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Abstract We study the behavior of orbits in two different galactic dynamical models,
describing the motion in the central parts of a triaxial elliptical galaxy with a dense nu-
cleus. Numerical experiments show that both models displayregular motion together
with extended chaotic regions. A detailed investigation ofthe properties of motion
is made for the 2D and 3D Hamiltonian systems, using a number of different dy-
namical parameters, such as the Poincaré surface of a section, the maximal Lyapunov
Characteristic Exponent, theS(c) spectrum, theS(w) spectrum and theP (f) indica-
tor. The numerical calculations suggest that the properties of motion in both potentials
are very similar. Our results show that one may use differentkinds of gravitational
potentials in order to describe the motion in triaxial galaxies while obtaining quanti-
tatively similar results.
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1 INTRODUCTION

About forty years ago, the prevailing view was that elliptical galaxies were oblate spheroids flattened
by rotation (see Sandage et al. 1970). It was the pioneering work of Bertola & Capaccioli (1975)
and Illingworth (1977) that led astronomers to abandon the assumption that elliptical galaxies are
necessarily oblate.

It is well known that observations of elliptical galaxies yield only the projected isophotes and,
thus, determination of their intrinsic shapes requires statistical analysis, based on large samples (see
Ryden 1996; Alam & Ryden 2002; Vincent & Ryden 2005) or mapping of potentials via detailed
kinematical data for individual galaxies (see Davies et al.2001; Rest et al. 2001; Statler et al. 2004).

Today it is believed that the shapes of elliptical galaxies are prolate or triaxial rather than oblate
(see Benacchio & Galletta 1980; Binggeli 1980; Alam & Ryden 2002). On the other hand, kinemat-
ical studies of elliptical galaxies show evidence that triaxial galaxies do exist. Moreover, observa-
tional data indicate that most of the triaxial elliptical galaxies host a black hole or a dense nucleus
in their centers (see Bak & Statler 2000; Statler et al. 2004). On this basis, we believe that it would
be of interest to investigate the dynamical properties of a triaxial elliptical galaxy, particularly in its
central region.

In order to describe the motion in the triaxial elliptical galaxy we use the well known logarithmic
potential

Vg =
υ2

0

2
ln

[

x2 + ay2 + bz2 + c2
b

]

, (1)
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whereυ0 is used for the consistency of the galactic units,a andb are flattening parameters, andcb is
the scale length of the bulge component (see Binney & Tremaine 2008). Expanding potential (1) in
a Taylor series about the origin and keeping terms up to the fourth degree in the variables, we find

Vg =
υ2

0

2
ln c2

b +
υ2
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2c2
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4c4
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= υ2
0 ln cb + Vl . (2)

Thus the polynomial potentialVl is
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where it was assumed that
x2 + ay2 + bz2

c2
b

≪ 1 . (4)

The reader can find more details about the Taylor expansion ofthe logarithmic potential in Zotos
(2011b). To potentials (1) and (3) we add the potential of a spherically symmetric nucleus

Vn =
−Mn

√

x2 + y2 + z2 + c2
n

, (5)

whereMn is the nuclear mass, whilecn is the scale length of the nucleus. We apply a Plummer
sphere, in order to increase the central mass of the galaxy. This method has been applied several
times in previous works, having as an objective to study the effects of the introduction of a central
mass component in a galaxy (see Hasan & Norman 1990; Hasan et al. 1993).

The aim of the present article is to investigate the properties of motion near the center of a triaxial
elliptical galaxy described by potentials (1) and (3) with an additional dense nucleus described by
potential (5). In particular, we are interested to study theregular or chaotic character of motion in
both of the above described potentials, in order to be able tocompare the corresponding results.
Furthermore, we shall compare the density in the central parts of the triaxial galaxy derived using
the two potentials described above. In order to achieve a better picture for the properties of motion,
we first investigate the 2D system, that is whenz = 0, and then we will use the corresponding results
to study the dynamical system of three (3D) degrees of freedom.

