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Abstract We study the evolution of the dark energy parameter within a Bianchi type-I
cosmological model filled with barotropic fluid and dark energy. The solutions have
been obtained for power law and exponential forms of the expansion parameter (they
correspond to a constant deceleration parameter in generalrelativity). After a long
time, the models tend to be isotropic under certain conditions.
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1 INTRODUCTION

The nature of the dark energy component of the Universe (Riess et al. 1998; Perlmutter et al. 1997;
Sahni 2004; Copeland et al. 2006; Amendola & Tsujikawa 2010)remains one of the deepest mys-
teries of cosmology. There is certainly no lack of candidates: cosmological constant, quintessence
(Ratra & Peebles 1988; Caldwell et al. 1998; Barreiro et al. 2000), k-essence (Armendáriz-Picón
et al. 1999; Armendariz-Picon et al. 2001; González-Dı́az2004), and phantom energy (Caldwell
2002; Carroll et al. 2003; Elizalde et al. 2004). Modifications of the Friedmann equation such as
Cardassian expansion (Freese & Lewis 2002; Freese 2003; Gondolo & Freese 2003) and brane cos-
mology (Deffayet et al. 2002; Dvali et al. 2000; Dvali & Turner 2003) have also been used to explain
the acceleration of the Universe. A particular case of the linear equation of state (EoS) has been used
in a cosmological context by Xanthopoulos (1987). He considered space-times with two hypersur-
face orthogonal, spacelike, commuting Killing fields.

Observations of distant supernovae (SNe Ia) (Perlmutter etal. 1997, 1998, 1999; Riess et al.
1998; Garnavich et al. 1998; Schmidt et al. 1998; Tonry et al.2003; Clocchiatti et al. 2006), fluctua-
tion of Cosmic Microwave Background Radiation (CMBR) (de Bernardis et al. 2000; Hanany et al.
2000), the Large Scale Structure (LSS) (Spergel et al. 2003;Tegmark et al. 2004), Sloan Digital
Sky Survey (SDSS) (Seljak et al. 2005; Adelman-McCarthy et al. 2006), Wilkinson Microwave
Anisotropy Probe (WMAP) (Bennett et al. 2003) andChandra X-ray observatory (Allen et al. 2004)
by means of ground and altitudinal experiments have shown that our Universe is expanding with
acceleration. The measurement of photometric distances tocosmological supernovae, supported by
a number of independent observations, in particular by observational data on the angular tempera-
ture fluctuations of CMBR, shows that the lion’s share of the energy density of matter belongs to
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non-baryonic matter. This form of matter cannot be detectedin the laboratory and does not interact
with electromagnetic radiation. Given the fact that almostthree-quarters of the energy density of
the Universe originated from dark energy and plays a crucialrole in the accelerated mode of the
expansion of the Universe, there appears to be a large numberof models capable of describing this
dark energy (Spergel et al. 2003).

The spatially homogeneous cosmological models allow extension of cosmological investigations
to distorting and rotating Universes, giving estimates of effects of anisotropy on primordial element
production and on the measured CMBR spectrum anisotropy (Ellis & van Elst 1999). Apart from
observational reasons, there are various theoretical considerations that have motivated the study of
anisotropic cosmologies. Among these are

(i) some kind of singularity in our “past” is strongly indicated if certain reasonable conditions hold
(Hawking & Ellis 1973). However, it could differ greatly from the type found in FRW models
(Belinskij et al. 1970).

(ii) The “Chaotic Cosmology” program of Misner (1968) sought a mechanism to explain why the
observed isotropy and homogeneity should exist regardlessof the initial conditions (MacCallum
1979; Ellis 1993; Kolb & Turner 1990).

There exists a wide class of anisotropic cosmological models, which are often studied in cosmol-
ogy (Misner et al. 1973). There are theoretical arguments that sustain the existence of an anisotropic
phase that approaches an isotropic case (Misner 1968) (Chaotic Cosmology). Also, anisotropic cos-
mological models have found a suitable candidate to avoid the assumption of specific initial con-
ditions in FRW models. The early Universe could also be characterized by an irregular expansion
mechanism. Therefore, it would be useful to explore cosmological models in which anisotropies,
existing at an early stage of expansion, are damped out in thecourse of evolution. Such models have
received some attention (Hu & Parker 1978).

In most of the models, the dark energy and dark matter components are considered to be non-
interacting and are allowed to evolve independently. However, as the nature of these components is
not completely known, the interaction between them will indeed provide a more general framework
in which to work.

