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Abstract We study the evolution of the dark energy parameter withinea&hi type-I
cosmological model filled with barotropic fluid and dark emerThe solutions have
been obtained for power law and exponential forms of the esipa parameter (they
correspond to a constant deceleration parameter in gersdadilvity). After a long
time, the models tend to be isotropic under certain conuktio
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1 INTRODUCTION

The nature of the dark energy component of the Universe ¢Rieal. 1998; Perlmutter et al. 1997,
Sahni 2004; Copeland et al. 2006; Amendola & Tsujikawa 20&@)ains one of the deepest mys-
teries of cosmology. There is certainly no lack of candigat@smological constant, quintessence
(Ratra & Peebles 1988; Caldwell et al. 1998; Barreiro et @0®, k-essence (Armendariz-Picon
et al. 1999; Armendariz-Picon et al. 2001; Gonzalez-2@@4), and phantom energy (Caldwell
2002; Carroll et al. 2003; Elizalde et al. 2004). Modificasoof the Friedmann equation such as
Cardassian expansion (Freese & Lewis 2002; Freese 20038tdBn& Freese 2003) and brane cos-
mology (Deffayet et al. 2002; Dvali et al. 2000; Dvali & Tum003) have also been used to explain
the acceleration of the Universe. A particular case of tiedr equation of state (EoS) has been used
in a cosmological context by Xanthopoulos (1987). He cogr&d space-times with two hypersur-
face orthogonal, spacelike, commuting Killing fields.

Observations of distant supernovae (SNe la) (Perimuttat. €997, 1998, 1999; Riess et al.
1998; Garnavich et al. 1998; Schmidt et al. 1998; Tonry €@03; Clocchiatti et al. 2006), fluctua-
tion of Cosmic Microwave Background Radiation (CMBR) (deB&dis et al. 2000; Hanany et al.
2000), the Large Scale Structure (LSS) (Spergel et al. 2088@mark et al. 2004), Sloan Digital
Sky Survey (SDSS) (Seljak et al. 2005; Adelman-McCarthyleR@06), Wilkinson Microwave
Anisotropy Probe (WMAP) (Bennett et al. 2003) abldandra X-ray observatory (Allen et al. 2004)
by means of ground and altitudinal experiments have shoanatr Universe is expanding with
acceleration. The measurement of photometric distancesstmological supernovae, supported by
a number of independent observations, in particular byrebsienal data on the angular tempera-
ture fluctuations of CMBR, shows that the lion’s share of thergy density of matter belongs to
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non-baryonic matter. This form of matter cannot be deteirtéde laboratory and does not interact
with electromagnetic radiation. Given the fact that alntbseée-quarters of the energy density of
the Universe originated from dark energy and plays a crucial in the accelerated mode of the
expansion of the Universe, there appears to be a large nuwhb@ydels capable of describing this
dark energy (Spergel et al. 2003).

The spatially homogeneous cosmological models allow exb@rof cosmological investigations
to distorting and rotating Universes, giving estimatesffifats of anisotropy on primordial element
production and on the measured CMBR spectrum anisotropig @&an Elst 1999). Apart from
observational reasons, there are various theoreticaldemasions that have motivated the study of
anisotropic cosmologies. Among these are

(i) some kind of singularity in our “past” is strongly indial if certain reasonable conditions hold
(Hawking & Ellis 1973). However, it could differ greatly fno the type found in FRW models
(Belinskij et al. 1970).

(i) The “Chaotic Cosmology” program of Misner (1968) sotighmechanism to explain why the
observed isotropy and homogeneity should exist regardfdhe initial conditions (MacCallum
1979; Ellis 1993; Kolb & Turner 1990).

There exists a wide class of anisotropic cosmological mmeélich are often studied in cosmol-
ogy (Misner et al. 1973). There are theoretical argumemtissiistain the existence of an anisotropic
phase that approaches an isotropic case (Misner 1968) {i[Cl@&smology). Also, anisotropic cos-
mological models have found a suitable candidate to avadaisumption of specific initial con-
ditions in FRW models. The early Universe could also be ditar&ed by an irregular expansion
mechanism. Therefore, it would be useful to explore cosgiodd models in which anisotropies,
existing at an early stage of expansion, are damped out icotlnese of evolution. Such models have
received some attention (Hu & Parker 1978).

