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Abstract We study the behavior of orbits in two different galactic eymical models,
describing the motion in the central parts of a triaxiakeitial galaxy with a dense nu-
cleus. Numerical experiments show that both models disi@gylar motion together
with extended chaotic regions. A detailed investigatiorthaf properties of motion
is made for the 2D and 3D Hamiltonian systems, using a humbdifferent dy-
namical parameters, such as the Poincaré surface of arsgtit maximal Lyapunov
Characteristic Exponent, th#c) spectrum, theS(w) spectrum and th&( f) indica-
tor. The numerical calculations suggest that the propgeofienotion in both potentials
are very similar. Our results show that one may use diffekards of gravitational
potentials in order to describe the motion in triaxial g&axwhile obtaining quanti-
tatively similar results.
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1 INTRODUCTION

About forty years ago, the prevailing view was that elliptigalaxies were oblate spheroids flattened
by rotation (see Sandage et al. 1970). It was the pioneerory of Bertola & Capaccioli (1975)
and lllingworth (1977) that led astronomers to abandon #seimption that elliptical galaxies are
necessarily oblate.

It is well known that observations of elliptical galaxiegl only the projected isophotes and,
thus, determination of their intrinsic shapes requiresistieal analysis, based on large samples (see
Ryden 1996; Alam & Ryden 2002; Vincent & Ryden 2005) or mapgpih potentials via detailed
kinematical data for individual galaxies (see Davies e2@01; Rest et al. 2001; Statler et al. 2004).

Today it is believed that the shapes of elliptical galaxiespolate or triaxial rather than oblate
(see Benacchio & Galletta 1980; Binggeli 1980; Alam & Ryd@32). On the other hand, kinemat-
ical studies of elliptical galaxies show evidence thatdahgalaxies do exist. Moreover, observa-
tional data indicate that most of the triaxial ellipticalapées host a black hole or a dense nucleus
in their centers (see Bak & Statler 2000; Statler et al. 2004)this basis, we believe that it would
be of interest to investigate the dynamical properties obaitl elliptical galaxy, particularly in its
central region.

In order to describe the motion in the triaxial ellipticalapey we use the well known logarithmic
potential

2
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whereuy is used for the consistency of the galactic unitandb are flattening parameters, andis
the scale length of the bulge component (see Binney & Treen2@®8). Expanding potential (1) in
a Taylor series about the origin and keeping terms up to theHalegree in the variables, we find
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Thus the polynomial potentid; is
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where it was assumed that ) ) )
b

w < 1. (4)
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The reader can find more details about the Taylor expansidineofogarithmic potential in Zotos

(2011b). To potentials (1) and (3) we add the potential ofteesipally symmetric nucleus
Vi = N (5)
Va? +y? 422+ 2

where M, is the nuclear mass, whilg, is the scale length of the nucleus. We apply a Plummer
sphere, in order to increase the central mass of the galdmy.rfethod has been applied several
times in previous works, having as an objective to study ffects of the introduction of a central
mass component in a galaxy (see Hasan & Norman 1990; Hasari6903).

The aim of the present article is to investigate the propedf motion near the center of a triaxial
elliptical galaxy described by potentials (1) and (3) withadditional dense nucleus described by
potential (5). In particular, we are interested to studyrégular or chaotic character of motion in
both of the above described potentials, in order to be abtmiopare the corresponding results.
Furthermore, we shall compare the density in the centra$ mdirthe triaxial galaxy derived using
the two potentials described above. In order to achievetarygtture for the properties of motion,
we first investigate the 2D system, that is whes 0, and then we will use the corresponding results
to study the dynamical system of three (3D) degrees of fr@edo