Zimdahl and Pavón (Zimdahl & Pavón 2004; Zimdahl et al. 2005) have shown that the inter-
action between dark energy and dark matter can be very usefulin solving the coincidence problem
(Pavón et al. 2004; Tsujikawa & Sami 2004; Gumjudpai et al. 2005).

Barrow & Clifton (2006) have investigated a wide range of homogeneous and isotropic cosmo-
logical models containing two fluids which are able to exchange energies and show non-equilibrium
behavior.

The fact that the energy density of dark energy is of the same order as that of dark matter in the
present Universe suggests that there may be some relation between them (Amendola & Tsujikawa
2010). Several different forms of coupling between dark energy and dark matter have been suggested
(Wei 2010). One of the approaches is to introduce an interaction of the formΓρm on the right hand
side of the continuity equations (ρm is the dark matter energy density) with the normalization ofΓ
in terms of the Hubble parameterH , i.e.Γ/H = Q, whereQ is a dimensionless coupling (Zimdahl
et al. 2001; Guo et al. 2007; Caldera-Cabral et al. 2009).

Hassan et al. (2011) have studied the evolution of the dark energy parameter within the frame-
work of an FRW cosmological model filled with two fluids.

In this paper, we study the evolution of the dark parameter within a Bianchi type-I cosmological
model filled with barotropic fluid and dark energy. The solutions have been studied for power law
and exponential forms of the expansion factor. The average volume expansion factorV (t) has been
used in the power-law and exponential forms based on these forms for FRW expanding models
(when the deceleration parameter is constant). The behavior of the EoS has been analyzed.



Interacting Two-Fluid Scenario for Dark Energy in a BianchiType-I Cosmological Model 475

2 THE METRIC AND FIELD EQUATIONS

We consider the homogeneous and anisotropic cosmological model, for the Bianchi type-I metric in
the form (Ryan & Shepley 1975)

ds2 = dt2 − a1
2dx2 − a2

2dy2 − a3
2dz2 , (1)

where the metric functionsa1, a2, a3 are only a function of time (t).
Einstein’s field equations (with8πG = 1 andc = 1) read as

Rµ
ν −

1

2
Rδµ

ν = −Tµ
ν , (2)

where the symbols have their usual meaning andTµ
ν is the two fluid energy-momentum tensor

consisting of a dark field and barotropic fluid.
In a co-moving coordinate system, Einstein’s field Equations (2) for the line element (1) lead to

ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1
= ρtot , (3)

ä2

a2
+

ä3

a3
+

ȧ2ȧ3

a2a3
= −ptot , (4)

ä1

a1
+

ä3

a3
+

ȧ1ȧ3

a1a3
= −ptot , (5)

ä1

a1
+

ä2

a2
+

ȧ1ȧ2

a1a2
= −ptot , (6)

whereptot = pm + pD andρtot = ρm + ρD. Herepm andρm are pressure and energy density of
the barotropic fluid andpD andρD are the pressure and energy density of dark fluid respectively.

Let the volume scale parameterV be a function oft defined by

V = a1a2a3 . (7)

We have followed the method of Singh and Chaubey (Singh & Chaubey 2009, 2007; Chaubey
2009). Briefly we derive the solution

a1(t) = D1V
1/3 exp

(

X1

∫

dt

V (t)

)

, (8)

a2(t) = D2V
1/3 exp

(

X2

∫

dt

V (t)

)

, (9)

a3(t) = D3V
1/3 exp

(

X3

∫

dt

V (t)

)

, (10)

whereDi (i = 1, 2, 3) andXi (i = 1, 2, 3) satisfy the relationsD1D2D3 = 1 andX1+X2+X3 = 0.
The Bianchi identityGµν

;ν = 0 leads toTµν
;ν = 0 which yields

ρ̇tot +
V̇

V
(ρtot + ptot) = 0 . (11)

The EoS of the barotropic fluid and dark field are given by

ωm =
pm

ρm
(12)

and
ωD =

pD

ρD
, (13)

respectively.
In the following sections we deal with two cases, (i) the non-interacting two-fluid model and (ii)

the interacting two-fluid model.
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3 NON-INTERACTING TWO-FLUID MODEL

First, we consider the case that two-fluids do not interact with each other. Therefore, the general
form of conservation Equation (11) leads us to separately write the conservation equation for the
dark and barotropic fluid as

ρ̇m +
V̇

V
(ρm + pm) = 0 (14)

and

ρ̇D +
V̇

V
(ρD + pD) = 0 . (15)

From Equations (12) and (14), we have

ρm = ρ0V
−(1+ωm) . (16)

Now we take two cases for the volume expansion factor, where increases in the terms represent-
ing time evolution are (i) the exponential type expansion inwhich V = α eβt; whereα andβ are
constants and (ii) the power law in whichV = atb; wherea andb are constants.