From the pioneering work of Henon & Heiles (1964) there has been an ongoing interest in find-
ing new methods, in order to distinguish between ordered andchaotic motion in dynamical systems.
The Poincaré surface of section (PSS) for the two dimensional (2D) systems and the Lyapunov
Characteristic Exponent (LCE) (Benettin et al. 1976; Froeschle 1984; Lichtenberg & Lieberman
1992) for dynamical systems with any degree of freedom are two well known methods to character-
ize an orbit as regular or chaotic. Over the last thirty years, an effort has been made in order to find
new, modern and also reliable and fast ways to detect the chaotic behavior in galactic systems. One
could mention the frequency map analysis developed by Laskar (Laskar et al. 1992; Laskar 1993),
the dynamical spectra of stretching numbers (the distribution of values of a given parameter along
the obit), introduced by Froeschle (1984) (see also Froeschle et al. 1993; Voglis & Contopoulos
1994; Contopoulos et al. 1995; Contopoulos et al. 1997) and theP (f) spectral method applied and
used by Karanis & Vozikis (2008). In the present research, weuse, apart from the classical PSS
technique and the LCE, some modern methods such as theS(c) andS(w) dynamical spectra and
theP (f) indicator.

Here, we must provide some additional theoretical information regarding these new dynamical
methods. We use theS(c) spectrum in order to characterize the nature of an orbit in a 2D dynamical
system. This spectrum has been proved to be a very reliable tool in several cases (see Caranicolas
& Papadopoulos 2007; Zotos 2011a). The nature of a 2D orbit can be revealed by looking at the



Comparing the Behavior of Motion in 3D Dynamical Models 385

shape of theS(c) spectrum. If the shape of the spectrum is a well definedU -type structure, then the
corresponding orbit is regular. On the other hand, if the shape is complicated and highly asymmetric,
with a lot of large and small abrupt peaks, then the orbit is chaotic. Moreover, theS(c) spectrum can
help us identify resonant orbits of higher multiplicity, asit produces as manyU -type structures as
the total number of islands of the invariant curves on thex − px phase plane. One more advantage
of this spectrum is that it can be deployed in order to calculate the sticky period of a 2D orbit and
also to follow its time evolution towards the chaotic sea (see fig. 5 in Zotos 2011a).

For the study of 3D orbits, we use theS(w) spectrum. By definition this spectrum is based on
a complicated combination of the coordinates and the momenta of the 3D orbit. In particular, this
spectrum is an advanced form of theS(c) spectrum and therefore carries all the characteristics men-
tioned in the previous paragraph regarding the pattern of the spectrum for regular and chaotic orbits.
The only difference is that in this case theS(w) spectrum produces as manyU -type structures as
the total number of invariant 3D tori in the(x, px, z) phase space. We introduced this new spectrum
definition in Zotos (2011a), in order to construct a new spectral definition appropriate for the study
of 3D orbits.

The Fourier Transform is usually defined as a transformationof a quantityq which is a function
of time,q(t), with regard to its respective function of amplitudep, which is a function of frequency
P (f). We can define a series of time intervals between successive crossings over a section. Then we
calculate the Power Spectrum of these time intervals, usinga Discrete Fast Fourier Transformation
(FFT) algorithm. Looking at theP (f) spectrum of a regular 2D or 3D orbit, we expect to observe
a smooth curve, with some additional peaks corresponding tothe “periodicities” of the time series.
On the contrary, in a 2D or 3D chaotic orbit no such “periodicities” exist and therefore itsP (f)
spectrum will produce a very “noisy” pattern with a large number of peaks which would be very
densely distributed. One of the main advantages of this spectral method is that is uses only one orbit
and we do not need to trace the behavior of any nearby orbit. Furthermore, the detection can be
made quite early using less iterations, compared to the iterations needed to reach a conclusive result
using the LCE. More detailed information regarding this method and its applications can be found
in Karanis & Vozikis (2008).

Here we must remind the reader that theS(c) spectrum is the distribution function of the param-
eterc

S(c) =
∆N(c)

N∆c
, (6)

where∆N(c) are the numbers of the parametersc in the interval(c, c + ∆c) afterN iterations. The
parameterc is defined as

ci =
xi − pxi

pyi

, (7)

where(xi, pxi, pyi) are the successive values of the(x, px, py) elements of the 2D orbits, on the
Poincaréx − px, y = 0, py > 0 phase plane. More details regarding theS(c) spectrum and its
applications can be found in Caranicolas & Papadopoulos (2007) and Caranicolas & Zotos (2010).

