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Abstract Ever since the magnetohydrodynamic (MHD) method for extrapolation of
the solar coronal magnetic field was first developed to study the dynamic evolution
of twisted magnetic flux tubes, it has proven to be efficient inthe reconstruction of
the solar coronal magnetic field. A recent example is the so-called data-driven simu-
lation method (DDSM), which has been demonstrated to be valid by an application to
model analytic solutions such as a force-free equilibrium given by Low and Lou. We
use DDSM for the observed magnetograms to reconstruct the magnetic field above an
active region. To avoid an unnecessary sensitivity to boundary conditions, we use a
classical total variation diminishing Lax-Friedrichs formulation to iteratively compute
the full MHD equations. In order to incorporate a magnetogram consistently and sta-
bly, the bottom boundary conditions are derived from the characteristic method. In our
simulation, we change the tangential fields continually from an initial potential field
to the vector magnetogram. In the relaxation, the initial potential field is changed to
a nonlinear magnetic field until the MHD equilibrium state isreached. Such a stable
equilibrium is expected to be able to represent the solar atmosphere at a specified time.
By inputting the magnetograms before and after the X3.4 flarethat occurred on 2006
December 13, we find a topological change after comparing themagnetic field before
and after the flare. Some discussions are given regarding thechange of magnetic con-
figuration and current distribution. Furthermore, we compare the reconstructed field
line configuration with the coronal loop observations by XRTonboardHinode. The
comparison shows a relatively good correlation.
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1 INTRODUCTION

The knowledge of a 3D coronal magnetic field is crucial in the understanding of a wide range of ac-
tive phenomena in the solar atmosphere. The coronal magnetic field can be described with equations

∇× B = αB , ∇ · B = 0, (1)

whereα is called the force-free factor. Ifα = 0 or a constant these equations describe a potential or
linear force-free field, and furthermoreα 6= constant indicates a nonlinear force-free field (NLFFF).
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The NLFFF is believed to exist close to magnetic fields in the corona with low beta. Several meth-
ods for the NLFFF extrapolation were proposed, such as the optimization methods (Wheatland et al.
2000; Wiegelmann 2004), boundary integral methods (Yan & Sakurai 2000; He & Wang 2008), and
Grad-Rubin-like methods (Régnier & Amari 2004). However,the force-free field is just an approx-
imation with gravity and plasma pressure ignored in the solar atmosphere. In order to take account
of the non-linear interactions between the plasma flow field and magnetic field, it is necessary to
invoke full magnetohydrodynamic (MHD) equations for the coronal magnetic field reconstruction.

The first model invoking full MHD equations was developed by Mikic et al. (1990) to study the
dynamic evolution of twisted magnetic flux tubes. McClymont& Mikic (1994) solved a subset of
the full MHD equations to derive horizontal photospheric flows, using physical quantities deduced
from the observed magnetogram as the initial conditions. Roumeliotis (1996) introduced a similarly
evolutionary method, named the “stress-and-relax method,” which iteratively evolves the initial po-
tential field by stressing and relaxing phases into a non-linear nearly force-free field until the bottom
transverse field matches the magnetogram. Valori et al. (2005) devised a magnetofrictional method
based on the stress-and-relax method.

Recently, a more robust simulation implemented by the space-time conservation element and
solution element (CESE) method has been validated to reconstruct the magnetic field of Low & Lou
(1990)’s test cases (Jiang et al. 2011). In Jiang et al.’s model, the lower boundary magnetic fields
are extracted from Low & Lou (1990)’s field model as the drivenforce. On the bottom boundary
condition, Jiang et al. fixed the density and pressure, and set the velocity equal to zero all the time
for the sake of stability.

Although the CESE method has proved to be effective in the reconstruction of Low & Lou’s test
case, the problem is that the CESE method is sensitive to noise in the boundary conditions, which is
the main reason to fix the induced plasma velocity to zero on the bottom. In the case of reconstruction
of Low & Lou’s analytical magnetic fields, there is little noise in the boundary conditions to cause
numerical instability. When observed magnetograms are taken as the boundary conditions for Jiang
et al.’s model, the observational data cause computationalinstability unless an enhanced smoothness
is applied to these magnetograms. In order to overcome difficulties in Jiang et al.’s model, we suggest
a relatively simple total variance diminishing (TVD) solver, which allows noise in the boundary
conditions, and uses a characteristic boundary treatment where density, pressure and velocity are not
fixed.

