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Abstract For tracking spacecraft and performing radio science, ridwestormation
between the proper time-) given by a clock carried onboard a spacecraft and the
barycentric coordinate time (TCB) is investigated undad Ilesolutions. In order to
more clearly demonstrate manifestations of a physical e improve computa-
tional efficiency, an analytic approach is adopted. Aftemercal verification, it is
confirmed that this method is adequate to describe a Marteorhiring one year,
and is particularly good at describing the influence frontyrbing bodies. Further
analyses demonstrate that there are two main effects imahsformation: the gravi-
tational field of the Sun and the velocity of the spacecrattiébarycentric coordinate
reference system. The combined contribution of these tsfisat the level of a few
sub-seconds.
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1 INTRODUCTION

The last few decades have seen enormous improvements iodbeay of measurements and un-
precedented progress in measurement techniques. Thisrfakeéhe effects of general relativity
(GR) become an indispensable part of data processing ingrigtision observations. Thus, the first
order post-Newtonian (1PN) general relativistic theorpastronomical reference frames, based on
Brumberg & Kopejkin (1989) and Damour et al. (1991), was daddpy the General Assembly of
the International Astronomical Union (IAU) in 2000 (Soffet al. 2003). Likewise, GR plays an
important role in deep space missions in terms of navigatimhscientific experiments.

For example, the radio link connecting a spacecraft andargrstation has been a sensitive and
useful tool for probing the interior structure of a body i tholar system. Some signals from these
intriguing but subtle effects might become entangled withse due to curved spacetime. This work
is therefore the first step towards constructing an apgkcabd consistent relativistic framework
that will be able to separate planetary information from GRas.” On the other hand, the radio
link in interplanetary space missions could test theorfegravity. In 2003, the Cassini spacecraft
had confirmed GR to an accuracyidf-> by Doppler tracking in the spacecraft’s solar conjunction
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(Bertotti et al. 2003). This result not only verified GR, bigaruled out some of the theories which
did not satisfy the corresponding conditions. Deep spaasionis might also open a new window
on some new physical laws at the scale of the solar systeroyaring the challenge of unexplained
anomalies (Anderson et al. 1998, 2008). This is the reasgravelomplete data reduction framework
should be established robustly in the first place to intéhieeassociated observational data.

A general scheme for data reduction based on a relativistindwork is presented as follows.
Starting from a Lagrangian based theory of gravity, the imetf the solar system can be obtained
by a post-Newtonian approximation (Chandrasekhar 196%)joBal reference system covering the
whole spacetime region is introduced to describe the dnitdions of bodies in the solar system.
Some local reference systems are also introduced and edlcbrofcovers a region near a body to
define the multiple moments of the body and describe the metibits massless satellites. However,
most of the current data reduction methods, including llassr ranging, are conducted in the global
frame. Thus, this involves a coordinate transformationveen the global frame and a local one.
This transformation has been intensively studied by Brugi8eKopejkin (1989), Damour et al.
(1991), Klioner & Soffel (2000), Kopeikin & Vlasov (2004) drXie & Kopeikin (2010). Within this
relativistic framework, the motions of spacecraft, cai@dtodies, light rays (photons) and observers
in the solar system would be adequately represented ineliffeeference frames. The task is to make
a relativistic model for a specific kind of observation witinge physical or conventional quantities.

In the above process, different time scales exist withirréativistic framework, in contrast to
Newton’s idea of absolute spacetime. A clock onboard a spaftgyives the proper time, which
is a physical time. To deal with the propagation of the sigraathitted by a spacecraft in the solar
system, the Barycentric Celestial Reference System (B@RBually used. This has a coordinate
time component, called the barycentric coordinate timeB)Y 0 hereforer needs to be connected
to TCB during the whole radio link. This is one of the motieats for our research work. In general,
a numerical method or an analytic one could be adopted tosidbis transformation. Although the
numerical method is more feasible for computation, inwersind prediction of astronomical events
and phenomena, it is not enough to provide some of the pHysfcamation. With a practical case
in hand, the method cannot distinguish the leading ternesséicular terms accumulated with time
and the negligible terms from the numerical results. Besithe presence of hundreds of terms using
higher order approximation (for example, from 1PN to 2PNkesathese problems more compli-
cated. However, the analytic method is extraordinarilydjatthese. In particular, the computational
process of the analytic method saves time and is more effidieam the gauge-invariant point of
view, some spurious coordinate-dependent effects canrheved by the analytic method. Thus a
more efficient and unambiguous method can be found thatgeevhe above advantages, and this
is the other motivation for this paper.

