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Abstract Ever since the magnetohydrodynamic (MHD) method for extiaipon of
the solar coronal magnetic field was first developed to sthdydiynamic evolution
of twisted magnetic flux tubes, it has proven to be efficienthim reconstruction of
the solar coronal magnetic field. A recent example is theadled data-driven simu-
lation method (DDSM), which has been demonstrated to be Wglian application to
model analytic solutions such as a force-free equilibriiverg by Low and Lou. We
use DDSM for the observed magnetograms to reconstruct tijeetia field above an
active region. To avoid an unnecessary sensitivity to bamndonditions, we use a
classical total variation diminishing Lax-Friedrichsriaulation to iteratively compute
the full MHD equations. In order to incorporate a magnetogcansistently and sta-
bly, the bottom boundary conditions are derived from theatteristic method. In our
simulation, we change the tangential fields continuallyrfran initial potential field
to the vector magnetogram. In the relaxation, the initiakpgal field is changed to
a nonlinear magnetic field until the MHD equilibrium stateéached. Such a stable
equilibrium is expected to be able to represent the solaospimere at a specified time.
By inputting the magnetograms before and after the X3.4 fteaeoccurred on 2006
December 13, we find a topological change after comparinggnetic field before
and after the flare. Some discussions are given regardirghérege of magnetic con-
figuration and current distribution. Furthermore, we coreghe reconstructed field
line configuration with the coronal loop observations by X&TboardHinode. The
comparison shows a relatively good correlation.
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1 INTRODUCTION

The knowledge of a 3D coronal magnetic field is crucial in thderstanding of a wide range of ac-
tive phenomena in the solar atmosphere. The coronal madiedti can be described with equations

VxB=aB, V-B=0, (1)

whereq is called the force-free factor. ¢ = 0 or a constant these equations describe a potential or
linear force-free field, and furthermodie£ constant indicates a nonlinear force-free field (NLFFF).
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The NLFFF is believed to exist close to magnetic fields in t@oa with low beta. Several meth-
ods for the NLFFF extrapolation were proposed, such as ttimization methods (Wheatland et al.
2000; Wiegelmann 2004), boundary integral methods (Yan Bu&sd 2000; He & Wang 2008), and
Grad-Rubin-like methods (Régnier & Amari 2004). Howevke force-free field is just an approx-
imation with gravity and plasma pressure ignored in thersati@mosphere. In order to take account
of the non-linear interactions between the plasma flow field magnetic field, it is necessary to
invoke full magnetohydrodynamic (MHD) equations for theamal magnetic field reconstruction.

The first model invoking full MHD equations was developed bikid et al. (1990) to study the
dynamic evolution of twisted magnetic flux tubes. McClymé&niikic (1994) solved a subset of
the full MHD equations to derive horizontal photospherievisp using physical quantities deduced
from the observed magnetogram as the initial conditionsinRaiotis (1996) introduced a similarly
evolutionary method, named the “stress-and-relax methddch iteratively evolves the initial po-
tential field by stressing and relaxing phases into a nogalimearly force-free field until the bottom
transverse field matches the magnetogram. Valori et al 5p@€vised a magnetofrictional method
based on the stress-and-relax method.

Recently, a more robust simulation implemented by the spiam® conservation element and
solution element (CESE) method has been validated to recehthe magnetic field of Low & Lou
(1990)’s test cases (Jiang et al. 2011). In Jiang et al.sehdlde lower boundary magnetic fields
are extracted from Low & Lou (1990)’s field model as the driferce. On the bottom boundary
condition, Jiang et al. fixed the density and pressure, anthserelocity equal to zero all the time
for the sake of stability.

Although the CESE method has proved to be effective in thenstcuction of Low & Lou’s test
case, the problem is that the CESE method is sensitive te hothe boundary conditions, which is
the main reason to fix the induced plasma velocity to zero ebtitom. In the case of reconstruction
of Low & Lou’s analytical magnetic fields, there is little @i in the boundary conditions to cause
numerical instability. When observed magnetograms arntak the boundary conditions for Jiang
et al.'s model, the observational data cause computatiostalbility unless an enhanced smoothness
is applied to these magnetograms. In order to overcomeuliféis in Jiang et al.'s model, we suggest
a relatively simple total variance diminishing (TVD) sotyevhich allows noise in the boundary
conditions, and uses a characteristic boundary treatmieertardensity, pressure and velocity are not
fixed.