Since the extrapolated field configuration strongly dependson the implementation of boundary
conditions, we employ the data-driven simulation method (DDSM), in which boundary conditions
are derived from the projected normal characteristic method (Wu et al. 2006). The advantage of
this method is that the temporal evolution of MHD variables on the sub-Alfvénic boundary will
match both the governing MHD equations and the given boundary conditions (Hayashi 2005). It is
important to note that the boundary conditions are crucial to the simulation results. Simple bound-
ary conditions obtained with linear extrapolation lead to the numerical instability, while boundary
conditions produced with the projected normal characteristic method lead to the numerical stability
(Nakagawa et al. 1987). Since the characteristic method allows us to incorporate components of ob-
served magnetograms as a part of the lower boundary condition in a more natural way (Wang et al.
2008a), these magnetograms can be taken as the driving source in our simulation. DDSM has been
implemented to study the evolution of Poynting flux in activeregions (Fan et al. 2011). In Fan et al.’s
model, they used the velocity distributions generated by DDSM to compute physical parameters like
the Poynting flux.

In order to describe the DDSM and show an example of application to extrapolation, this paper
is organized as follows: in Section 2, the DDSM and its numerical implementation are briefly intro-
duced; in Section 3, this method is applied to NOAA 10930, andsome analysis and comparisons are
presented. Finally, discussion and conclusions are given in Section 4.
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2 DATA AND METHOD

We solve the three-dimensional resistive and compressibleMHD equations in Cartesian coordinates,
and ignore the effects of radiative cooling, heat conduction and those of higher order transport such
as differential rotation and meridional flow. The equationscan be written in their primitive forms as
follows:

∂ρ

∂t
+ ∇·(ρv) = 0, (2)

ρ
(∂v

∂t
+ v · ∇v

)

= −∇p +
1

4π
(∇× B) × B + ρg, (3)

∂p

∂t
+ v·∇p + γp∇ · v = (γ − 1)ηJ2, (4)

∂B

∂t
= ∇× (v × B) + η∇2

B , (5)

whereJ is the electric current,γ is the specific heat ratio andη is the coefficient of diffusion.
Concerning the magnetic field configuration in the higher corona, the specific heat ratioγ is

chosen to be 1.05 and the magnetic diffusivityη is chosen to be 0.01. The normalization of typical
values describing parameters in the corona is given in Table1.

The initial condition of DDSM can be set as follows: the initial trial density is set to be uniform
at the bottom and decreases exponentially with the scale height to account for the solar gravity; the
initial magnetic field is set to be a potential field extrapolated from the line-of-sight component of the
vector magnetogram by using the Green’s function method (Metcalf et al. 2006); the initial velocity
is set equal to zero everywhere and the temperature is set to be uniform.

In the DDSM simulation, normal components of the magnetic field are unchanged on the bound-
ary, but tangential components are continually changed when the initial potential field evolves to the
observed field. During the evolution of magnetic fields at thebottom, the Lorentz forces are continu-
ously injected into the computational domain. The injectedforces cause the initial potential fields to
change to nonlinear fields during the relaxation process until the MHD equilibrium state is reached.
It takes tens of Alfv́en times to reach this equilibrium state which should be able to represent the
solar atmosphere at a specified time. As the forces are re-balanced during the relaxation process,
a stable equilibrium is expected, in which the force-free status appears only when the pressure is
counteracted by gravity (Aschwanden 2004).

In order to stay numerically stable, a classical total variation diminishing (TVD) Lax-Friedrichs
formulation was employed to iteratively compute the full MHD equations, which is a relatively
simple TVD type scheme that enables us to compute data with large noise. We use a TVDLF solver
to solve the MHD equations implemented in the Versatile Advection Code (VAC) by Tóth (1996),
which is a software package for solving hydrodynamic and MHDproblems in astrophysics.

Table 1 Units for Normalization

Quantity Value

g 10
4

cm s
−2

n 10
9

cm
−3

T 106 K

L 100 Mm
v 100 km s−1

t 10
3 s

B 0.5 G

Notes:g is gravitational acceleration,n is number density,
T is temperature,L is pressure scale height,v is Alfvén speed,
t is Alfvén crossing time, andB is magnetic field strength.
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The boundary condition is also a source of instability when it is treated inappropriately.
We choose the lower physical boundary condition to be derived with projected characteristics
(Nakagawa 1981a,b; Nakagawa et al. 1987), which eigen-decomposes the hyperbolic system into
a set of compatible equations corresponding to a set of wave modes. According to the projected
characteristics, the outgoing MHD waves are used to computevariables on the boundary and the
incoming waves are abandoned. We can add constraints obtained from observed magnetograms to
make up for the absence of the incoming wave. In this way, we consistently incorporate the magne-
togram as part of the bottom boundary condition.