3.1 Models with a Constant Deceleration Parameter

Case 1:Exponential-Type (WhenV = α eβt)
Then Equations (8) – (10) reduce to

a1(t) = D1α
1/3 exp

(

βt

3
+

X1

αβ
e−βt

)

, (17)

a2(t) = D2α
1/3 exp

(

βt

3
+

X2

αβ
e−βt

)

, (18)

a3(t) = D3α
1/3 exp

(

βt

3
+

X3

αβ
e−βt

)

. (19)

By using Equation (13) in Equations (3) – (6), we first obtain theρD andpD in terms of scale factors.

ρD =
ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1
− ρ0(a1a2a3)

−(1+ωm) , (20)

and

pD = −
2

3

(

ä1

a1
+

ä2

a2
+

ä3

a3

)

−
1

3

(

ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1

)

− ρ0ωm(a1a2a3)
−(1+ωm) . (21)

Now from Equations (17)–(21), theρD andpD are obtained as

ρD =
β2

3
+

(

X1X2 + X2X3 + X3X1

α2

)

e−2βt − ρ0(α eβt)−(1+ωm) (22)

and

pD = −

[

β2

3
−

(

X1X2 + X2X3 + X3X1

α2

)

e−2βt + ρ0ωm(α eβt)−(1+ωm)

]

, (23)

respectively. By using Equations (22) and (23) in Equation (13), we find the EoS of the dark field in
terms of time as

ωD = −

[

β2

3 −
(

X1X2+X2X3+X3X1

α2

)

e−2βt + ρ0ωm(α eβt)−(1+ωm)

β2

3 +
(

X1X2+X2X3+X3X1

α2

)

e−2βt − ρ0(α eβt)−(1+ωm)

]

. (24)
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Fig. 1 Plot of EoS parameter ‘ωD’ with cosmic time ‘t’ for β = 1, 2 and 3.

The behavior of the EoS for DE in terms of cosmic timet for an exponential expansion of the
Universe is shown in Figure 1 forX1 = X2 = 1, X3 = −2, α = 1 andβ = 1, 2, 3. It is observed
that the EoS parameter is an increasing function of time, andthe rapidity of its growth at the early
stage depends on different values ofβ of the Universe. Later on it tends to the same constant value
for different values ofβ.

The physical quantities of observational interest in cosmology are the expansion scalarθ, the
mean anisotropy parameterA, the shear scalarσ2 and the deceleration parameterq. They are defined
as

θ = 3H , (25)

A =
1

3

3
∑

i=1

(

∆Hi

H

)2

, (26)

σ2 =
1

2

(

3
∑

i=1

Hi
2 − 3H2

)

=
3

2
AH2 , (27)

q =
d

dt

( 1

H

)

− 1 . (28)

Sahni et al. (2003) proposed a cosmological diagnostic pair{r, s} called the statefinder param-
eter, which is defined for the isotropic cosmological model as

r =
˙̈a

aH3
and s =

r − 1

3(q − 1
2 )

, (29)

where ˙̈a means the triple dot ofa, H is the Hubble parameter andq is the deceleration parameter.
Using Equations (7), (25) and (29), we have generalized the cosmological diagnostic pair{r, s}

for the anisotropic cosmological model as (Singh & Chaubey 2011)

r =

9

[

(

˙̈V
V

)

− 2
(

V̇
V

)(

V̈
V

)

+ 10
(

V̇
V

)3
]

(

V̇
V

)3 and s =
r − 1

3(q − 1
2 )

, (30)
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where ˙̈V means the triple dot ofV .
With the use of Equations (17) – (19) we can express the physical quantities as

θ = β , (31)

A =
6X2

α2β2
e−2βt , (32)

σ2 =
X2

α2
e−2βt , (33)

q = −1 , (34)

whereX is a constant. For larget, the model tends to be isotropic whenβ > 0. Whenβ = 0 the
anisotropy and shear both become constant.