The Hamiltonian corresponding to the potential (1) or (3) iswritten as

H =
1

2

(

p2
x + p2

y + p2
z

)

+ Vt (x, y, z) = E , (8)

whereVt representsVtg = Vg + Vn or Vtl = Vl + Vn. Herepx, py andpz are the momenta per unit
mass conjugate tox, y andz respectively, whileE is the numerical value of the Hamiltonian (8),
which is conserved.

In this article, we use a system of galactic units, where the unit of length is 1kpc, the unit of mass
is 2.325× 107M⊙ and the unit of time is0.97748× 108 yr. The velocity unit is 10 km s−1, whileG

is equal to unity. In the above units we use the values:υ0 = 10, cb = 3, Mn = 10, cn = 0.1, a = 1.5
andb = 1.7.
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The results of the present research are based on the numerical integration of the equations of
motion

ẍ = −
∂Vt(x, y, z)

∂x
,

ÿ = −
∂Vt(x, y, z)

∂y
,

z̈ = −
∂Vt(x, y, z)

∂z
, (9)

which was made using a Bulirsh-Stöer routine in Fortran 95,with double precision in all subroutines.
The accuracy of the calculations was checked by the constancy of the energy integral (8), which was
conserved up to the eighteenth significant figure.

This paper is organized as follows. In Section 2 we present and compare the results for the
2D systems. In Section 3 we compare the mass density near the center derived using the two 3D
potentials. Moreover, we compare the properties of the 3D orbits in the two dynamical models. In
Section 4, the conclusions and the discussion of our resultsare presented.

2 RESULTS FOR THE 2D DYNAMICAL SYSTEMS

In this section, we study the character of orbits in the 2D dynamical systems. In this case, we set
z = pz = 0 in (8) and the corresponding 2D Hamiltonian is

H2 =
1

2

(

p2
x + p2

y

)

+ Vt (x, y) = E2 , (10)

whereE2 is the numerical value of the Hamiltonian. As the phase spaceof the system is four dimen-
sional we use thex− px, y = 0, py > 0 Poincaré phase plane. The results are presented in Figures1
and 2.

Figure 1 shows the phase plane for potentialVtg, while Figure 2 shows the phase plane for
potentialVtl. Here, we must emphasize that the two phase planes were constructed for values of
energies connected by the relation

E2tg = E2tl + υ2
0 ln cb (11)

and the same initial conditions, in order to be able to make the comparison. Here we tookE2tl =
−4.70, υ2

0 ln cb = 109.86, which gives the value 105.16 forE2tg. As one can see, the two phase
planes are almost identical. In both figures, we see areas ofregular motion and extended chaotic
regions. There are three main families of regular orbits. (i) Orbits producing invariant curves around
each of the two stable 1:1 resonant periodic points. (ii) Orbits producing a set of three islands - one of
them is on thex-axis, while the other two are symmetric with respect to thepx axis. These orbits are
characteristic of the 3:3 resonance. (iii) Box orbits producing invariant curves surrounding the whole
chaotic sea. Note that the area on thex − px phase planes occupied by each of the above families
of regular orbits is quantitatively the same in both Figures1 and 2. In addition to the regular orbits
there are also a large number of irregular orbits producing alarge, unified chaotic sea. Note that the
extent of the chaotic sea is almost the same in both phase planes. The differences between the two
phase planes produced by potentialsVtg andVtl are negligible and they are confined to some tiny
islands, embedded inside the chaotic sea. These tiny islands are produced by secondary resonances.

In order to investigate and compare in detail the propertiesof motion in both potentials, we
present and compare in the following a number of orbits belonging to different families of orbits.

Figure 3(a)–(d) shows results for a regular orbit in potential Vtg. The orbit shown in Figure 3(a)
belongs to family (i) and has initial conditions:x0 = 0.5, y0 = 0, px0 = 0, while in all cases,
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Fig. 1 The x − px phase plane for the potentialVtg, whenυ0 = 10, cb = 3, Mn = 10, cn =
0.1, a = 1.5, b = 1.7 andE2tg = 105.16.