The advantage of using the projected characteristics is that the temporal evolution of MHD
variables on the sub-Alfvénic boundary will match both thegoverning MHD equations and the given
boundary conditions (Hayashi 2005; Wu et al. 2006). The density and pressure on the boundary
need not remain unchanged and the velocity need not be set to zero. Another advantage is that the
boundary conditions produced with the characteristic method make the simulation running over a
long time very stable. The detailed numerical implementation and derived expressions describing
the time-varying physical parameters on the boundary are given in the Appendix of Wu et al. (2006).

We choose magnetograms from the active region NOAA 10930 observed byHinode to be the
boundary condition in our simulation. This active region was reported in an X3.4 flare on 2006
December 13. Observations show that before the flare there was a significant flux emergence be-
tween the positive and negative sunspots. Vector magnetograms are derived through the inversion
of Stokes profiles with a Milne-Eddington atmosphere (Liteset al. 1993), using the full polarization
parameters (I, Q, U, andV) from the SOT/SP. The180◦ ambiguity in the vector magnetogram is re-
solved by using the minimum energy algorithm by Metcalf (1994), which uses simulated annealing
to minimize both the electric current density and the field divergence. The magnetograms are also
centered on the solar disk to remove the effect of projection.

The model is built in a 3D rectangular box in Cartesian coordinates with 100×100×70 grids
in thex, y, andz directions, respectively. The magnetogram is cropped to bea 50 × 50 grid which
is embedded in the100 × 100 computational domain. The pixel size of the magnetogram forthe
bottom condition is 2.56 arcsec. The main reason for that is to reduce the boundary effect since we
set the boundary aside from the computational domain as muchas possible.

3 RESULTS AND ANALYSIS

We apply DDSM to reconstruct the magnetic field of active region NOAA 10930 before and after
an X3.4 flare, and take the observed magnetic field in Hinode/SP vector magnetograms as boundary
conditions. In the relaxation, iterative computations arerequired to evolve the physical state gov-
erned by MHD equations, which is time consuming and resourceintensive. When an equilibrium
state is reached, the averaged plasma velocity becomes stationary, which could be a good sign that
no more forces are generated. For this reason, we take the averaged plasma velocity,vavg, in the
computational volume withN grid points,vavg = 1

N

∑

i
|vi|, as the indication of the equilibrium

state. The evolution ofvavg is shown in the left panel of Figure 1. At the beginning of the computa-
tion, the velocity is set to zero. In order to make the initialpotential field evolve slowly to reach the
state of the observed field, increments of the initial field are set as small as possible, which results
in the physical state governed by MHD equations evolving slowly. For this reason, the averaged ve-
locity linearly increases in the driven phase, and becomes stationary in the relaxation phase after the
computational tangential components have matched the observational ones.

For internal consistency of the reconstructed field, we alsocheck the error of the divergence-
free constraint. To have a quantitative understanding of how the error evolves in the simulation, we
present a simple average of the summed error,Ed, in the entire volume,V ,

Ed =
1

V

∑

V

|∇ · B|dV. (6)
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Fig. 1 (a) Time evolution of averaged velocity in the DDSM simulation. (b) The time evolution
of the summed error of the divergence-free constraint in theDDSM simulation. The first1 × 10

4

steps of DDSM are in the driven phase, but the latter2 × 10
4 steps are in the relaxation phase. The

averaged velocity is scaled in terms of Alfvén speed.

Fig. 2 Time evolution of averagedJ × B in the DDSM simulation. The first1 × 10
4 steps

of DDSM are in the driven phase, but the latter2 × 10
4 steps are in the relaxation phase.J

andB are normalized in the unit of typical coronal values.