In most of the models, the dark energy and dark matter comysiaee considered to be non-
interacting and are allowed to evolve independently. Haxeas the nature of these components is
not completely known, the interaction between them willéad provide a more general framework
in which to work.

Zimdahl and Pavon (Zimdahl & Pavon 2004; Zimdahl et al. 208ave shown that the inter-
action between dark energy and dark matter can be very usesolving the coincidence problem
(Pavon et al. 2004; Tsujikawa & Sami 2004; Gumjudpai et @03).

Barrow & Clifton (2006) have investigated a wide range of log@neous and isotropic cosmo-
logical models containing two fluids which are able to exd®energies and show non-equilibrium
behavior.

The fact that the energy density of dark energy is of the sanher @s that of dark matter in the
present Universe suggests that there may be some relatiwedrethem (Amendola & Tsujikawa
2010). Several different forms of coupling between darkgyand dark matter have been suggested
(Wei 2010). One of the approaches is to introduce an interaof the formI'p,, on the right hand
side of the continuity equationg,(, is the dark matter energy density) with the normalizatiof' of
in terms of the Hubble parametér, i.e.T'/H = @, whereQ is a dimensionless coupling (Zimdahl
et al. 2001; Guo et al. 2007; Caldera-Cabral et al. 2009).

Hassan et al. (2011) have studied the evolution of the dagkggrparameter within the frame-
work of an FRW cosmological model filled with two fluids.

In this paper, we study the evolution of the dark parametthiwa Bianchi type-I cosmological
model filled with barotropic fluid and dark energy. The sauas have been studied for power law
and exponential forms of the expansion factor. The averafiene expansion factdr (¢) has been
used in the power-law and exponential forms based on thesesfior FRW expanding models
(when the deceleration parameter is constant). The behaivibe EoS has been analyzed.
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2 THE METRIC AND FIELD EQUATIONS
We consider the homogeneous and anisotropic cosmologaaghfor the Bianchi type-I metric in
the form (Ryan & Shepley 1975)

ds? = dt? — a1%dz® — ax’dy® — as?dz?, Q)
where the metric functions, , as, as are only a function of timet].

Einstein’s field equations (witerG = 1 andc = 1) read as
v 1 1% 1%
R," — iRaﬂ =-T,", 2)

where the symbols have their usual meaning @ptl is the two fluid energy-momentum tensor
consisting of a dark field and barotropic fluid.
In a co-moving coordinate system, Einstein’s field Equeagti(®) for the line element (1) lead to

aijaz  agaz | azai

= Ptot » (3)
a1az a2as3 azay
ao 43 G203
—+— = —Dtot » (4)
as as ag2a3
ap daz  ai1as
—+ — = —Dtot ; (5)
a1 as aias
ap  ds G109
—+—=+ = —Dtot ; (6)

aq a9 a1a9
wherepyoy = pm + pp @ndpiot = pm + pp- Herep,,, andp,,, are pressure and energy density of
the barotropic fluid angp andpp are the pressure and energy density of dark fluid respegtivel
Let the volume scale parametérbe a function of defined by

V= ajazas . (7)

We have followed the method of Singh and Chaubey (Singh & 6&8@2009, 2007; Chaubey
2009). Briefly we derive the solution

a1 (t) = D1V 3 exp (XJ%) , (8)
as(t) = DaV/3 exp <X2/%> , (9)
as(t) = DsV/3 exp <X3 / %) , (10)

whereD; (i = 1,2,3)andX; (i = 1, 2, 3) satisfy the relation®, Do D3 = 1 andX; + X>+ X3 = 0.
The Bianchi identity&,,,”” = 0 leads toI},,”* = 0 which yields

) %
Prot T V(ptot + Prot) = 0. (11)
The EoS of the barotropic fluid and dark field are given by
W = L (12)
Pm
and
wp = p—D s (13)
PD
respectively.