From the pioneering work of Henon & Heiles (1964) there hasntan ongoing interest in find-
ing new methods, in order to distinguish between orderedchadtic motion in dynamical systems.
The Poincaré surface of section (PSS) for the two dimemsi(#D) systems and the Lyapunov
Characteristic Exponent (LCE) (Benettin et al. 1976; Fcbés 1984; Lichtenberg & Lieberman
1992) for dynamical systems with any degree of freedom aoentell known methods to character-
ize an orbit as regular or chaotic. Over the last thirty yeanseffort has been made in order to find
new, modern and also reliable and fast ways to detect theichzahavior in galactic systems. One
could mention the frequency map analysis developed by lrdtlkekar et al. 1992; Laskar 1993),
the dynamical spectra of stretching numbers (the disiobutf values of a given parameter along
the obit), introduced by Froeschle (1984) (see also Frdesathal. 1993; Voglis & Contopoulos
1994; Contopoulos et al. 1995; Contopoulos et al. 1997) had{ /) spectral method applied and
used by Karanis & Vozikis (2008). In the present researchuse apart from the classical PSS
technique and the LCE, some modern methods such aS(#)eand.S(w) dynamical spectra and
the P(f) indicator.

Here, we must provide some additional theoretical inforomategarding these new dynamical
methods. We use th®(c) spectrum in order to characterize the nature of an orbit i dyghamical
system. This spectrum has been proved to be a very reliabléntseveral cases (see Caranicolas
& Papadopoulos 2007; Zotos 2011a). The nature of a 2D orhitbearevealed by looking at the
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shape of the(c) spectrum. If the shape of the spectrum is a well defitiettpe structure, then the
corresponding orbit is regular. On the other hand, if thgpehs.complicated and highly asymmetric,
with a lot of large and small abrupt peaks, then the orbit &otic. Moreover, theé(c¢) spectrum can
help us identify resonant orbits of higher multiplicity, dgproduces as many/-type structures as
the total number of islands of the invariant curves onithe p, phase plane. One more advantage
of this spectrum is that it can be deployed in order to cateuflae sticky period of a 2D orbit and
also to follow its time evolution towards the chaotic sea(®g. 5 in Zotos 2011a).

For the study of 3D orbits, we use tl%w) spectrum. By definition this spectrum is based on
a complicated combination of the coordinates and the maanefthe 3D orbit. In particular, this
spectrum is an advanced form of thi&:) spectrum and therefore carries all the characteristics men
tioned in the previous paragraph regarding the patterneo$piectrum for regular and chaotic orbits.
The only difference is that in this case ti¢w) spectrum produces as mabytype structures as
the total number of invariant 3D tori in the;, p.., ) phase space. We introduced this new spectrum
definition in Zotos (2011a), in order to construct a new sécefinition appropriate for the study
of 3D orbits.

The Fourier Transform is usually defined as a transformatf@nquantityg which is a function
of time, ¢(t), with regard to its respective function of amplituglewhich is a function of frequency
P(f). We can define a series of time intervals between successigsings over a section. Then we
calculate the Power Spectrum of these time intervals, usiDgscrete Fast Fourier Transformation
(FFT) algorithm. Looking at thé”( /) spectrum of a regular 2D or 3D orbit, we expect to observe
a smooth curve, with some additional peaks corresponditigetéperiodicities” of the time series.
On the contrary, in a 2D or 3D chaotic orbit no such “periaiigs’ exist and therefore it®(f)
spectrum will produce a very “noisy” pattern with a large rmhenof peaks which would be very
densely distributed. One of the main advantages of thistispg@aethod is that is uses only one orbit
and we do not need to trace the behavior of any nearby orhith&unore, the detection can be
made quite early using less iterations, compared to thatiters needed to reach a conclusive result
using the LCE. More detailed information regarding this noet and its applications can be found
in Karanis & Vozikis (2008).