The evolution ofEd in the computational volume (Fig. 1(b)) behaves similarly to that ofvavg. In the
driven phase, the tangential components of the initial potential field are changed to match those in
the observational field (in the first1 × 104 steps), causing the value ofEd to continuously climb to
0.004 and become stable in the relaxation phase, which meansthat the divergence error stops being
injected into the volume. We also check the evolution of averagedJ × B as shown in Figure 2,
which represents the direction defined by the cross-productof J andB representing the bulk of
the field lines. In the first1 × 104 steps, the evolution of averagedJ × B acts similarly to that of
the divergence error. However, in the later relaxation phase, the averagedJ × B decreases as time
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Fig. 3 Shown is the perspective view of the extrapolated magnetic fields obtained after the relaxation
phase. The data we use for this extrapolation are chosen to bethe magnetogram observed from
04:45–05:15 UT on 2006 December 13 after the X3.4 flare.

(a) (b)

Fig. 4 Comparison of the topological and geometrical changes of the magnetic fields before and after
the flare.Left: Extrapolated fields using the magnetogram from 20:45–21:15 UT on 2006 December
12 before the X3.4 flare.Right: Extrapolated result using the magnetogram from 04:45–05:15 UT
on 2006 December 13 after the X3.4 flare.

goes on. This fact is easy to understand, because the numerical viscosity introduced by the algorithm
relaxes the magnetic field system and continuously reduces the value ofJ × B.

The extrapolated magnetic field could be obtained after the relaxation phase, and the perspective
view of the resulting field is shown in Figure 3. We embed the original magnetogram into a large
outer area where there is no magnetic field. The reason to do this is to avoid the side boundary re-
flection effect, which may generate unstable disturbances.The positive polarities are in red and the
negative ones are in blue. The extrapolated magnetic field inFigure 3 is based on a magnetogram
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observed during 20:45–21:15 UT on 2006 December 12 before the X3.4 flare. The observed mag-
netogram is cropped from the Fast Map mode of SP with pixel number1000 × 512. Due to limited
computational resources, the cropped magnetogram is rebinned to a50 × 50 grid and embedded in
the100 × 100 grid.

In order to reveal the topological and geometrical changes of magnetic fields before and after the
flare, we compare the results in Figure 4. Figure 4(a) is at pre-flare time and Figure 4(b) is at post-
flare time. As we can see from the figure, the main changes reside in the low lying highly sheared
closed loops. Magnetic fields across the polarity inversionline are highly sheared and twisted, but
the interconnecting fields are less stressed after the flare.Also, in the eastern area surrounding the
positive sunspot, the arched magnetic fields tend to have more potential and become higher after
the flare. Besides, some of the low lying twisted loops even disappear, which is easily observed
due to the relatively simple magnetic structure. From the resulting magnetic fields, we compute the
magnetic energy to be7.9× 1032 erg before the flare and7.5× 1032 erg after the flare, with about a
5% drop in the magnetic energy.

Another way to examine the difference is to investigate the distribution of the current density.
Since a current sheet can be an ideal place for instabilities(e.g. reconnection) to happen, and it can be
the energy source for flares and CMEs, current density plays an important role in the study of solar
dynamics. We compute the vector norm of the electric currentdensities before and after the flare and
compare them to each other in Figure 5. The background is the gray scale contour of the longitudinal
magnetogram, and the strongest current densities are plotted in red near the photosphere. It can be
clearly recognized that before the flare the currents are distributed continuously along the polarity
inversion lines. The current stripes connect the main sunspot groups, and run over the emerging flux
regions. After the flare, the current stripes become fragmented and dispersed. Since compact currents
are closely associated with the free energy in excess of the potential field (Schrijver et al. 2008), it
is easy to understand the weakening of the current stripes asthe flare and the associated CME tap
energy from the current system.

In addition to the bottom distribution of the norm of currentdensities, we can also consider the
3D structures of the current densities above the polarity inversion line and area of emerging flux.
Shown in Figure 6 is the 3D visualization of current density.Figure 6(a) is the side view of the 3D
structure, and Figure 6(b) is the top view. The current system between opposite polarities can be
decomposed into two parts: the low-lying compact current system and high-arching current system
(Wang et al. 2008b; Schrijver et al. 2008). The low-lying current system is more dense and thus
shown in a dark color, which follows the direction of the polarity inversion lines. The high-lying
current system wraps around the low-lying currents and magnetic fields, and connects the opposite
polarities. Following the idea of Schrijver et al. (2008), the low-lying current system can be seen
as the consequence of emerging flux that carries the currentsfrom the sub-photosphere region, so
where the flux emergence is strong, the low-lying current is also strong. Since the high-lying current
system is the result of the force-free condition that requires the current to be parallel to the direction
of magnetic fields (Wang et al. 2008b), we can see highly arched currents running along the magnetic
field in Figure 6.