In the following sections we deal with two cases, (i) the materacting two-fluid model and (ii)
the interacting two-fluid model.
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3 NON-INTERACTING TWO-FLUID MODEL

First, we consider the case that two-fluids do not interath wach other. Therefore, the general

form of conservation Equation (11) leads us to separatelie\tiie conservation equation for the
dark and barotropic fluid as

.V

Pm + V(pm +pm) =0 (14)
and )

. \%4

pp + 37 (pp +pp) = 0. (15)

From Equations (12) and (14), we have

pm = poV~ HHem) (16)

Now we take two cases for the volume expansion factor, winereases in the terms represent-
ing time evolution are (i) the exponential type expansiowirich V' = « e”*; wherea and3 are
constants and (i) the power law in whiéh= at®; wherea andb are constants.

3.1 Models with a Constant Deceleration Parameter

Case 1:Exponential-Type (Whely = o e”t)
Then Equations (8) — (10) reduce to

a1 (t) = Dya'/? exp <% + f—ﬁl eﬁt) , 17)
as(t) = Daa*/? exp (% + f—; eﬁt> ; (18)
as(t) = Dsa'/® exp (% + f—; eﬁt) . (29)

By using Equation (13) in Equations (3) — (6), we first obt&i@dp andpp in terms of scale factors.

a1Gz | Goas | G301 _
D = + + — po(a1a2a3) (Itwm) R (20)
a1a9 asa3 aszay
and
2 (ay do @ as 1 [arae  asas  asa _
mm=—5|—+—+—]—3 + + — powm(a1azas) (twm) —(21)
3 aq a9 as 3 a1a2 a2a3 aszay

Now from Equations (17)—(21), the, andpp are obtained as

32 X1 Xo+ XoX3 + X3X1) (14w
PD = - + o2 e 20 — po(avelt)~(em) (22)
and )
X1 Xo + Xo X3+ X3X _ (4w
o= |5 - (BEERRERR e ety O] (23

respectively. By using Equations (22) and (23) in Equatid®)(we find the EoS of the dark field in
terms of time as

wp = —

(24)

g _ (XrXatXaXotXaX1) 0=20¢ 4 i, (a eﬁt)(1+wm)‘|

3 a
%2 + (X1X2+X(2;;(3+X3X1) e—26t _ pO(a eﬁt)—(l+wm)
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Fig. 1 Plot of E0S parametetn’ with cosmic time ¢’ for 5 =1, 2 and 3.

The behavior of the EoS for DE in terms of cosmic tim@r an exponential expansion of the
Universe is shown in Figure 1 foX; = Xo = 1, X3 = -2, = 1 andf = 1,2, 3. It is observed
that the EoS parameter is an increasing function of time thedapidity of its growth at the early
stage depends on different valuesdobf the Universe. Later on it tends to the same constant value
for different values of3.

The physical quantities of observational interest in cdsgyare the expansion scal@y the
mean anisotropy parametdr the shear scalar’ and the deceleration paramegehey are defined
as

0 =3H, (25)
3 2
1 AH,;
A—§;< H) 7 (26)
1 (S 3
2 _ 21 2 _ 2| _ 2 2
ot =5 <Z}H 3H> SAH?, (27)
d /1

Sahni et al. (2003) proposed a cosmological diagnostic{pair} called the statefinder param-
eter, which is defined for the isotropic cosmological model a
a r—1

r=-— and 5= 3(‘17_%) ) (29)
whered means the triple dot of, H is the Hubble parameter agds the deceleration parameter.