As a first step, by employing an analytic method, this workmiyalocuses on the transformation
between the proper time on the spacecraft and TCB under IAU resolutions. It showsttiexe is
a difference in the two time systems between the one on treespat and the global system. This
transformation will be applied to connect the emitted sigvith the light propagation and can also
be applied to tracking, telemetry and control at the groudatians.

We will summarize some of the conventions and notations usélis paper. The metric sig-
nature is(—, 4+, +, +); G is the Newtonian constant of gravitationjs the velocity of light and
e = 1/¢; the capital subscriptd, B, C ... refer to the gravitating bodies in the solar system; the
subscriptsl” ands denote, respectively, the quantities related to the tdrgdy and the spacecratft;
the Latin indicesi, j, k... denote three-dimensional space components; the symraeti¢race-
free (STF) part of the tensdi’/ is denoted byl <¥>; we also use multi-index notations such as
I<l> = [<iiz.-i> Gection 2 is devoted to an analytic expression for the toamstion between
7and TCB under IAU resolutions. Considering a Mars missiamgraparison between the numerical
method and our analytic one is described in Section 3. TimeBection 4, some results are derived
with our analytic method. Finally, the conclusion and di&sian are outlined in Section 5.
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2 MODEL AND ANALYTIC EXPRESSION

In BCRS, the metric tensor under IAU resolutions (SoffelleP@03) reads as

goo = —1+ 2w — €2w? + O(5), 1)
goi = —€* 4w’ + O(5), (2
Gij = 61']'(1 + 62211}) + 0(4), (3)

wherew andw® are, respectively, scalar and vector potentials, @td) means of the ordes™.
Then, the transformation between the proper time of a spafteg and TCB() can be done by
integrating the following equations

dry 1 1 1
d; _1—e<w+2v)—|—e <2w + dwo? —ng2—§v>+0() 4)

In principle,w andw® should be expressed as the local multipole moments. Howiwee only
considerN -point masses with spins, Equation (4) yields

dr 9 Gma 1,
dt = 1—6 <Z “ri’l}s
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where 1PN masses are obtained by using the method of twdiedf¢icne-dependent masses of the
A-th body

G 3
A = mA{l—i—eQ{— Z TZIBB + §v?4]}+0(4)a (6)
B#A
2 GmB 1 2
pa = masl+er| = + 04| p +O4), 7)
hia TAB 2

based on Blanchet et al. (1998). Hetg = |xs — 4| andrap = |4 — x|; s andx 4, respec-
tively, denote the positions of the spacecraft andAhth body in BCRSws andwv 4, respectively,
denote the velocities of the spacecraft and #hth body in BCRS % ; Is the fully antisymmetric
Levi-Civita symbol ands?, is the spin of thed-th body. In this paper, We mainly consider the effects
of the terms in Equation (5) on the ordere3fon the transformation. Namely,

dry 9 Gmy 1, 4
o= l-e (Z —|—2vs> + O(eY). (8)

A TsA
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The first term on the order @f is a dynamical term which is contributed from thebody’s gravi-
tational fields. The second term in Equation (8) on the orfle? @5 a kinematic term which comes
from the velocity of the spacecraft. For the dynamical tenm split it into two parts

Z Gma _ Z Gm g n GmT’ (9)

Ts Ts Ts
A sA AZT sA sT

where the first one comes from the contribution of perturlbiodies and the second is caused by the
target body of the deep space mission. There exists a snaititjy = r<r /7 a7, which describes
the distance between the spacecraft and the target bodjedivy the distance between the target
body and the perturbing body. For the perturbing terms, tlaeybe expanded by (k = 0,1,2,...)

and become

GmA -
2 =2 |$A—$T—(fcs—mT)|

AT 1A AZT
2k — N Gma _x 1% >

- ZZ 2k+1TjT> :T>+O(Z)

A#T k=0 ! TAT k=141
Gmag Gma Gmag >

= 3 A S O D S I sz +0(3).(10)
azr AT azr VAT 2 57 Tar k=3
—_———

1=2

For the dynamical term representing perturbations, theehoalytic expression will converge
with an the increase in the indéx In our research, we mainly focus on the first three termschwvhi
correspond td = 2. In the next section, we will prove that the difference baiwehe analytic
method and the numerical one for the perturbations is niéfgigvith respect to the current accuracy
of measurements.

