolution of the effective speed of sound. It is obvious from this figure
that in t > 0 and in the high energy noncommutative regime,cs is imaginary. In this respect, the
evolution of the universe in the early, inflationary stage isa phantom evolution.

We use these results in the next section to determine time evolution of the cosmological pertur-
bations.

3 EVOLUTION OF LARGE SCALE SCALAR PERTURBATIONS

The evolution of cosmological perturbations in the Randall-Sundrum braneworld scenario has been
studied extensively (see for instance Maartens 2000; Barrow & Maartens 2002; Maartens et al. 2000;
Copeland et al. 2001; Langlois et al. 2000; Mukohyama 2000; Langlois 2001 and references therein).
To analyze the scalar perturbations in our noncommutative setup, we define energy density and
expansion perturbations following Maartens (2002) who used the covariant 3+1 analysis developed
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in Gordon & Maartens (2001)

∆ =
a2

ρ
D2ρ , Z = a2D2Θ . (28)

Similarly, the perturbations in nonlocal quantities associated with the dark radiation matter are de-
fined as

U =
a2

ρ
D2ρε , Q =

a

ρ
D2qε , Π =

1

ρ
D2πε . (29)

With these definitions, the equations governing the evolution of perturbations (Eqs. (16)–(19)) will
take the following forms

∆̇ = 3wH∆ − (1 + w)Z , (30)

Ż = −2HZ −
(

c2
s

1 + w

)

D2∆ − κ2ρU − 1

2
κ2ρ

[

1 + (4 + 3w)
ρ

λ
−
(

4c2
s

1 + w

)

ρε

ρ

]

∆ , (31)

U̇ = (3w − 1)HU +

(

4c2
s

1 + w

)(

ρε

ρ

)

H∆ −
(

4ρε

3ρ

)

Z − aD2Q , (32)

Q̇ = (3w − 1)HQ − 1

3a
U − 2

3
aD2Π +

1

3a

[(

4c2
s

1 + w

)

ρε

ρ
− 3(1 + w)

ρ

λ

]

∆ , (33)

whereρ, ω andcs are given by Equations (20), (23) and (24), respectively.
In general, scalar perturbations on the brane cannot be predicted by brane observers without

additional information from the bulk because there is no equation forΠ̇ in the above set of equations.
Nevertheless, it has been shown that on large scales one can neglect theD2Π term in Equation (33).
So, on large scales, the system of equations closes on the brane, and brane observers can predict
scalar perturbations from initial conditions intrinsic tothe brane without the need to solve the bulk
perturbation equations (Maartens 2002; Gordon & Maartens 2001).

To solve the above system of equations using the simplification mentioned, we introduce two
new variables; the first is a scalar covariant curvature perturbation variable

C ≡ a4D2R = −4a2HZ + 2κ2a2ρ
(

1 +
ρ

2λ

)

∆ + 2κ2a2ρU , (34)

whereR is the Ricci curvature of the surfaces orthogonal touµ. The second variable is a covariant
analog of the Bardeen metric potentialΦH ,

Φ = κ2a2ρ∆ . (35)

Along each fundamental world-line, covariant curvature perturbation,C, is locally conserved

C = C0 , Ċ0 = 0 . (36)

With these new variables, the system of equations reduces to

Φ̇ = −H

[

1 + (1 + w)
κ2ρ

2H2

(

1 +
ρ

λ

)

]

Φ −
[

(1 + w)
a2κ4ρ2

2H

]

U +

[

(1 + w)
κ2ρ

4H

]

C0, (37)

U̇ = −H

[

1 − 3w +
2κ2ρε

3H2

]

U − 2ρε

3a2Hρ

[

1 +
ρ

λ
− 6c2

sH
2

(1 + w)κ2ρ

]

Φ +

[

ρε

3a2Hρ

]

C0 . (38)

If there is no dark radiation in the background,ρε = 0, then

U = U0 exp
[

∫

(3w − 1)dN
]

, (39)
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whereN is the number of e-folds. In this case, the above system reduces to a single equation forΦ
which is

dΦ

dN
+

[

1 +
(1 + w)κ2ρ

2H2

(

1 +
ρ

λ

)

]

Φ =

[

(1 + w)κ2ρ

4H2

]

Co −
[

3(1 + w)a2
oρ

2

λH2

]

e2NU, (40)

whereU is given by Equation (39). We use these results in the next section to study noncommutative
modifications of the dynamics of scalar perturbations.