By using Equation (30), the cosmological diagnostic pair{r, s} is

r = 81 , (35)

and

s = −
160

9
. (36)

Case 2:Power-Law (WhenV = atb)
Then Equations (8) – (10) are reduced to

a1(t) = D1a
1/3tb/3 exp

(

X1

a(1 − b)
t1−b

)

, (37)

a2(t) = D2a
1/3tb/3 exp

(

X2

a(1 − b)
t1−b

)

, (38)

a3(t) = D3a
1/3tb/3 exp

(

X3

a(1 − b)
t1−b

)

. (39)

From Equations (37)–(39), (20) and (21),ρD andpD are obtained as

ρD =
b2

3t2
+

(

X1
2 + X2

2 + X3
2

a2

)

t−2b − ρ0(atb)−(1+ωm) (40)

and

pD = −

[

b(b − 1)

3t2
−

(

X1
2 + X2

2 + X3
2

a2

)

t−2b + ρ0ωm(atb)−(1+ωm)

]

, (41)

respectively. By using Equations (40) and (41) in Equation (13), we find the EoS of the dark field in
terms of time as

ωD = −





b(b−1)
3t2 −

(

X1
2+X2

2+X3
2

a2

)

t−2b + ρ0ωm(atb)−(1+ωm)

b2

3t2 +
(

X1
2+X2

2+X3
2

a2

)

t−2b − ρ0(atb)−(1+ωm)



 . (42)

The behavior of the EoS for DE in terms of cosmic timet for power-law expansion of the Universe
is shown in Figure 2 forX1 = X2 = 1, X3 = −2, a = 1 andb = 0, 1, 2, 3. It is observed that the
EoS parameter is a function of time. At the early stage, EoS has the same constant value which is
independent of the values of b. Later on it increases forb = 2 and it attains the same constant value
for different values ofb = 0, 1, 3.
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Fig. 2 Plot of EoS parameter ‘ωD’ with cosmic time ‘t’ for b = 0, 1, 2 and 3.

With the use of Equations (37) – (39) we can express the physical quantities as

θ =
b

t
, (43)

A =
6X2

a2b2

1

t2(b−1)
, (44)

σ2 =
X2

a2

1

t2b
, (45)

q =
3

b
− 1, (46)

whereX is a constant. For larget, the model tends to be isotropic whenb > 1. Whenb = 1, the
anisotropy is constant and shear dies out. The expansion becomes zero.

By using Equation (30), the cosmological diagnostic pair{r, s} is

r =
9

b2
(9b2 − b + 2) , (47)

and

s =
2(80b2 − 9b + 18)

9b(2 − b)
. (48)

4 INTERACTING TWO FLUID MODEL

Second, we consider the interaction between dark and barotropic fluids. For this purpose we can
write the continuity equations for dark and barotropic fluids (Amendola & Tsujikawa 2010) as

ρ̇m +
V̇

V
(ρm + pm) = Q , (49)

and

ρ̇D +
V̇

V
(ρD + pD) = −Q . (50)
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The quantityQ expresses the interaction between the matter and dark energy components. Since we
are interested in an energy transfer from the dark energy to matter, we considerQ > 0. Q > 0
ensures that the second law of thermodynamics stands fulfilled (Pavón & Wang 2009). Following
Amendola et al. (2007), Zimdahl et al. (2001), Guo et al. (2007) and Caldera-Cabral et al. (2009),
we consider

Q = 3Hσρm , (51)

whereH = 1
3

V̇
V and σ is a coupling constant. Using Equation (51) in Equation (49)and after

integrating the resulting equation, we obtain

ρm = ρ0V
−(1+ωm−σ) . (52)

Using Equation (52) in Equations (3) – (6), we again obtainρD andpD in terms of scale factors.

ρD =
ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1
− ρ0(a1a2a3)

−(1+ωm−σ) , (53)

and

pD = −
2

3

(

ä1

a1
+

ä2

a2
+

ä3

a3

)

−
1

3

(

ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1

)

− ρ0ωm(a1a2a3)
−(1+ωm−σ) . (54)

Now we take two cases for the volume expansion factor, where there is an increase in terms of
time evolution. (i) Exponential type expansion in whichV = α eβt and (ii) Power law type in which
V = atb.