Our task is to derive the analytic expression of Equationt@@he order ofc2. The positions
and velocities of the bodies and the spacecraft in the sgkies are obtained by treating them
as N two-body problems. For example, the motions of eight planath respect to the Sun are
considered as eight two-body problems, and the motion o$plaeecraft with respect to its target
body is also considered as a two-body problem. For planéts positionri!! and velocityv el
are expressed with the orbital elements in the heliocenti@rdinate system as a two-body prob-
lem (Murray & Dermott 2000). These elements change with tisueh asia = aa0 + daZepn,
ea = eao + éalepn and so on, based on table 1 in the technical report of JPL {ifaret al.
1992), whereT.,,;, is the number of centuries past J2000.0. With the positiows\eelocities of
eight planets in the heliocentric coordinate system obthithe position and velocities of the so-
lar system’s barycenter (SSB) in the heliocentric coor@dirsystem are then, respectively, obtained
by >~y marfeli/ S my andd” , maveli/ 3", m4. Using the positions of the planets and SSB
in the heliocentric coordinate system, we can obtain thétipos and the velocities of the Sun,
Mercury, Venus, the Earth-Moon Barycenter (EMB), Mars,iterpSaturn, Uranus and Neptune in
BCRS. Forr,, we can solve this from the two-body problem in the equakeei@rence system of
the target body (Murray & Dermott 2000). Furthermore, watetvector’;. from the equatorial
reference system to the International Celestial Refer&ystem (ICRS) based on the procedures
recommended by the IAU/IAG Working Group on cartographiorciinates and rotational elements
(Archinal et al. 2011). The above proposed rotations areelgto deal with the coupling terms with
vectors calculated in different reference systems.
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Table1l Components ins — ¢

| Max (s) Ordet | Max(s) Order | Max (s) Order
Sun |0.2 c™2 |Mercury|4 x 1078 ¢72 | EMB [4x1077 ¢2
Sun |7x 10710 % |Venus [6x 1077 ¢72 | Mars |[3x107% 72
Jupiter| 7 x 107°  ¢~2 |Uranus |7 x 1077 ¢2 %vfdt 0.1 c 2
Saturn|8 x 107%  ¢=2 |Neptune| 5 x 107 ¢~ 2 gvﬁdt 2x 10710 =4

For the kinematic term of Equation (8), we only focus on the-tvedy interactions and omit
perturbations of the other bodies

v2 = (Vs +vr)- (Vs +vr) + O(e?, others)

= v} + VZ + 2vr - Vi + O(e?, others)

2 1 2 1
—Gm@<———>—|—GmT( ——)+2vT~VS+..., (12)
e ar T'sT

S

where subscriptss;” “ ©” and “T” denote the terms related to the spacecraft, the Sun andiett
body, respectivelypr denotes the velocity vector of the target body in BCRS, &hddenotes
the velocity vector of the spacecraft in the target body&alaeference system. Ferr - V in
Equation (11), we must put the two vectors in the same coateisystem as BCR3/ can be
written as(V;,0,0)7 in the (U, N, W) triad, where U points to the direction tangemthe orbit.
Furthermore, we rotate this vector to the (S, T, W) triad, kgl points to the radial direction, then
to the equatorial plane of the target body and finally to BC&%:h a transformation is performed
by Rg(—90° — aT)R1 ((ST — 900)R3(—Q)R1(—i)R3(—w — f)Rg(@)(V;, 0, O)T, WhereaT and&T
are ICRF equatorial coordinates at epoch J2000.0 for thih pote of one target body} denotes
the longitude of the ascending node for the spacecrainotes the inclination of the orbit for the
spacecrafty denotes the longitude of the periastron for the spacecfaft;the true anomaly§

is the angle between the tangent direction and transversetidin of the orbit, andos6 = (1 +

ecos f)/\/1+ 2ecos f + 2.