4 NONCOMMUTATIVE MODIFICATIONS

Now we want to solve Equation (40) using explicit noncommutative forms ofρ, H , ω andU given
by (20), (21), (23) and (39) respectively. To this end, we need to specify the noncommutative form
of N which has appeared in Equation (39). As we have shown in Nozari & Akhshabi (2010), the
noncommutative number of e-folds is given by

N =

∫ tf

ti

Hdt ≃ 8

3
πκ2 ρ0

[√
πθ erf

(1

2

tf√
θ

)

+
1

2

√
2πθ erf

(1

2

√
2tf√
θ

)

λ−1

]

+
8

3
πκ2 ρ0

[√
πθ erf

(1

2

ti√
θ

)

+
1

2

√
2πθ erf

(1

2

√
2ti√
θ

)

λ−1

]

, (41)

whereerf(x) denotes the error function. By expanding the error functions in Equation (41) in a
series, the number of e-folds (supposing that the universe enters the inflationary phase immediately
after the big bang, that is,ti = 0 andtf = t) will be given by

N ≃ 8

3
πκ2 ρ0

[

t − 1

12

t3
√

πθ
3

2

+
1

160

t5
√

πθ
5

2

+
1

2

(

2 t− 1

6

√
2t3

√
πθ

3

2

+
1

40

√
2t5

√
πθ

5

2

)

λ−1

]

. (42)

Now we can integrate Equation (40) to find

Φ =
1

2
(1 + ω)

ρ λκ2C0

2H2λ + (1 + ω)(κ2ρλ + κ2ρ2)

−6(1 + ω)
H2ρ λ a0

2U exp (3 ω a − 3 ω a0 − a + a0)

6H2λ + (1 + ω)(κ2ρλ + κ2ρ2)
exp

(−t2

4θ

)

+ exp

[

− 1

2

2 H2λ + (1 + ω)(κ2ρ λ + κ2ρ2)

H2λ

t2

8θ

]

. (43)

Figure 2 shows the evolution ofΦ for both the usual braneworld scenario and our noncommuta-
tive setup in the high energy inflation regime (ρ≫λ). One should note that the subsequent evolution
of the universe after times greater than a few

√
θ should be governed by a matter content1 different

than the one used in Equation (21) (i.e. energy density of theinitial singularity smeared by non-
commutativity). So, the evolution ofω, c2

s andΦ in the low energy regime should essentially be
different. As Figure 2 shows, since for large times the length scale of the fluctuation mode is large,
the noncommutativity should have no effect. In fact, due to the exponentially decaying profile of the
source term, the right hand side of the Friedmann equation vanishes after a short time. In addition,
note that at large times, the time dependences of the two curves are not the same. This is because
the standard case contains an inflation field which essentially has a different cosmological evolution
relative to our smeared initial singularity picture. Therefore, only aroundt = 0 do we expect to have
a similar behavior between the two scenarios.

1 See for instance Parker (1969) for particle creation in an expanding universe.
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Fig. 2 Evolution of the parameterΦ which is an analog of the Bardeen metric potential as defined in
(35) for both the usual braneworld scenario (dashed line) and our noncommutative setup (solid line)
when ρ0

λ
= 10

10. We assumed that no dark energy is present in the background geometry.

The solution (43) is valid when there is no dark radiation in the background. Ifρε 6= 0 , then one
should solve the system of Equations (37) and (38) using the explicit form of ρε. Generally the time
dependence ofρε for a brane observer is not determined. Here we introduce a possible candidate for
this quantity: as we have mentioned previously, the constraint from nucleosynthesis on the value of
ρε is thereforeρε

ρ ≤ 0.03 at the time of nucleosynthesis. Based on this constraint, wecan assume for
instance thatρε is a small fraction ofρ at a given time. Since the time evolution ofρ is determined
by Equation (20), the time evolution ofρε can be assumed to be

ρε(t) =
δ

32π2θ2
e−t2/4θ ,

whereδ is a small constant less than0.03. This form ofρε(t) can be used to explicitly solve the
system of Equations (37) and (38). Nevertheless, this procedure needs a lot of calculations with very
lengthy solutions, so we ignore their presentation here.