Here we must remind the reader that fi1e) spectrum is the distribution function of the param-

eterc AN
s(e) = SN ©

whereAN (¢) are the numbers of the parameteis the interval(c, ¢ + Ac) after N iterations. The
parameter: is defined as

;= B Pai @)
Pyi
where (z;, pzi, pyi) are the successive values of the p,, p,) elements of the 2D orbits, on the
Poincarér — p,,y = 0,p, > 0 phase plane. More details regarding tig-) spectrum and its
applications can be found in Caranicolas & Papadopould3qpand Caranicolas & Zotos (2010).
The Hamiltonian corresponding to the potential (1) or (3yigten as

1
H=3(pz+p,+p2) +Vi(@,y,2) = E, (8)

whereV; represent$;, = V, + V;, or Vi1 = Vi + V4. Herep,, p, andp. are the momenta per unit
mass conjugate to, y and z respectively, whileE' is the numerical value of the Hamiltonian (8),
which is conserved.

In this article, we use a system of galactic units, where tiieafilength is 1kpc, the unit of mass
is 2.325 x 107 M, and the unit of time i9.97748 x 10® yr. The velocity unit is 10 kms!, while G
is equal to unity. In the above units we use the valugs= 10, ¢, = 3, M, = 10,¢, = 0.1,a = 1.5
andb = 1.7.
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The results of the present research are based on the nuhietégaation of the equations of
motion

o OVi(wy,2)

ox ’
. OVi(x,y,2)
Yy = _Tv

which was made using a Bulirsh-Stoer routine in Fortrarv@th double precision in all subroutines.
The accuracy of the calculations was checked by the constditiee energy integral (8), which was
conserved up to the eighteenth significant figure.

This paper is organized as follows. In Section 2 we presedtcmmpare the results for the
2D systems. In Section 3 we compare the mass density neaettter derived using the two 3D
potentials. Moreover, we compare the properties of the 3iitom the two dynamical models. In
Section 4, the conclusions and the discussion of our restdtpresented.

2 RESULTSFOR THE 2D DYNAMICAL SYSTEMS

In this section, we study the character of orbits in the 2Daggital systems. In this case, we set
z = p, = 0in (8) and the corresponding 2D Hamiltonian is

1
Hy =5 (p; +py) + Vi (z,9) = Bs, (10)
whereFE); is the numerical value of the Hamiltonian. As the phase spéttee system is four dimen-
sional we use the — p,,y = 0, p, > 0 Poincaré phase plane. The results are presented in Fijures
and 2.

Figure 1 shows the phase plane for potentigl, while Figure 2 shows the phase plane for
potentialV;;. Here, we must emphasize that the two phase planes wergwtest for values of
energies connected by the relation

Eatg = Foy +viIncy, (11)

and the same initial conditions, in order to be able to makecttmparison. Here we todk,; =
—4.70,v3 In ¢, = 109.86, which gives the value 105.16 fdfs:,. As one can see, the two phase
planes are almost identical. In both figures, we see areasgoiflar motion and extended chaotic
regions. There are three main families of regular orbi}g(bits producing invariant curves around
each of the two stable 1:1 resonant periodic points. (ii)i®froducing a set of three islands - one of
them is on thes-axis, while the other two are symmetric with respect tojthexis. These orbits are
characteristic of the 3:3 resonance. (iii) Box orbits pradg invariant curves surrounding the whole
chaotic sea. Note that the area on the p, phase planes occupied by each of the above families
of regular orbits is quantitatively the same in both Figutemnd 2. In addition to the regular orbits
there are also a large number of irregular orbits producitagge, unified chaotic sea. Note that the
extent of the chaotic sea is almost the same in both phasegl@he differences between the two
phase planes produced by potentitls and V4, are negligible and they are confined to some tiny
islands, embedded inside the chaotic sea. These tiny skmedbroduced by secondary resonances.
In order to investigate and compare in detail the propedfesiotion in both potentials, we
present and compare in the following a number of orbits tgilumnto different families of orbits.
Figure 3(a)—(d) shows results for a regular orbit in potnfj,. The orbit shown in Figure 3(a)
belongs to family (i) and has initial conditionsy = 0.5,50 = 0,p0 = 0, while in all cases,
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10

-10

Fig.1 Thez — p, phase plane for the potenti&l,, whenvo = 10,c, = 3, My = 10,¢q =
0.1,a = 1.5,b = 1.7 and E2; = 105.16.