Then, the analytic relation betweenandt is

Gma Gma 3 Gma -; i Gmr
Te—1 = —62/ [ Z + Z T3—T§1TT§T + 3 Z Ts—roTfEFr:TTg; + , dt

azr AT agp Tar AT AT sT
1 1 1 1
—62/{Gm@<———>+GmT< - >—|—UT-VS}dt
T 2ar rsT 20
+0(e%,1 > 3, others), (12)

where the positions and velocities of thebody and the spacecraft can be easily obtained by the
solutions of the two-body problem. Compared to the numenegthod, this analytic approach is
more efficient in terms of computation. In the next sectioe, will prove that this approach is
satisfactory by performing the numerical check.

3 NUMERICAL CHECK

In this section, we will check our analytic result by compari with the numerical results under
the requirements for a Mars mission. We simulate a spaddbafhas a very large elliptical orbit
around Mars from 2012 Nov. 01 to 2013 Nov. 01. Its orbital iimation to the Martian equator is
about5°. The apoapsis altitude &) 000 km and the periapsis altitude )0 km, with a period of
about 3 days.
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Fig.1 Left: 3D orbital motion of the spacecraft probing Mars (in kijiddle: the distanceR (in
km) between the center of Mars and the spacecraft versus(itintzy). Right: the velocity of the
spacecraft/; (in km s~1) with respect to the center of mass of Mars versus time (in.day

In the simulation, the positions and velocities of the ptarend the Sun are read from the
ephemeris DE405. The initial conditions of the spacecnaftcalculated from its orbital elements
in the Martian equatorial reference frame, and transfemedICRS for numerical integration. For
a one year mission, the precession and nutation are ndgligitihe rotational elements of Mars
for this transformation, so we only consider the fixed termtfee north pole of Mars, namely,
ap = 317.68143° anddy = 52.88650° (see Archinal et al. 2011). The integrator we use is RKF7(8)
(Fehlberg 1968) with a fixed step-size3sf minutes.

In Figure 1, our numerical results for the spacecraft arplajed. The left panel shows its 3D
orbit and we can see a large ellipse. The middle shows thegehianits distance from Mars with
time, where we can see the maximum and the minimum valud®. athe right panel shows its
velocity with respect to the center of mass of Mars. With tlsition s and velocitywv, of the
spacecraft in BCRS, we can numerically calculate

Ts—1 = —52/ <Z Gma + %vf)dt (13)

A TsA

Since being obtained from DE405, the positions of the p&depend on the coordinate time of the
planetary ephemeris: Barycentric Dynamical Time (TDB)e Télationship between TDB and TCB
is TDB = (1 — Lg)TCB with L = 1.550519768 x 10~ according to IAU resolutions (Petit &
Luzum 2010). However, this influence bf; could be negligible because it is coupled with

With these numerical results, we can check our analyticagg. Firstly, we consider the ef-
fects of the dynamical term. For perturbations, there ameetherms in the analytic expression (see
Eqg. (12)). We introduce a dimensionless quantityfor contribution A in7 — ¢, which is defined as
54 = [analytic (A) — numerical (A)]/[numerical (75 — t)].

Figure 2 shows 4 of the Sun, Mercury, Venus, EMB, Jupiter, Saturn, UranusMeptune for
l =0, = 1andl = 2. The contributions of perturbations are well described by analytic
approach because, decreases te- 10~12 or below with/ = 2. Although the curves of Figure 2
have some fluctuation at the beginning, they tend to smodi time. For the effect of Mars in
the dynamical term, the left panel of Figure 3 displays a camspn between the numerical and the
analytic results. The maximufiy...s is aboutl0~7. The right panel of Figure 3 shows a numerical
check of the kinematic term ang: is about10~°. Both of these are caused by the fact that pure
two-body problem solutions are adopted in our analytic agpin, but full N-body integration is used
in the numerical simulation.
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Fig.2 Normalized relative deviation between the analytic and erical results) 4 for perturbing
bodies withl = 0, 1 and 2 versus the integrated time (in day). (a) for the SbhinMercury; (c)
Venus; (d) the EMB; (e) Jupiter; (f) Saturn; (g) Uranus; angdNeptune.
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Fig. 3 Left: the normalized relative deviation for Mars versus thegraged time (in day)Right: the

normalized relative deviation for the velocity of the sparedt in the BCRS versus the integrated
time (in day).