Fig. 2 Similar to Fig. 1, but for the potentialVtl. The value of energy isE2tl = −4.70.

py0 is found from the energy integral (10). The corresponding values of energy and all the other
parameters are as in Figure 1. Figure 3(b) shows the maximum LCE of the orbit, which vanishes
indicating regular motion. Figure 3(c) shows theS(c) spectrum of the orbit. Here, we see a well
definedU type spectrum characteristic of the regular motion. In Figure 3(d), we see a plot of the
P (f) indicator, which displays only two peaks indicating regular motion. In order to help the reader,
we note that the orbit shown in Figure 3(a) was calculated fora time period of 100 time units. The
time scale for theS(c) spectrum and theP (f) indicator was103 − 104 time units.

Figure 4(a)–(d) shows results for an orbit, with the same initial conditions and with the same
time scales for all calculations, but for the potentialVtl. All other parameters are the same as in
Figure 2.
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Fig. 3 (a) A regular orbit in the 2D potentialVtg. Initial conditions are:x0 = 0.5, y0 = 0, px0 = 0,
while py0 is found from the energy integral. The values of all other parameters and energy are as in
Fig. 1. (b) A plot of the maximum LCE vs. time for the orbit shown in (a). (c) TheS(c) spectrum of
the orbit shown in (a) and (d) TheP (f) indicator for the orbit shown in (a).
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Fig. 4 (a)–(d): Similar to Fig. 3(a)–(d) for the potentialVtl. The values of all other parameters and
energy are the same as in Fig. 2.
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Fig. 5 (a)–(d): Similar to Fig. 3(a)–(d) for a resonant orbit. Initial conditions are:x0 = 0.15, y0 =
0, px0 = 4.5. The values of all other parameters and energy are the same asin Fig. 1.
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Fig. 6 (a)–(d): Similar to Fig. 5(a)–(d) for the potentialVtl. The values of all other parameters and
energy are the same as in Fig. 2.
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Fig. 7 (a)–(d): Similar to Fig. 3(a)–(d) for a chaotic orbit. Initial conditions are:x0 = 0.02, y0 =
0, px0 = 2.5. The values of all other parameters and energy are the same asin Fig. 1.

In order to have a better picture of the properties of motion in the two potentialsVtg andVtl, we
present results for two more orbits.

Figures 5(a)–(d) and 6(a)–(d) are similar to 3(a)–(d) and 4(a)–(d), for an orbit with initial con-
ditions:x0 = 0.15, y0 = 0, px0 = 4.5. This orbit belongs to family (ii) and it is characteristic of
the 3:3 resonance. As one can see, the outcomes presented in the two figures are very similar. The
results presented in Figures 7(a)–(d) and 8(a)–(d) are similar to those of Figures 3(a)–(d) and 4(a)–
(d) but for a chaotic orbit. Initial conditions are:x0 = 0.02, y0 = 0, px0 = 2.5. Here the maximum
LCE has a positive value indicating chaotic motion. Moreover, theS(c) spectrum shows a number of
large and small peaks which is characteristic of chaotic motion. Finally, theP (f) indicator is highly
asymmetric with a large number of peaks, also indicating chaotic motion. Comparing the results
given in Figures 7(a)–(d) and 8(a)–(d), we can say that they are very similar.

Given all the above, we can say that our numerical results, which are obtained by several dif-
ferent dynamical methods using regular and chaotic orbits,strongly suggest that the potentialVtl

satisfactorily describes the properties of motion of the potential Vtg near the center of a triaxial,
elliptical galaxy. Since the potential of the spherical nucleusVn is the same in both potentialsVtg

andVtl, this means that no information is lost when we go from a global triaxial logarithmic po-
tential (1) to the local polynomial potential (2). Rememberthat this only holds near the center of
the galaxy, when (4) is valid. In order to investigate and compare the character of motion in the two
2D potentialsVtg andVtl, we have computed a large number of orbits - about 1000 - with different
initial conditions(x0, px0), but with the same initial conditions in both 2D potentials.In particular,
as we have in both cases regular regions and only one unified chaotic sea in eachx−px phase plane,
we calculate the maximum value of the LCE by choosing 500 orbits with different and random
initial conditions(x0, px0) in the regular regions and 500 orbits with different and random initial
conditions(x0, px0) in the chaotic sea in each case. Our numerical experiments show that the vast
majority of orbits - about97.4% - displayed the same characteristics, including the same nature of
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Fig. 8 (a)–(d): Similar to Fig. 7(a)–(d) for the potentialVtl. The values of all other parameters and
energy are the same as in Fig. 2.

orbit, maximum LCE,S(c) spectrum andP (f) indicator, while only2.6% of the tested orbits were
different.