-1 -0.5 0 0.5 1
Fig.2 Similarto Fig. 1, but for the potentidk,. The value of energy i8> = —4.70.

pyo is found from the energy integral (10). The correspondinges of energy and all the other
parameters are as in Figure 1. Figure 3(b) shows the maximDE df the orbit, which vanishes
indicating regular motion. Figure 3(c) shows thé:) spectrum of the orbit. Here, we see a well
definedU type spectrum characteristic of the regular motion. In Fegd(d), we see a plot of the
P(f) indicator, which displays only two peaks indicating regutention. In order to help the reader,
we note that the orbit shown in Figure 3(a) was calculatecftime period of 100 time units. The
time scale for the5(c) spectrum and th@( f) indicator wasl0® — 10* time units.

Figure 4(a)—(d) shows results for an orbit, with the samgaintonditions and with the same
time scales for all calculations, but for the potenfi@l. All other parameters are the same as in
Figure 2.
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Fig.3 (a) Aregular orbit in the 2D potentidf;,. Initial conditions arexo = 0.5, yo = 0, pzo = 0,
while p,o is found from the energy integral. The values of all othelapagters and energy are as in
Fig. 1. (b) A plot of the maximum LCE vs. time for the orbit showm (a). (c) TheS(c) spectrum of
the orbit shown in (a) and (d) The(f) indicator for the orbit shown in (a).
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Fig.4 (a)—(d): Similar to Fig. 3(a)—(d) for the potenti&];. The values of all other parameters and
energy are the same as in Fig. 2.
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Fig.5 (a)—(d): Similar to Fig. 3(a)—(d) for a resonant orbit. iaitconditions arexo = 0.15, yo =
0, pzo = 4.5. The values of all other parameters and energy are the saméis 1.
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Fig.6 (a)—(d): Similar to Fig. 5(a)—(d) for the potenti&];. The values of all other parameters and
energy are the same as in Fig. 2.
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Fig.7 (a)—(d): Similar to Fig. 3(a)—(d) for a chaotic orbit. l@iticonditions arexo = 0.02,y0 =
0, pzo = 2.5. The values of all other parameters and energy are the samé&s 1.

In order to have a better picture of the properties of motiotie two potential$;, andV;;, we
present results for two more orbits.

Figures 5(a)—(d) and 6(a)—(d) are similar to 3(a)—(d) ara-4€), for an orbit with initial con-
ditions: zp = 0.15,y9 = 0,p.0 = 4.5. This orbit belongs to family (ii) and it is characteristit o
the 3:3 resonance. As one can see, the outcomes presentedtinot figures are very similar. The
results presented in Figures 7(a)—(d) and 8(a)—(d) ardasitoithose of Figures 3(a)—(d) and 4(a)—
(d) but for a chaotic orbit. Initial conditions argy = 0.02, 1y = 0, po = 2.5. Here the maximum
LCE has a positive value indicating chaotic motion. Moreptree S(c) spectrum shows a number of
large and small peaks which is characteristic of chaotidganofinally, theP( f) indicator is highly
asymmetric with a large number of peaks, also indicatingptitbanotion. Comparing the results
given in Figures 7(a)—(d) and 8(a)—(d), we can say that theyery similar.