0.0

-0.051

-0.10

-0.15

Ts— 1 ()

-0.20 [

-0.25 1

—0.30 1

0 50 100 150 200 250 300 350
Time (d)

Fig.4 Difference in7s — t with time.

4 ANALYTIC RESULTS

Some of the results are derived with our analytic method aftéfication by the numerical check.
Figure 4 shows the curve af — ¢ computed by Equation (12). We can see that the differeneedest
the proper time and TCB could reach the level of sub-secdrids effect has two main components:
the Sun'’s gravitational field and the velocity of the spaa#dn the BCRS.

Figure 5(a)—(j) displays the contributions of the Sun, MeycVenus, the EMB, Mars, Jupiter,
Saturn, Uranus, Neptune and the velocity of the spacedraft{e? [ vZ/2dt). Since the Sun’s
gravitational field and the velocity of the spacecraft in BEES8minate, we further consider these
contributions in the next order, namety, [ G2m? /(2r2,)dt and—e* [ vZ/8dt (see Fig. 5f) and
Fig. 5()). These two terms on the orderdfare very small, aroung 10~ '%s.

Table 1 gives the maximum values of different effects in #rentr, — ¢. On the order o2,
the Sun’s gravitational field and the velocity of the spaaéidiave contributions up to a few sub-
seconds, while the others belong to the microsecond-lewslow. On the order of*, the maximum
contributions of the Sun’s gravitational field and the vélpof the spacecraft are at the level@i
nanoseconds. This means that if we tdkeanosecond as the precision of the time system, the
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Fig.5 Different terms in Eqg. (12) versus time. Panels (a)—(j) dertbe contributions from the
Sun, Mercury, Venus, the EMB, Mars, Jupiter, Saturn, UraNeptune and? on the order ot 2,
respectively. Panels (k) and (I) respectively denote tliecef of the Sun and the velocity of the
spacecraft in terms af, — t on the order of %,

transformation between the proper time on the spacecrdff@B only needs to include the terms
on the order ot2.

If we take the YingHuo-1 Mission as a technical example ofifatChinese Mars explorations,
the proposed spacecraft would be equipped with a clock ssitheaultra-stable-oscillator (USO),
whose instability is less than values in the rafge 10~ !2 to 2 x 10~!? for time spans from 0.1 to
1000s (Ping etal. 2009). Accuracy control must be perforfoethe clock carried onboard because
its accuracy will drift for various reasons. Thus, it is ashonpossible to estimate the timing error
of a clock after one year in terms of its stability or accuranyd we only discuss a time span within
a one year mission, such as one month-- ¢t can maintain a level of accuracy ®6—2 s within
one month of operation. At the level of a microsecoh@ € s) of timing accuracy, although ..«
andd,z could maximally reacH0~7 and10~°, their maximum contributions to the deviation of
7, — t are, respectively,0~% s and10~7 s for one month of operation, and both of them are less than
10~%s. This shows that our analytical approach is satisfactary Mars orbiter.

5 CONCLUSIONS

In this paper, the transformation between the proper tima spacecraft and the TCB is derived
under AU resolutions. In order to obtain clearer physidatyres and improve computational effi-
ciency, an analytic approach is employed. A numerical st of a Mars mission is conducted
and shows that this approach is satisfactory, in partidugémg good at dealing with perturbations.
This shows that the difference between the proper time ospheecraft and the TCB reaches the
level of sub-seconds, and that the main contributions t® tlainsformation come from the Sun’s
gravitational field and the velocity of the spacecraft in BE&RS.

In this work, we only examine solutions to the two-body pesh] which makes the relative
deviations of Mars’ gravitational field and the velocity bktspacecraft reach, respectively, about
10~7 and10~°. Our next goal is to include the effect of the three-bodyutising function for the
spacecraft.
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It is worth noting that there is a long interplanetary jowrtier a spacecraft before arrival at
the target. In this case, the transformation betweeand TCB has exactly the same structure as
Equation (13), and could be dramatically simplified as

—t=—& / (G freo + v2/2)dt

when the probe is far beyond the Hill sphere of any massivey leaxdept the Sun. Therefore, the
final behavior ofry, — ¢ during this phase is strongly dependent on the trajectagysiiacecraft
takes. However, most spacecraft spend their time in quietemumtil crucial orbital maneuvers or
scientifically important flybys. For this reason, we do né&etenuch notice of this issue, so it is easy
to handle.
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