3 RESULTS FOR THE 3D DYNAMICAL SYSTEMS

We now proceed to study the properties of motion in the 3D potentials. Before doing this, it would
be interesting to compare the mass densities derived from the 3D potentialsVtg andVtl. The mass
density can be found using Poisson’s law

∇2Vt = 4πGρt , (12)

whereVt representsVtg = Vg + Vn or Vtl = Vl + Vn, while ρt representsρtg or ρtl.
Figure 9(a)–(h) shows the surfaces of equal density for the 3D potentialsVtg andVtl. We can

see that the results are very similar. In order to compare themass density from another point of view,
we present in Figure 10 (a)–(f) the contours of equal densityin thexy, xz andyz planes respectively
for the two potentials. As is understood, these contours arethe projections of the four surfaces of
equal density to the three principal planesxy, xz andyz. Here we can visualize that the deviations
between the mass density of the two potentials are extremelysmall and therefore negligible.

Let us now come to investigate and compare the orbits in the two 3D potentials. For this pur-
pose, we apply theS(w) dynamical spectrum, which was introduced in Zotos (2011a),in order
to distinguish between ordered and chaotic motion in 3D dynamical systems. The parameterwi is
defined as

wi =
(xi − pxi) − (zi − pzi)

pyi

, (13)
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Fig. 9 (a)–(h): Surfaces of equal density for the 3D potentials. Left patterns correspond to potential
Vtg, while right patterns to potentialVtl.
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Fig. 10 (a)–(f): Contours of equal density in thexy, xz andyz planes. Left patterns correspond to
potentialVtg, while right patterns to potentialVtl.

where(xi, zi, pxi, pyi, pzi) are the successive values of the(x, z, px, py, pz) elements of the 3D
orbits. The dynamical spectrum of the parameterw is its distribution function

S(w) =
∆N(w)

N∆w
, (14)

where∆N(w) is the number of parametersw in the interval(w, w + ∆w) after N iterations. In
order to study the character of a 3D orbit, theS(c) spectrum can also be applied. Note that the
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Fig. 11 (a) A regular orbit in the 3D potentialVtg. Initial conditions are:x0 = 0.5, y0 = 0, px0 =
0, z0 = 0.1, while py0 is found from the energy integral. The values of all other parameters and
energy are as in Fig. 1. (b) A plot of the maximum LCE vs time forthe orbit shown in (a). (c) The
S(w) spectrum of the orbit shown in (a). (d) TheP (f) indicator for the orbit shown in (a).

coupling of the third componentz, carrying all the information regarding the 3D motion, is hidden
in the definition of theS(c) spectrum, but in any case it affects the values ofx, px andpy. Using
the definition of theS(w) spectrum, we overcome this minor drawback as we deploy an improved
dynamical spectrum, especially suitable for 3D orbits.

Figure 11(a)–(d) shows the results for a 3D regular orbit in potentialVtg. The orbit which is
shown in Figure 11(a), has initial conditions:x0 = 0.5, y0 = px0 = pz0 = 0, z0 = 0.1, while for
all 3D orbits the value ofpy0 is found from the energy integral (8). The corresponding values of all
the other parameters are the same as in Figure 1. The value of energy isEtg = 105.16, the same
as in the 2D system. The maximum LCE of this orbit, which is shown in Figure 11(b), vanishes
indicating regular motion. Figure 11(c) shows theS(w) spectrum of the orbit. This is a well defined
U type spectrum characteristic of the regular motion. In Figure 11(d) we can see theP (f) indicator
which also indicates regular motion. Figure 12(a)–(d) shows results for the same orbit but in the
potentialVtl. The values of the other parameters are the same as in Figure 2. The value of energy is
Etl = −4.70, the same as in the 2D system. Comparing the two Figures 11(a)–(d) and 12(a)–(d) we
see that the results are very similar.