Given all the above, we can say that our numerical resultg;hwdre obtained by several dif-
ferent dynamical methods using regular and chaotic orkitengly suggest that the potentidj
satisfactorily describes the properties of motion of théeptial ;, near the center of a triaxial,
elliptical galaxy. Since the potential of the spherical leusV;, is the same in both potentialg,
and V4, this means that no information is lost when we go from a dlatexial logarithmic po-
tential (1) to the local polynomial potential (2). Remembat this only holds near the center of
the galaxy, when (4) is valid. In order to investigate and pare the character of motion in the two
2D potentialsV;, andV;;, we have computed a large number of orbits - about 1000 - viffiéreint
initial conditions(xo, p.0), but with the same initial conditions in both 2D potentidisparticular,
as we have in both cases regular regions and only one uniféatticlsea in each — p,. phase plane,
we calculate the maximum value of the LCE by choosing 500tebith different and random
initial conditions(zo, p.0) in the regular regions and 500 orbits with different and @ndnitial
conditions(xg, p.0) in the chaotic sea in each case. Our numerical experimeats fat the vast
majority of orbits - aboud7.4% - displayed the same characteristics, including the sarheaaf
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Fig.8 (a)—(d): Similar to Fig. 7(a)—(d) for the potenti&];. The values of all other parameters and
energy are the same as in Fig. 2.

orbit, maximum LCE,S(c¢) spectrum andP(f) indicator, while only2.6% of the tested orbits were
different.

3 RESULTSFOR THE 3D DYNAMICAL SYSTEMS

We now proceed to study the properties of motion in the 3Dmg@tks. Before doing this, it would
be interesting to compare the mass densities derived frer8Ehpotentiald/;, andV;;. The mass
density can be found using Poisson’s law

V2V; = 47Gpy , (12)

whereV; representd;, = V, + V;, or Vi = Vi + V4, while p, representg,, or py,.

Figure 9(a)—(h) shows the surfaces of equal density for ihg@&tentialsV;, andV;;. We can
see that the results are very similar. In order to comparentes density from another point of view,
we present in Figure 10 (a)—(f) the contours of equal defsitiye zy, 2z andyz planes respectively
for the two potentials. As is understood, these contourshraerojections of the four surfaces of
equal density to the three principal planeg zz andyz. Here we can visualize that the deviations
between the mass density of the two potentials are extresnedyl and therefore negligible.

Let us now come to investigate and compare the orbits in tle3fi potentials. For this pur-
pose, we apply the(w) dynamical spectrum, which was introduced in Zotos (201iteprder
to distinguish between ordered and chaotic motion in 3D dyinal systems. The parametey is
defined as

w; = (xz - pmz) — (Zi - pzz) , (13)
pyi
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Fig.9 (a)—(h): Surfaces of equal density for the 3D potential$t patterns correspond to potential
Vie, While right patterns to potentiaf;,.
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Fig.10 (a)—(f): Contours of equal density in they, zz andyz planes. Left patterns correspond to

potentialVi,, while right patterns to potentiaf,.

where (z;, z;, pzi, Dyi, P=i) are the successive values of the z, p,, py, p.) elements of the 3D
orbits. The dynamical spectrum of the parametés its distribution function

S(w) =

_ AN(w)
NAw

(14)

where AN (w) is the number of parameters in the interval(w, w + Aw) after N iterations. In
order to study the character of a 3D orbit, th&:) spectrum can also be applied. Note that the
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Fig.11 (a) A regular orbit in the 3D potentidf;. Initial conditions arexo = 0.5, yo = 0, pz0 =
0,z0 = 0.1, while pyo is found from the energy integral. The values of all otherapzeters and
energy are as in Fig. 1. (b) A plot of the maximum LCE vs timetfa orbit shown in (a). (¢c) The
S(w) spectrum of the orbit shown in (a). (d) T f) indicator for the orbit shown in (a).

coupling of the third component carrying all the information regarding the 3D motion, igldén
in the definition of theS(c) spectrum, but in any case it affects the values gf, andp,. Using
the definition of theS(w) spectrum, we overcome this minor drawback as we deploy arowveg
dynamical spectrum, especially suitable for 3D orbits.