Since the extrapolated field configuration strongly depamdiie implementation of boundary
conditions, we employ the data-driven simulation methoB$#M), in which boundary conditions
are derived from the projected normal characteristic neifVgu et al. 2006). The advantage of
this method is that the temporal evolution of MHD variablestbe sub-Alfvénic boundary will
match both the governing MHD equations and the given boyncamditions (Hayashi 2005). It is
important to note that the boundary conditions are cruocighé simulation results. Simple bound-
ary conditions obtained with linear extrapolation leadie humerical instability, while boundary
conditions produced with the projected normal charadtenisethod lead to the numerical stability
(Nakagawa et al. 1987). Since the characteristic methodalus to incorporate components of ob-
served magnetograms as a part of the lower boundary condtiti@a more natural way (Wang et al.
2008a), these magnetograms can be taken as the drivingesousar simulation. DDSM has been
implemented to study the evolution of Poynting flux in actiegions (Fan et al. 2011). In Fan et al.'s
model, they used the velocity distributions generated bysDDlo compute physical parameters like
the Poynting flux.

In order to describe the DDSM and show an example of appdicdd extrapolation, this paper
is organized as follows: in Section 2, the DDSM and its nuoaiimplementation are briefly intro-
duced; in Section 3, this method is applied to NOAA 10930,so1de analysis and comparisons are
presented. Finally, discussion and conclusions are giv&ection 4.
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2 DATA AND METHOD

We solve the three-dimensional resistive and compredgiblb equations in Cartesian coordinates,
and ignore the effects of radiative cooling, heat conducgiod those of higher order transport such
as differential rotation and meridional flow. The equatioas be written in their primitive forms as
follows:

dp

—_ . = 2
5 T V(o) =0, @)

v 1

p(at+U.Vv)__vp+E(VxB)xB+pg, 3)
0

B_It? +v:Vp+pV v = (v — 1)nJ?, (4)
0B

E:Vx(fuxBH—anB, ()

where.J is the electric currenty is the specific heat ratio angis the coefficient of diffusion.

Concerning the magnetic field configuration in the higheonar the specific heat ratip is
chosen to be 1.05 and the magnetic diffusivjtis chosen to be 0.01. The normalization of typical
values describing parameters in the corona is given in Table

The initial condition of DDSM can be set as follows: the ialtirial density is set to be uniform
at the bottom and decreases exponentially with the scaighti account for the solar gravity; the
initial magnetic field is set to be a potential field extrapetifrom the line-of-sight component of the
vector magnetogram by using the Green'’s function methodddieet al. 2006); the initial velocity
is set equal to zero everywhere and the temperature is setuniform.

In the DDSM simulation, normal components of the magnetld fiee unchanged on the bound-
ary, but tangential components are continually changedhtneinitial potential field evolves to the
observed field. During the evolution of magnetic fields atitbttom, the Lorentz forces are continu-
ously injected into the computational domain. The injedtedes cause the initial potential fields to
change to nonlinear fields during the relaxation processthetMHD equilibrium state is reached.
It takes tens of Alfven times to reach this equilibrium stathich should be able to represent the
solar atmosphere at a specified time. As the forces are esvad during the relaxation process,
a stable equilibrium is expected, in which the force-freust appears only when the pressure is
counteracted by gravity (Aschwanden 2004).

In order to stay numerically stable, a classical total warediminishing (TVD) Lax-Friedrichs
formulation was employed to iteratively compute the full BIHequations, which is a relatively
simple TVD type scheme that enables us to compute data wihk leise. We use a TVDLF solver
to solve the MHD equations implemented in the Versatile Adtiee Code (VAC) by To6th (1996),
which is a software package for solving hydrodynamic and M#@blems in astrophysics.

Table 1 Units for Normalization

Quantity Value

104 cm s—2
109 cm—3
106 K

100 Mm
100 km st
103 s
05G

W e N3

Notes:g is gravitational acceleratiom, is number density,
T is temperaturel is pressure scale heightjs Alfvéen speed,
t is Alfvén crossing time, and is magnetic field strength.
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The boundary condition is also a source of instability whersitreated inappropriately.
We choose the lower physical boundary condition to be ddriwéh projected characteristics
(Nakagawa 1981a,b; Nakagawa et al. 1987), which eigenrndpases the hyperbolic system into
a set of compatible equations corresponding to a set of wanaes According to the projected
characteristics, the outgoing MHD waves are used to comyariables on the boundary and the
incoming waves are abandoned. We can add constraints etitaimm observed magnetograms to
make up for the absence of the incoming wave. In this way, wesistently incorporate the magne-
togram as part of the bottom boundary condition.