The curvature perturbation defined in a metric-based perturbation theory is

ξ = R +
δρ

3(ρ + p)
, (44)

which reduces toR on hypersurfaces with uniform density (δρ = 0). If there is no dark radiation in
the background (ρε = 0), the total curvature perturbation on a large scale is givenby the following
differential Equation (45)

ξ̇ eff = ξ̇ m + H

[

c2
s −

1

3
+

(

ρ + p

ρ + λ

)]

δρε

(ρ + p)(1 + ρ/λ)
, (45)

whereξm is a matter perturbation which is zero for adiabatic perturbations. Since the time variations
of ρ, H , p, cs andδρε are given by Equations (20), (21), (22), (24) and (39) respectively, we can
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Fig. 3 Evolution of the parameterξ defined in Equation (44) (with the same parameter values as in
Fig. 2) whenρ0

λ
= 10

10 and no dark radiation is present in the background geometry.

obtain the time evolution of the curvature perturbation explicitly as follows

ξ eff =
1

96

Ei
(

1, 3t2

8θ

)

π2θ2λ
− 1

48

e−
3t2

8θ

π2θ2λ
+

1

3
Ei

(

1,
t2

4θ

)

− 2

3
e−

t2

4θ

− 1

768
erf

(

t

2
√

θ

)

λ−1π−3θ−3 1√
θ π

− 1

24
erf

(

1

4

√
2t√
θ

)

√
2θ−1π−1 1√

θ π
, (46)

whereEi(a, z) is the exponential integral defined asEi(a, z) = za−1Γ(1 − a, z).
Figure 3 shows the evolution ofξ eff versus the cosmic time in our noncommutative brane infla-

tion. As the figure shows,ξ is a constant at late times.

5 CONCLUSIONS

Spacetime noncommutativity, as a trans-Planckian effect,could have some observable effects on the
cosmic microwave background radiation. In this respect, itis desirable to study an inflation sce-
nario within a noncommutative background. Recently we haveshown the possibility of finding a
non-singular, bouncing, early time cosmology in a noncommutative braneworld scenario (Nozari
& Akhshabi 2010). In that work, using the smeared, coherent state picture of the spacetime non-
commutativity, we have constructed a braneworld inflation that has the potential to support the scale
invariant scalar perturbations. Here, following our previous work, we have studied the time evolution
of the perturbations in this noncommutative braneworld setup. We have neglected the contribution
of the dark radiation term (originating in the bulk Weyl tensor) in the background geometry to have
a closed set of equations on the brane. However, the contributions of this term in the evolution of
perturbations on the brane are taken into account. In this way, by studying the effective quantities
(such as the effective equation of state and effective speedof sound on the brane) we have derived
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the possibility of a phantom evolution in the early, inflationary stage of the universe’s history. We
emphasize that, in general, one requires long wavelength perturbations to grow into large scale clas-
sical perturbations (around which structure eventually forms), and whose overall amplitude depends
on the parameters of the setup and is consistent with what is observed (for instance by COBE nor-
malization). As another important point, we note that one needs a smaller number of e-folds in
the noncommutative regime to have a successful braneworld inflation (see also Nozari & Akhshabi
2010).

It should be noted that Equation (1) was defined with respect to the comoving coordinatesx,
which means we are considering a scenario in which noncommutativity parameterθ is constant
in the comoving frame. In physical coordinates this means that θ is growing with the scale factor,
something that seems to be reasonable and is suggested in string theory (Chu et al. 2001; Lizzi
et al. 2002; Hassan & Sloth 2003, see also Stern 2010). Ifθ subsequently drops to zero, at the end of
inflation, this should yield a viable cosmology. One may alsoconsider the case in whichθ is constant
in the physical frame. In that case we have to use a time varyingθ with an exponential decaying factor
that causes the effect of noncommutativity to get redshifted away by inflation. However so long as
θ is constant in the comoving frame and shuts down by the end of inflation, this can lead to a small
amount of non-gaussianity (Chu et al. 2001; Lizzi et al. 2002; Hassan & Sloth 2003). We also note
that in this noncommutative setup for large times, the noncommutativity should have no effect since
the length scale of the fluctuation mode is large. This can be seen by constancy ofξ at late time in
Figure 3. This is due to the exponentially decaying profile ofthe source term on the right hand side
of the Friedmann equation which vanishes at late times.

Finally, in the cosmology emerging from this model, time runs from−∞ to +∞ and the time
t = 0 plays a crucial role. In particular, it is during this time period that the phantom divide is
crossed. One may doubt the validity of the standard Friedmann equation around this point. We note
that in the absence of a complete formulation of the noncommutative Einstein field equations, we
can assume that noncommutativity acts on the matter sector of the theory and leaves the geometric
part unaltered. By this assumption, we still can use the usual Einstein (Friedmann) equations but
with a noncommutative source smeared through a small regionof spacetime.
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