Figures 13(a)–(d) and 14(a)–(d) are similar to Figures 11(a)–(d) and 12(a)–(d) for a resonant
3D orbit with initial conditions:x0 = 0.15, y0 = 0, px0 = 4.5, pz0 = 0, z0 = 0.01. The similarity
between the two patterns is evident. Finally, in Figures 15(a)–(d) and 16(a)–(d), we present results
for a chaotic 3D orbit. The initial conditions are:x0 = 0.02, y0 = 0, px0 = 2.5, pz0 = 0, z0 = 0.1.
The values of energy and other parameters are as in Figure 13(a)–(d) and 14(a)–(d) respectively.
Again we see that the results are very similar.
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Fig. 12 (a)–(d): Similar to Fig. 11(a)–(d) for the potentialVtl. The values of all other parameters and
energy are the same as in Fig. 2.
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Fig. 13 (a)–(d): Similar to Fig. 11(a)–(d) for a resonant 3D orbit. Initial conditions are:x0 =
0.15, y0 = 0, px0 = 4.5, z0 = 0.01. The values of all other parameters and energy are the same as
in Fig. 1.
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Fig. 14 (a)–(d): Similar to Fig. 13(a)–(d) for the potentialVtl. The values of all other parameters and
energy are the same as in Fig. 2.

-1

-0.5

0

0.5

1

X

-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1

Z

-1

-0.5

0

0.5X

-1

-0.5

0

0.5Y

0 20000 40000 60000 80000 100000
t

0.3

0.35

0.4

0.45

0.5

L
.C

.E

(a) (b)

-4 -2 0 2 4
w

0.1

0.2

0.3

0.4

0.5

0.6

SH
w
L

0 0.2 0.4 0.6 0.8 1
f

1

10

100

1000

P
Hf
L

(c) (d)

Fig. 15 (a)–(d): Similar to Fig. 11(a)–(d) for a chaotic 3D orbit. Initial conditions are:x0 =
0.02, y0 = 0, px0 = 2.5, z0 = 0.1. The values of all other parameters and energy are the same
as in Fig. 1.
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Fig. 16 (a)–(d): Similar to Fig. 15(a)–(d) for the potentialVtl. The values of all other parameters and
energy are the same as in Fig. 2.

In order to investigate and compare the characteristics of motion in the two 3D potentialsVtg

andVtl, we work as follows. We use initial conditions(x0, px0, z0), y0 = pz0 = 0, where(x0, px0)
is a point on the phase planes of the corresponding 2D potentials. This point lies inside the limiting
curve, which is the curve containing all the invariant curves of the 2D system. The equation of the
limiting curve is

1

2
p2

x + Vt(x) = E2 , (15)

whereE2 is E2tg or E2tl. Using this method, we have computed a large number of 3D orbits -
about 1000 - with the same initial conditions in both 3D potentialsVtg andVtl. In particular, as we
have in both cases regular regions and only one unified chaotic sea in eachx − px phase plane,
we calculate the maximum value of the LCE by choosing 500 orbits with different and random
initial conditions(x0, px0, z0) in the regular regions and 500 orbits with different and random initial
conditions(x0, px0, z0) in the chaotic sea in each case. Our numerical calculations indicate that the
majority of orbits - about94.6% - displayed almost the same characteristics, which are the shape of
the orbit, the maximum LCE, theS(w) spectrum and theP (f) indicator, while only5.4% of orbits
were different.

Therefore, from the investigation of the 3D potentials, we have arrived at the following con-
clusions. The mass densities near the center of the elliptical galaxy produced by the potentials are
nearly the same. Furthermore, orbits with the same initial conditions in both potentials are very sim-
ilar and show similar patterns of the maximum LCE, theS(w) spectrum and theP (f) indicator.
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Moreover, the percentage of chaotic orbits in both 3D potentials seems to be almost the same. Thus,
we conclude that, generally speaking, the properties of motion in both 3D potentials are almost the
same.