The advantage of using the projected characteristics istileatemporal evolution of MHD
variables on the sub-Alfvénic boundary will match both ga@erning MHD equations and the given
boundary conditions (Hayashi 2005; Wu et al. 2006). The itielasid pressure on the boundary
need not remain unchanged and the velocity need not be setdoAnother advantage is that the
boundary conditions produced with the characteristic wetimake the simulation running over a
long time very stable. The detailed numerical implemeatatind derived expressions describing
the time-varying physical parameters on the boundary aengn the Appendix of Wu et al. (2006).

We choose magnetograms from the active region NOAA 10936rgbd byHinode to be the
boundary condition in our simulation. This active regionswaported in an X3.4 flare on 2006
December 13. Observations show that before the flare theseavgggnificant flux emergence be-
tween the positive and negative sunspots. Vector magratogjare derived through the inversion
of Stokes profiles with a Milne-Eddington atmosphere (Lé&eal. 1993), using the full polarization
parametersl(Q, U, andV) from the SOT/SP. Th&80° ambiguity in the vector magnetogram is re-
solved by using the minimum energy algorithm by Metcalf (4Q%vhich uses simulated annealing
to minimize both the electric current density and the fiekkdjence. The magnetograms are also
centered on the solar disk to remove the effect of projection

The model is built in a 3D rectangular box in Cartesian cauatis with 10&100x 70 grids
in thez, y, andz directions, respectively. The magnetogram is cropped t@itex 50 grid which
is embedded in thé00 x 100 computational domain. The pixel size of the magnetogranitfer
bottom condition is 2.56 arcsec. The main reason for that isduce the boundary effect since we
set the boundary aside from the computational domain as reiplssible.

3 RESULTS AND ANALYSIS

We apply DDSM to reconstruct the magnetic field of active sagNOAA 10930 before and after
an X3.4 flare, and take the observed magnetic field in Hind@leéstor magnetograms as boundary
conditions. In the relaxation, iterative computations @guired to evolve the physical state gov-
erned by MHD equations, which is time consuming and resomtessive. When an equilibrium
state is reached, the averaged plasma velocity becomesatgt which could be a good sign that
no more forces are generated. For this reason, we take thagaeeplasma velocity,,,, in the
computational volume witlV grid points,vaes = % >, |vil, as the indication of the equilibrium
state. The evolution of,., is shown in the left panel of Figure 1. At the beginning of tlhenputa-
tion, the velocity is set to zero. In order to make the initiatential field evolve slowly to reach the
state of the observed field, increments of the initial fielel st as small as possible, which results
in the physical state governed by MHD equations evolving/sioFor this reason, the averaged ve-
locity linearly increases in the driven phase, and becortagi®sary in the relaxation phase after the
computational tangential components have matched the\aigmal ones.

For internal consistency of the reconstructed field, we alseck the error of the divergence-
free constraint. To have a quantitative understanding of the error evolves in the simulation, we
present a simple average of the summed efrgr,in the entire volumel/,

1
Ea =1 XV: |V - B|dV. (6)
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Fig.1 (a) Time evolution of averaged velocity in the DDSM simudati (b) The time evolution
of the summed error of the divergence-free constraint indB&M simulation. The first x 10*
steps of DDSM are in the driven phase, but the la2ter 10* steps are in the relaxation phase. The
averaged velocity is scaled in terms of Alfvén speed.
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Fig.2 Time evolution of averaged x B in the DDSM simulation. The first x 10* steps
of DDSM are in the driven phase, but the lattex 10" steps are in the relaxation phask.
and B are normalized in the unit of typical coronal values.