4.1 Models with a Constant Deceleration Parameter

Case 1:Exponential-Type (WhenV = α eβt)

From Equations (17) – (19) and Equations (53) and (54), theρD andpD are obtained as

ρD =
β2

3
+

(

X1X2 + X2X3 + X3X1

α2

)

e−2βt − ρ0(α eβt)−(1+ωm−σ) , (55)

and

pD = −

[

β2

3
−

(

X1X2 + X2X3 + X3X1

α2

)

e−2βt + ρ0ωm(α eβt)−(1+ωm−σ)

]

, (56)

respectively. By using Equations (55) and (56) in Equation (13), we find the EoS of the dark field in
terms of time as

ωD = −

[

β2

3 −
(

X1X2+X2X3+X3X1

α2

)

e−2βt + ρ0ωm(α eβt)−(1+ωm−σ)

β2

3 +
(

X1X2+X2X3+X3X1

α2

)

e−2βt − ρ0(α eβt)−(1+ωm−σ)

]

. (57)

The behavior of the EoS for DE in term of cosmic timet for the exponential expansion of the
Universe is shown in Figure 3 forX1 = X2 = 1, X3 = −2, α = 1 andβ = 1, 2, 3. It is observed
that the EoS parameter is an increasing function of time, andthe rapidity of its growth at the early
stage depends on different values ofβ of the Universe. Later on it tends to the same constant value
for different values ofβ.

With the use of Equations (25) – (28) we can express the physical quantities as

θ = β , (58)
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Fig. 3 Plot of EoS parameter ‘ωD’ for the two-fluid interacting case with cosmic time ‘t’ for β = 1,
2 and 3.

A =
6X2

α2β2
e−2βt , (59)

σ2 =
X2

α2
e−2βt , (60)

q = −1 , (61)

whereX is a constant. For larget, the model tends to be isotropic whenβ > 0. Whenβ = 0 the
anisotropy and shear both become constant; the expansion isalso zero.

By using Equation (30), the cosmological diagnostic pair{r, s} is

r = 81 , (62)

and

s = −
160

9
. (63)

Case 2:Power-Law (WhenV = atb)

From Equation (17) – (19) and Equation (53) and (54), theρD andpD are obtained as

ρD =
b2

3t2
+

(

X1
2 + X2

2 + X3
2

a2

)

t−2b − ρ0(atb)−(1+ωm−σ) , (64)

and

pD = −

[

b(b − 1)

3t2
−

(

X1
2 + X2

2 + X3
2

a2

)

t−2b + ρ0ωm(atb)−(1+ωm−σ)

]

, (65)

respectively. By using Equation (64) and (65) in Equation (13), we find the EoS of the dark field in
terms of time as

ωD = −





b(b−1)
3t2 −

(

X1
2+X2

2+X3
2

a2

)

t−2b + ρ0ωm(atb)−(1+ωm−σ)

b2

3t2 +
(

X1
2+X2

2+X3
2

a2

)

t−2b − ρ0(atb)−(1+ωm−σ)



 . (66)
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Fig. 4 Plot of EoS parameter ‘ωD’ for the two-fluid interacting case with cosmic time ‘t’ for b = 0,
1, 2 and 3.

The behavior of EoS for DE in terms of cosmic timet for power-law expansion of the Universe
is shown in Figure 4 forX1 = X2 = 1, X3 = −2, a = 1 andb = 0, 1, 2, 3. It is observed that the
EoS parameter is a function of time. At the early stage, EoS has the same constant value which is
independent of the values ofb. Later on it increases or decreases for different values ofb.

With the use of Equations (25) – (28), we can express the physical quantities as

θ =
b

t
, (67)

A =
6X2

a2b2

1

t2(b−1)
, (68)

σ2 =
X2

a2

1

t2b
, (69)

q =
3

b
− 1 , (70)

whereX is a constant. For larget, the model tends to be isotropic whenb > 1. Whenb = 1, the
anisotropy becomes constant and shear dies out. The expansion also becomes zero.

By using Equation (30), the cosmological diagnostic pair{r, s} is

r =
9

b2
(9b2 − b + 2) , (71)

and

s =
2(80b2 − 9b + 18)

9b(2 − b)
. (72)
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5 CONCLUSIONS

We have studied the evolution of the dark energy parameter within an anisotropic cosmological
Bianchi type-I model filled with barotropic fluid and dark energy. The solutions have been obtained
for power law and exponential forms of the expansion factor.The behavior of these models has been
analyzed, as well as the behavior of the EoS. With larget, the anisotropy and expansion become
constant and the shear dies out. The models tend to be isotropic, and they give physically viable
results under certain conditions.
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