Figure 11(a)—(d) shows the results for a 3D regular orbitateptial Vi,. The orbit which is
shown in Figure 11(a), has initial conditions; = 0.5, 99 = p.o = p.0 = 0,20 = 0.1, while for
all 3D orbits the value of, is found from the energy integral (8). The correspondingi@alof all
the other parameters are the same as in Figure 1. The valueeis £, = 105.16, the same
as in the 2D system. The maximum LCE of this orbit, which isvaman Figure 11(b), vanishes
indicating regular motion. Figure 11(c) shows thigv) spectrum of the orbit. This is a well defined
U type spectrum characteristic of the regular motion. In FédLl(d) we can see the( f) indicator
which also indicates regular motion. Figure 12(a)—(d) shoesults for the same orbit but in the
potentialV;;. The values of the other parameters are the same as in Figlihe 2alue of energy is
Ey = —4.70, the same as in the 2D system. Comparing the two Figures4(tjsgnd 12(a)—(d) we
see that the results are very similar.

Figures 13(a)—(d) and 14(a)—(d) are similar to Figures (@ and 12(a)—(d) for a resonant
3D orbit with initial conditions:zy = 0.15,y9 = 0, pzo = 4.5,p.0 = 0, z0 = 0.01. The similarity
between the two patterns is evident. Finally, in Figurea}5(d) and 16(a)—(d), we present results
for a chaotic 3D orbit. The initial conditions arey = 0.02,yg = 0, p.o = 2.5,p.0 = 0,29 = 0.1.
The values of energy and other parameters are as in Figueg—(8)f and 14(a)—(d) respectively.
Again we see that the results are very similar.
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0.15,y0 = 0, pzo = 4.5, 20 = 0.01. The values of all other parameters and energy are the same as

in Fig. 1.
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Fig.14 (a)—(d): Similar to Fig. 13(a)—(d) for the potentidh. The values of all other parameters and
energy are the same as in Fig. 2.
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Fig.15 (a)—(d): Similar to Fig. 11(a)—(d) for a chaotic 3D orbititlal conditions areixy =
0.02,50 = 0,pz0 = 2.5,20 = 0.1. The values of all other parameters and energy are the same
asin Fig. 1.
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Fig. 16 (a)—(d): Similar to Fig. 15(a)—(d) for the potentid}. The values of all other parameters and
energy are the same as in Fig. 2.

In order to investigate and compare the characteristicsatiom in the two 3D potential¥},
andV;;, we work as follows. We use initial conditioisy, p.0, 20), Yo = pz0 = 0, where(zg, p.o)
is a point on the phase planes of the corresponding 2D patentihis point lies inside the limiting
curve, which is the curve containing all the invariant csreé the 2D system. The equation of the
limiting curve is
%pi + Vi(z) = B2, (15)
where Ey is Ea, Or Eo. Using this method, we have computed a large number of 3Cisofbi
about 1000 - with the same initial conditions in both 3D ptisda Vi, andV4;. In particular, as we
have in both cases regular regions and only one unified ehae# in each: — p, phase plane,
we calculate the maximum value of the LCE by choosing 500teith different and random
initial conditions(x, p0, z0) in the regular regions and 500 orbits with different and amdhitial
conditions(zg, p0, 20) in the chaotic sea in each case. Our numerical calculatimticdte that the
majority of orbits - abou94.6% - displayed almost the same characteristics, which arehtigesof
the orbit, the maximum LCE, th&(w) spectrum and th&( f) indicator, while only5.4% of orbits
were different.

Therefore, from the investigation of the 3D potentials, veeéarrived at the following con-
clusions. The mass densities near the center of the edliggelaxy produced by the potentials are
nearly the same. Furthermore, orbits with the same iniiabiitions in both potentials are very sim-
ilar and show similar patterns of the maximum LCE, thiev) spectrum and thé(f) indicator.
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Moreover, the percentage of chaotic orbits in both 3D padénseems to be almost the same. Thus,
we conclude that, generally speaking, the properties ofandh both 3D potentials are almost the
same.