The evolution off4 in the computational volume (Fig. 1(b)) behaves similaplyttat ofv,y,. In the
driven phase, the tangential components of the initial t@kfield are changed to match those in
the observational field (in the firstx 10* steps), causing the value &F to continuously climb to
0.004 and become stable in the relaxation phase, which ntleainthe divergence error stops being
injected into the volume. We also check the evolution of agedJ x B as shown in Figure 2,
which represents the direction defined by the cross-proofudt and B representing the bulk of
the field lines. In the first x 10* steps, the evolution of averagddx B acts similarly to that of
the divergence error. However, in the later relaxation phtee averaged x B decreases as time
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Fig. 3 Shown is the perspective view of the extrapolated magnelidsfiobtained after the relaxation
phase. The data we use for this extrapolation are chosen thebmagnetogram observed from
04:45-05:15 UT on 2006 December 13 after the X3.4 flare.
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Fig. 4 Comparison of the topological and geometrical changeseafitagnetic fields before and after
the flare Left: Extrapolated fields using the magnetogram from 20:45-2WT on 2006 December
12 before the X3.4 flareRight: Extrapolated result using the magnetogram from 04:43:D8IT
on 2006 December 13 after the X3.4 flare.

goes on. This fact is easy to understand, because the naingsicosity introduced by the algorithm
relaxes the magnetic field system and continuously redheesgaiue ofJ x B.

The extrapolated magnetic field could be obtained afterdlaxation phase, and the perspective
view of the resulting field is shown in Figure 3. We embed thginal magnetogram into a large
outer area where there is no magnetic field. The reason toisistto avoid the side boundary re-
flection effect, which may generate unstable disturbares positive polarities are in red and the
negative ones are in blue. The extrapolated magnetic fiekdguare 3 is based on a magnetogram
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observed during 20:45-21:15 UT on 2006 December 12 beferX®¥ flare. The observed mag-
netogram is cropped from the Fast Map mode of SP with pixelbar000 x 512. Due to limited
computational resources, the cropped magnetogram ismethito a50 x 50 grid and embedded in
the100 x 100 grid.

In order to reveal the topological and geometrical chanfigsgnetic fields before and after the
flare, we compare the results in Figure 4. Figure 4(a) is aflpre time and Figure 4(b) is at post-
flare time. As we can see from the figure, the main changedeésithe low lying highly sheared
closed loops. Magnetic fields across the polarity inverilmare highly sheared and twisted, but
the interconnecting fields are less stressed after the fdge, in the eastern area surrounding the
positive sunspot, the arched magnetic fields tend to have patential and become higher after
the flare. Besides, some of the low lying twisted loops eveampear, which is easily observed
due to the relatively simple magnetic structure. From tisellteng magnetic fields, we compute the
magnetic energy to be9 x 1032 erg before the flare arid5 x 1032 erg after the flare, with about a
5% drop in the magnetic energy.

Another way to examine the difference is to investigate tis&ridution of the current density.
Since a current sheet can be an ideal place for instabiléigsreconnection) to happen, and it can be
the energy source for flares and CMESs, current density playsiportant role in the study of solar
dynamics. We compute the vector norm of the electric cudensities before and after the flare and
compare them to each other in Figure 5. The background isr#fyesgale contour of the longitudinal
magnetogram, and the strongest current densities aregliotred near the photosphere. It can be
clearly recognized that before the flare the currents atelslised continuously along the polarity
inversion lines. The current stripes connect the main satrgaups, and run over the emerging flux
regions. After the flare, the current stripes become fragetesnd dispersed. Since compact currents
are closely associated with the free energy in excess ofdtenpal field (Schrijver et al. 2008), it
is easy to understand the weakening of the current stripteeatare and the associated CME tap
energy from the current system.

In addition to the bottom distribution of the norm of currelensities, we can also consider the
3D structures of the current densities above the polaritgrgion line and area of emerging flux.
Shown in Figure 6 is the 3D visualization of current dendtigure 6(a) is the side view of the 3D
structure, and Figure 6(b) is the top view. The current syddetween opposite polarities can be
decomposed into two parts: the low-lying compact currestesy and high-arching current system
(Wang et al. 2008b; Schrijver et al. 2008). The low-lyingremt system is more dense and thus
shown in a dark color, which follows the direction of the gdlainversion lines. The high-lying
current system wraps around the low-lying currents and miggfields, and connects the opposite
polarities. Following the idea of Schrijver et al. (2008)etlow-lying current system can be seen
as the consequence of emerging flux that carries the curfremtsthe sub-photosphere region, so
where the flux emergence is strong, the low-lying currenfsis atrong. Since the high-lying current
system is the result of the force-free condition that rezgiihe current to be parallel to the direction
of magnetic fields (Wang et al. 2008b), we can see highly arcberents running along the magnetic
field in Figure 6.