4 DISCUSSION AND CONCLUSIONS

In this paper we have studied the properties of motion near the center of a triaxial elliptical galaxy
described by two different potentialsVtg = Vg + Vn or Vtl = Vl + Vn. In fact,Vl is an expansion of
the potentialVg in a Taylor series near the center, up to the terms of fourth degree in the variables,
while the potentialVn was added for two basic reasons. The first reason is that thereis observational
evidence that black holes or dense massive nuclei lie in the centers of some elliptical galaxies. The
second reason is that with the additional termVn, potentialsVtg andVtl produce interesting orbital
characteristics, such as several families of periodic orbits together with large chaotic regions. In this
work we do not have as an objective to provide anything new regarding the properties of motion of
these dynamical systems. On the contrary, we use well known potentials and try to compare them by
using different kinds of indicators. Our purpose is to show how we can correctly expand a logarithmic
potential in a Taylor series to produce a harmonic oscillator. The main result from our research is that
despite the fact that the potentials are different, they display almost identical properties of motion.
The results obtained using different dynamical indicatorsare very similar. This means that the Taylor
expansion is valid and the harmonic oscillator potential can satisfactorily describe the local motion
in the central parts of an elliptical galaxy. On this basis, we provide relations regarding the involved
parameters, so that the parameters of the system do not have arbitrary values but rather values which
are related to the global logarithmic potential and they have physical meaning.

First we studied the 2D system. The phase planes which were constructed for the two above
different potentials were found to be nearly identical. In the next step we studied the properties of
orbits with the same initial conditions in both potentials using the maximum LCE, theS(c) spectrum
and theP (f) indicator. In all cases the results were very similar. Then we started the study of the
3D system by comparing the mass density in the two potentialsVtg andVtl. The results have shown
very small differences in the mass densities. As in the 2D system we also investigated the properties
of orbits in both 3D potentials using the maximum LCE, theS(w) spectrum and theP (f) indicator.
The results were once more very similar. Furthermore, our numerical calculations suggest that the
percentage of chaotic orbits is about the same in both the above potentials.

Also note that, strictly speaking, potential (1) is a globalgalactic potential, which describes
a triaxial galaxy as a whole, while potential (2) is a local potential, which describes the galaxy
only in its central parts. In other words, the description issatisfactory only if relation (4) is valid.
Since the two potentials are similar, the orbital behavior of the orbits should be almost identical,
while the minor observed differences are caused by the higher order terms of the Taylor expansion.
It would be of particular interest to inspect and locate the range of the parameters for which the
orbital behavior in both dynamical systems remains the same. Numerical experiments indicate that
the results are sensitive to the parameters of the dynamicalsystems. In particular, we conclude that
the properties of motion (2D or 3D) in both potentialsVtg andVtl are almost the same only when
1.1 ≤ a ≤ 1.9, 0.1 ≤ b ≤ 1.8, 1.8 ≤ cb ≤ 3.2, 5 ≤ Mn ≤ 25 and0.10 ≤ cn ≤ 0.25. Numerical
calculations not given here show that the properties of motion near the center of potentials (1) and
(3) are almost the same. The only difference is that in this case (when the spherical nucleus in not
present) we only observe regular motion, while the chaotic orbits if any are negligible. With the
additional termVn, the two potentials display regular and chaotic motion as well and the properties
of motion are again very similar.

Here we must remind the reader that he or she can find the definitions and also some useful the-
oretical explanations about theS(c) andS(w) dynamical spectrums in Caranicolas & Papadopoulos
(2007), in Caranicolas & Zotos (2010) and also in Zotos (2011a). The definition and additional in-
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formation regarding theP (f) indicator are given in Karanis & Vozikis (2008). The main drawback
of all these methods is that they can only provide qualitative results regarding the regular or chaotic
nature of an orbit. Therefore, we must check the shape of the indicator by eye each time in order to
characterize an orbit. Nevertheless, these dynamical indicators are very useful as they can provide
fast and reliable results. In order to check their validity and reliability in each case (2D and 3D sys-
tems), we have compared these qualitative results with a highly accurate and quantitative method,
such as the Lyapunov Characteristic Exponent. Our comparison proves that although the outcomes
of these spectral methods are qualitative they are also veryreliable.
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