Using Equations (7), (25) and (29), we have generalizeddsmological diagnostic pair, s}
for the anisotropic cosmological model as (Singh & Chaully1)

(GO R o1 o U
(V)3 3(g—3)’
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wherel” means the triple dot df .
With the use of Equations (17) — (19) we can express the palygi@antities as

0=8, (31)
6X2 _
A = QQ—BQ € 26t s (32)
2
o2 = X—2 e 20t (33)
«

where X is a constant. For large the model tends to be isotropic whgn> 0. Whenjs = 0 the
anisotropy and shear both become constant.
By using Equation (30), the cosmological diagnostic gairs} is

r =281, (35)
and 160

Case 2:Power-Law (Wherl/ = at’)
Then Equations (8) — (10) are reduced to

X
a1(t) = Dy at/3b/3 exp( L41- b) (37)
as(t) = Doa/3t%3 exp ( tl b) (38)
as(t) = D3a'/3t"3 exp ( - b ) (39)

From Equations (37)—(39), (20) and (22), andpp are obtained a

) b2 <X12 + X2 + X352
D pu—

o e )t%—mww<H%> (40)

and

bb—1) [ X1?+ Xo? + X3?
PP="1"32 ~

respectively. By using Equations (40) and (41) in Equati®)(we find the EoS of the dark field in
terms of time as

e )f%+pmww#r“ﬂ%ﬂ, (41)

b(gt_zl) _ (X12+)2222+X32) t_2b +p0wm(atb)_(1+wm)

wp = — b 2 XZrx.2 . (42)
2z _|_( 17+ a22 +X5 )t72b_p0(atb)7(l+wm)

The behavior of the EoS for DE in terms of cosmic titmfer power-law expansion of the Universe
is shown in Figure 2 folX; = Xo = 1, X3 = —2,a = 1 andb = 0, 1,2, 3. It is observed that the
EoS parameter is a function of time. At the early stage, EaStie same constant value which is
independent of the values of b. Later on it increase$ fer2 and it attains the same constant value
for different values ob = 0, 1, 3.
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Fig. 2 Plot of EoS parametet/s’ with cosmic time ¢ for b = 0, 1, 2 and 3.

With the use of Equations (37) — (39) we can express the phlygi@ntities as

b
6X2 1
A= a2p2 120-1) (44)
X2 1
2 _
= E (45)
3
q= E - 1a (46)

whereX is a constant. For large the model tends to be isotropic when> 1. Whenb = 1, the
anisotropy is constant and shear dies out. The expansiamissczero.
By using Equation (30), the cosmological diagnostic gairs} is
9

r:b—2(9b2—b+2), 47)
and
. 2(80b% — 9b + 18)

N 9b(2 — b)

(48)

4 INTERACTING TWO FLUID MODEL

Second, we consider the interaction between dark and baiotfluids. For this purpose we can
write the continuity equations for dark and barotropic flu{@mendola & Tsujikawa 2010) as

, 1%
and )
. \%
o+ —(pp+pp) =—-Q. (50)

v
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The quantity)) expresses the interaction between the matter and darkyec@mgponents. Since we
are interested in an energy transfer from the dark energyatitem we conside) > 0. Q > 0
ensures that the second law of thermodynamics standsddIfifavon & Wang 2009). Following
Amendola et al. (2007), Zimdahl et al. (2001), Guo et al. (20hd Caldera-Cabral et al. (2009),
we consider

Q =3Hopm, (51)
where H = %% and o is a coupling constant. Using Equation (51) in Equation (@89 after
integrating the resulting equation, we obtain

pm = poV ~IHem =), (52)
Using Equation (52) in Equations (3) — (6), we again obtairandpp, in terms of scale factors.
1G9 Gga3  asa;

pD = + + — polarasaz)~HHem=a) (53)
ai1a9 a2a3 azal

and

Pp="3 3

ay a2 as a1a2 a2a3 asay

2 (41 Gy 1 (a142  asds  asa
(—1+—2+—3)——( 12 208 8 1)—powm(alagag)—<1+w—”>. (54)

Now we take two cases for the volume expansion factor, whemestis an increase in terms of
time evolution. (i) Exponential type expansion in which= « ¢?* and (ii) Power law type in which
V = at’.