4 DISCUSSION AND CONCLUSIONS

In this paper we have studied the properties of motion nesacémter of a triaxial elliptical galaxy
described by two different potentials, = Vy + V;, or Vi1 = Wi + V4. In fact, 11 is an expansion of
the potentiall, in a Taylor series near the center, up to the terms of fourginegein the variables,
while the potential/, was added for two basic reasons. The first reason is thatithebservational
evidence that black holes or dense massive nuclei lie inghtecs of some elliptical galaxies. The
second reason is that with the additional térm potentialsl;, andV;; produce interesting orbital
characteristics, such as several families of periodicd®tbgether with large chaotic regions. In this
work we do not have as an objective to provide anything newanadigg the properties of motion of
these dynamical systems. On the contrary, we use well kna@tengials and try to compare them by
using different kinds of indicators. Our purpose is to sha@w/fwe can correctly expand a logarithmic
potential in a Taylor series to produce a harmonic oscilldtee main result from our research is that
despite the fact that the potentials are different, thepldisalmost identical properties of motion.
The results obtained using different dynamical indicatmesvery similar. This means that the Taylor
expansion is valid and the harmonic oscillator potential atisfactorily describe the local motion
in the central parts of an elliptical galaxy. On this basie,movide relations regarding the involved
parameters, so that the parameters of the system do notittvary values but rather values which
are related to the global logarithmic potential and theyehalvwysical meaning.

First we studied the 2D system. The phase planes which wergtrcated for the two above
different potentials were found to be nearly identical.He hext step we studied the properties of
orbits with the same initial conditions in both potentiassng the maximum LCE, th&(c) spectrum
and theP(f) indicator. In all cases the results were very similar. Thenstarted the study of the
3D system by comparing the mass density in the two poteritialandV;;. The results have shown
very small differences in the mass densities. As in the 2Besysve also investigated the properties
of orbits in both 3D potentials using the maximum LCE, f{ev) spectrum and th&( f) indicator.
The results were once more very similar. Furthermore, ounerical calculations suggest that the
percentage of chaotic orbits is about the same in both theeghbatentials.

Also note that, strictly speaking, potential (1) is a globalactic potential, which describes
a triaxial galaxy as a whole, while potential (2) is a locatgrtial, which describes the galaxy
only in its central parts. In other words, the descriptiosasisfactory only if relation (4) is valid.
Since the two potentials are similar, the orbital behaviothe orbits should be almost identical,
while the minor observed differences are caused by the higler terms of the Taylor expansion.
It would be of particular interest to inspect and locate thege of the parameters for which the
orbital behavior in both dynamical systems remains the s&fumerical experiments indicate that
the results are sensitive to the parameters of the dynasystdms. In particular, we conclude that
the properties of motion (2D or 3D) in both potenti&ls andV;; are almost the same only when
11<a<1901<b<1818<¢, <32,5< M, <25and0.10 < ¢, < 0.25. Numerical
calculations not given here show that the properties of amatiear the center of potentials (1) and
(3) are almost the same. The only difference is that in thé® ¢avhen the spherical nucleus in not
present) we only observe regular motion, while the chaatiGt® if any are negligible. With the
additional termV;,, the two potentials display regular and chaotic motion al aveel the properties
of motion are again very similar.

Here we must remind the reader that he or she can find the dwfsmand also some useful the-
oretical explanations about ti$%¢) andS(w) dynamical spectrums in Caranicolas & Papadopoulos
(2007), in Caranicolas & Zotos (2010) and also in Zotos (201The definition and additional in-
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formation regarding thé&( f) indicator are given in Karanis & Vozikis (2008). The mainwteck

of all these methods is that they can only provide qualiéatésults regarding the regular or chaotic
nature of an orbit. Therefore, we must check the shape ohttieator by eye each time in order to

characterize an orbit. Nevertheless, these dynamicatamalis are very useful as they can provide
fast and reliable results. In order to check their validitg aeliability in each case (2D and 3D sys-

tems), we have compared these qualitative results with layharcurate and quantitative method,

such as the Lyapunov Characteristic Exponent. Our congragsoves that although the outcomes
of these spectral methods are qualitative they are alsoreéaple.
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