It is interesting to note that there exist dips in the pre-flare field as shown in Figure 7(a). Those
features cannot be found after the explosion, when the magnetic fields become less twisted and arch
higher. The magnetic dips could trap dense prominence materials and be able to support a filament,
which had been observed by the Paris-Meudon observatory using the Hα spectroheliograph (Guo
et al. 2008).

Finally, we compare the reconstructed field line configuration with the XRT coronal loop ob-
servations shown in Figure 8(b). The magnetogram is observed on 2006 December 12 (20:45–
21:15 UT) and the XRT image is chosen at 21:05 UT on 2006 December 12. From the comparison,
we see that the field lines of the reconstructed fields generally agree with the coronal loop structures
in the central region of NOAA 10930. As in the figure, the open field areas generally correspond
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(a) (b)

Fig. 5 Comparison of the distribution of the electric current density before and after the flare. (a)
Computed result using the magnetogram from 20:45–21:15 UT on 2006 December 12 before the
X3.4 flare. (b) Computed result using the magnetogram from 04:45–05:15 UT on 2006 December
13 after the X3.4 flare.

(a) (b)

Fig. 6 3D structures of the current densities above the polarity inversion line from 20:45–21:15 UT
on 2006 December 12 before the X3.4 flare. (a) a side view, (b) atop view.

(a) (b)

Fig. 7 (a) Dip structures using the magnetogram from 20:45–21:15 UT on 2006 December 12 before
the X3.4 flare. (b) Post dip structures using the magnetogramfrom 20:45–21:15 UT for 04:45–
05:15 UT on 2006 December 13 after the flare.
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(a) (b)

Fig. 8 (a) The extrapolation of the magnetogram from 20:45–21:15 UT on 2006 December 12 before
the X3.4 flare. (b) The XRT image observed at 21:05 UT on 2006 December 12 before the X3.4 flare.
The magnetogram used for the extrapolation corresponds to the white square box in the XRT image.

to the dark regions of the XRT image, but the closed field areascoincide with bright coronal loop
regions. The extrapolated fields can be divided into two kinds of configurations: the low lying fields
and the high arching fields. The low lying fields are highly sheared fields that correspond to dense
structures in the XRT image. These field lines are nearly parallel to the polarity inversion lines. The
high arching fields stretch into the corona, ranging from2× 104 km to10× 104 km, and have more
potential than the low lying fields.

4 DISCUSSION AND CONCLUSIONS

In the current work, we use DDSM to reconstruct magnetic fields based on observed magnetograms.
In the simulation with DDSM, tangential components of initial potential fields continually evolve
to those in observed fields, and then these initial potentialfields change into nonlinear fields when
the MHD equilibrium state is reached. We choose a relativelysimple TVD solver that allows larger
noise on the boundary. This solver is easy to compute and requires little computational time. We also
use the characteristic method to handle the bottom boundary. The characteristic boundary treatment
produces stable numerical results, which are very useful for long running simulations. Furthermore,
interactions between governing MHD equations and given boundary conditions can be taken into
account, which means that parameters of density, pressure and velocity need not be fixed. It is more
physically realistic to let variables on the boundary change according to the MHD equations.

We apply our scheme to Hinode/SP vector magnetograms observed from NOAA 10930 on 2006
December 12 (20:45–21:15 UT) and December 13 (04:45–05:15 UT) to reconstruct magnetic fields
before and after the X3.4 flare, and compare their differences in terms of the flare and associated
CME. Some quantities and properties (e.g. distribution of current densities, 3D fields and current
density structures) are examined to facilitate our understanding of magnetic field line evolution.
Finally, the extrapolated magnetic fields are compared to the coronal loop images obtained by the
XRT onboardHinode, and both of them have relatively good correlation.

It is important to note that the final equilibrium state is dynamic, and the generated steady state
flows are necessary to drive the model magnetic field to compensate for dissipative effects from
the imposed magnetic diffusivity. Since the imposed magnetic diffusivity is not dissipative enough,
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there should be some electric currents in the final steady state situation. In this sense, the final
dynamic equilibrium state is dependent on the corona’s initial setting. If a different initial magnetic
configuration is used (e.g., a nonlinear force free field instead of a potential one), the final steady
state field should be different. We choose a potential field here because it is more consistent to drive
potential fields to non-potential ones. If the nonlinear force free field is taken as the initial conditions
for the time-dependent model, serial observed fields can be employed to drive the evolution.
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