4.1 Models with a Constant Deceleration Parameter
Case 1:Exponential-Type (Whel' = o e”t)

From Equations (17) — (19) and Equations (53) and (54)pthandpp are obtained as

oo = B N <X1X2 + Xo X3 + X3X3

! )t et ()

o

and

|:ﬁ2 (X1X2+X2X3+X3X1
PpD = — 3 5

respectively. By using Equations (55) and (56) in Equati®)(we find the EoS of the dark field in
terms of time as

) puon(act) )] s

«

3 «
%2 + (X1X2+X;§(3+X3X1) e—28t _ pola egt),(prwm,g)

(57)

wp = —

g _ (X1X2+X2§3+X3X1) e~ 4 powm (o eﬁt)—(1+w7n—a')‘|

The behavior of the EoS for DE in term of cosmic timéor the exponential expansion of the
Universe is shown in Figure 3foX; = Xo = 1, X3 = -2, = 1 andg = 1,2, 3. It is observed
that the EoS parameter is an increasing function of time thedapidity of its growth at the early
stage depends on different valuesdodf the Universe. Later on it tends to the same constant value
for different values of3.

With the use of Equations (25) — (28) we can express the palygi@ntities as

0=7, (58)



Interacting Two-Fluid Scenario for Dark Energy in a Bianglgpe-1 Cosmological Model 481

40 T T T

201

201 1

80| ul

-100 *

120 | | | | | | | | |

Fig. 3 Plot of E0S parametetn’ for the two-fluid interacting case with cosmic time for g = 1,

2and 3.
6X2 _,
_ —28t
A = a2—626 s (59)
X2
o? = e, (60)
«
q= -1 ) (61)

where X is a constant. For large the model tends to be isotropic whén> 0. Wheng = 0 the
anisotropy and shear both become constant; the expansitsoigero.
By using Equation (30), the cosmological diagnostic gairs} is

r =281, (62)
and 160

Case 2:Power-Law (Wherl/ = at®)

From Equation (17) — (19) and Equation (53) and (54) #b@ndpp are obtained as

b? X1+ Xo? + X537 - -
PD = @ ( ! 22 3 ) t 2 _ po(atb) (1+wm o) , (64)
and ) ) )
b(b—1 X1+ X"+ X _ —(4wm—0o
P = — |: (3t2 ) B ( - a22 . ) 3 2 + pme(atb) (em ) ) (65)

respectively. By using Equation (64) and (65) in Equatiod)(We find the EoS of the dark field in
terms of time as

_ 2 2 2
b(gtzl) _ (Xl +)222 +X3 )t—2b+p0wm(atb)—(1+wm—0)

(66)

wp = —
b X 2 X 2 X, - — —
3:2 ( 17+ a22 + 32) $+—2b oo(atb) (I4+wm—o0)
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Fig. 4 Plot of EoS parameter/’ for the two-fluid interacting case with cosmic time for b = 0,
1,2 and 3.

The behavior of EoS for DE in terms of cosmic timfor power-law expansion of the Universe
is shown in Figure 4 folX; = Xo = 1, X3 = —2,a = 1 andb = 0, 1,2, 3. It is observed that the
EoS parameter is a function of time. At the early stage, EaStia same constant value which is
independent of the values bfLater on it increases or decreases for different valués of

With the use of Equations (25) — (28), we can express the palyguantities as

=", (67)
6X2 1
A= a2p2 120-1) (68)
X2 1
2 _
o = W2 12 (69)
3

where X is a constant. For large the model tends to be isotropic whén> 1. Whenb = 1, the
anisotropy becomes constant and shear dies out. The egpaiso becomes zero.
By using Equation (30), the cosmological diagnostic gairs} is

9
w:ﬁ@w_b+m, (71)
and
~2(80b — 9b + 18)

T T oz (72)
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5 CONCLUSIONS

We have studied the evolution of the dark energy parametdnirwan anisotropic cosmological
Bianchi type-l1 model filled with barotropic fluid and dark egg The solutions have been obtained
for power law and exponential forms of the expansion fadtbe behavior of these models has been
analyzed, as well as the behavior of the EoS. With largae anisotropy and expansion become
constant and the shear dies out. The models tend to be isgteo they give physically viable
results under certain conditions.
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