It is interesting to note that there exist dips in the preefléeld as shown in Figure 7(a). Those
features cannot be found after the explosion, when the ntiadiedds become less twisted and arch
higher. The magnetic dips could trap dense prominence rakstand be able to support a filament,
which had been observed by the Paris-Meudon observatang tise Hv spectroheliograph (Guo
et al. 2008).

Finally, we compare the reconstructed field line configorativith the XRT coronal loop ob-
servations shown in Figure 8(b). The magnetogram is obdeove2006 December 12 (20:45—
21:15 UT) and the XRT image is chosen at 21:05 UT on 2006 Deeefith From the comparison,
we see that the field lines of the reconstructed fields gdpergitee with the coronal loop structures
in the central region of NOAA 10930. As in the figure, the opetidfiareas generally correspond
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(b)

Fig.5 Comparison of the distribution of the electric current dgnlsefore and after the flare. (a)
Computed result using the magnetogram from 20:45-21:15 2086 December 12 before the
X3.4 flare. (b) Computed result using the magnetogram from®95:15 UT on 2006 December

13 after the X3.4 flare.

(b)

Fig. 6 3D structures of the current densities above the polaritgrgion line from 20:45-21:15 UT
on 2006 December 12 before the X3.4 flare. (a) a side view, {ty) aiew.

(@) (b)

Fig. 7 (a) Dip structures using the magnetogram from 20:45-21 1502006 December 12 before
the X3.4 flare. (b) Post dip structures using the magnetodram 20:45-21:15 UT for 04:45—
05:15 UT on 2006 December 13 after the flare.
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Fig. 8 (a) The extrapolation of the magnetogram from 20:45-21:T®t2006 December 12 before
the X3.4 flare. (b) The XRT image observed at 21:05 UT on 200&Dber 12 before the X3.4 flare.
The magnetogram used for the extrapolation correspondie twhite square box in the XRT image.

to the dark regions of the XRT image, but the closed field aceascide with bright coronal loop
regions. The extrapolated fields can be divided into two &ioicconfigurations: the low lying fields
and the high arching fields. The low lying fields are highlyasieel fields that correspond to dense
structures in the XRT image. These field lines are nearlyllgata the polarity inversion lines. The
high arching fields stretch into the corona, ranging fibm10* km to 10 x 104 km, and have more
potential than the low lying fields.

4 DISCUSSION AND CONCLUSIONS

In the current work, we use DDSM to reconstruct magneticielased on observed magnetograms.
In the simulation with DDSM, tangential components of @lifpotential fields continually evolve
to those in observed fields, and then these initial potefigils change into nonlinear fields when
the MHD equilibrium state is reached. We choose a relatig#hple TVD solver that allows larger
noise on the boundary. This solver is easy to compute andresdiftle computational time. We also
use the characteristic method to handle the bottom boun@laeycharacteristic boundary treatment
produces stable numerical results, which are very usefubfig running simulations. Furthermore,
interactions between governing MHD equations and givemdaty conditions can be taken into
account, which means that parameters of density, pressdrestocity need not be fixed. It is more
physically realistic to let variables on the boundary cleagcording to the MHD equations.

We apply our scheme to Hinode/SP vector magnetograms adzsEom NOAA 10930 on 2006
December 12 (20:45-21:15 UT) and December 13 (04:45-05T)5d reconstruct magnetic fields
before and after the X3.4 flare, and compare their differemeaerms of the flare and associated
CME. Some quantities and properties (e.g. distributionwfent densities, 3D fields and current
density structures) are examined to facilitate our undedihg of magnetic field line evolution.
Finally, the extrapolated magnetic fields are comparedecctironal loop images obtained by the
XRT onboardHinode, and both of them have relatively good correlation.

It is important to note that the final equilibrium state is dymic, and the generated steady state
flows are necessary to drive the model magnetic field to cosgierfor dissipative effects from
the imposed magnetic diffusivity. Since the imposed magmgffusivity is not dissipative enough,
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there should be some electric currents in the final steadg situation. In this sense, the final
dynamic equilibrium state is dependent on the corona’mirsetting. If a different initial magnetic
configuration is used (e.g., a nonlinear force free fieldeadtof a potential one), the final steady
state field should be different. We choose a potential fietd because it is more consistent to drive
potential fields to non-potential ones. If the nonlineacéoiree field is taken as the initial conditions
for the time-dependent model, serial observed fields camripdoyed to drive the evolution.
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