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Abstract Multi-conjugate adaptive optics (MCAO) can considerably extend the cor-
rected field of view with respect to classical adaptive optics, which will benefit solar
observation in many aspects. In solar MCAO, the Sun structure is utilized to provide
multiple guide stars and a modal tomography approach is adopted to implement three-
dimensional wavefront restorations. The principle of modal tomography is briefly re-
viewed and a numerical simulation model is built with three equivalent turbulent lay-
ers and a different number of guide stars. Our simulation results show that at least six
guide stars are required for an accurate wavefront reconstruction in the case of three
layers, and only three guide stars are needed in the two layercase. Finally, eigen-
mode analysis results are given to reveal the singular modesthat cannot be precisely
retrieved in the tomography process.
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1 INTRODUCTION

Due to the anisoplanatism of atmospheric turbulence, a conventional adaptive optics system can only
provide nearly diffraction-limited imaging within some arcseconds in the visible band. This narrow
field of view (FOV) is insufficient for many applications. In solar observation, a sunspot has a size
of typically 30 arcsec and the active regions often extend to2–3 arcmin. Multi-conjugate adaptive
optics (MCAO) is considered as the most promising techniqueto significantly increase the corrected
FOV. This technique employs several deformable mirrors conjugated to different atmospheric layers
to perform three dimensional wavefront error corrections.A key problem in MCAO is how to sense
phase perturbations at different altitude layers. Two mainconcepts named “tomography” (Tallon &
Foy 1990) and “layer oriented” approaches (Ragazzoni et al.2002) have been proposed to deal with
wavefront sensing issues in MCAO. Both of these methods havepros and cons and we will focus on
the former in this paper.

The Sun is an ideal target to perform MCAO since a solar structure (sunspots, pores and gran-
ulation) can provide multiple “guide stars” in any desired configuration. We noticed that a tomog-
raphy approach was generally used or tested for solar telescopes (Berkefeld et al. 2003, Langlois
et al. 2004), which implied its good applicability and practicality for solar MCAO. In this paper, the
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modal tomography approach is discussed in detail and related numerical simulations are performed
to investigate the behavior of this algorithm. The simulation results are presented at the end.

2 PRINCIPLE OF MODAL TOMOGRAPHY

The principle of modal tomography was initially proposed byRagazzoni (Ragazzoni et al. 1999).
Here we suppose thatN different guide stars are located properly on the sky and theatmospheric
turbulence is restricted toM different altitude layers. The guide stars considered hereare all natural
guide stars obtained from solar structures so the cone effect and tip-tilt indetermination problems
involved in laser guide star application are not taken into account. The wavefront of each guide star
can be detected by a wavefront sensor and then be described bya finite number (p) of Zernike modes
suggested by Noll (1976), as

Li = [a2, a3, . . . , ap+1] , i = 1, 2, ..., N , (1)

wherei is the running index of guide stars;Li is the vector of Zernike coefficients of the wavefront
coming from guide stari; a denotes the Zernike coefficient. The piston term is omitted here since it
cannot be measured by typical wavefront sensors.

The expansion of the wavefront coming from guide stari at layerj is defined asLij . The
wavefront coming from guide stari can be computed by the wavefront integrated over all layers

Li =

M
∑

j=1

Lij , j = 1, 2, . . . , M , (2)

wherej is the running index of atmospheric layers. The circular region encompassing all guide
star beams at each layer is the so-called metapupil. The modal expansion of the wavefront over the
metapupil is given asWj . The geometry of the footprints of guide stars and the metapupil is depicted
in Figure 1.

Given the known geometry of these circular regions, one can get a set of matrix valuesAij

providing the transformation fromWj to Li.

Li =

M
∑

j=1

Lij =

M
∑

j=1

AijWj . (3)

Fig. 1 Relative position of three guide star footprints and the corresponding
metapupil in the upper layer.
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The wavefront of guide stari at layerj is restricted to a smaller circle with coordinate system
O′X ′Y ′ (Fig. 1) which has an origin shifted by△x and△y in OXY coordinates, and the unit
length isk times smaller. The element of matrixAij with row numberm and column numbern can
be calculated by

amn = π−1

∫

Zn (∆x + kx, ∆y + ky)Zm (x, y) dxdy , (4)

whereZ is the Zernike polynomial. According to Equation (3), the equation including all guide stars
and perturbing layers is given as
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which can be written in a compact form as

L = AW . (6)

The tomographic matrixA is the link between Zernike modes of guide stars and those of metapupils.
ProvidedN ≥ M (i.e. the GS number is not less than the layer number), one caneasily retrieve
W using a singular value decomposition (SVD) method. Then vector W can be used to control
deformable mirrors conjugated to turbulent layers.

W = A+L , (7)

whereA+ denotes the pseudo-inverse of matrixA.

3 MODEL DESCRIPTIONS

To simulate the process of modal tomography, phase screens on each layer should be generated
first. Here we assume that the phase distributions in each layer follow Kolmogorov statistics. For a
given seeing conditionr0 (Fried’s coherence length), a series of random Zernike coefficients can be
generated by Karhunen-Loeve functions suggested by Roddier (1990). The atmospheric seeing of a
certain layer with a thickness ofhi is calculated by

ri =

[

0.423k2 sec(γ)

∫

hi

C2
n(h)dh

]

−3/5

, i = 1, 2, . . . , M , (8)

whereC2
n is the atmospheric structure constant,γ is the zenith angle andk = 2π/λ.

In our simulation,C2
n is considered as the Hufnagel-Valley Boundary model (Eq. (9)) and the

thicknesses of atmospheric layers are set as 1 km, which leads to a totalr0 of 5 cm and an isoplanatic
angle of 1.44 arcsec for the wavelength at 0.5µm. The size of the phase screens corresponds to a
FOV of 80 arcsec and a telescope diameter of 1.5 m.

C2
n(h) = 5.94 × 10−23h10e−h(21/27)2 + 2.7 × 10−16e−2h/3 + 1.7 × 10−14e−10h . (9)

It has been demonstrated that whatever the true atmosphericprofile is, only two or three equiv-
alent layers are required for accurate restoration of the phase in the whole FOV (Fusco et al. 1999).
In the following, two cases will be discussed: two layers located at 0 and 4 km and three layers at
0, 4 and 10 km respectively (Fig. 2). Figure 3 illustrates thefootprints of different numbers of guide
stars at the 4 km layer. The guide stars are situated at the vertices of a regular polygon inscribed in a
circle with radius of 40 arcsec. An additional guide star is located on the axis if the number of guide
stars is greater than three.

The wavefront related to each guide star is detected by a wavefront sensor such as a correlating
Hartmann-Shack. We will not consider any measurement noiseor undersampling error existing in
real wavefront sensing so we can focus on the behavior of the tomography algorithm.
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Fig. 2 Scheme of modal tomography with three equivalent turbulentlayers.

Fig. 3 Geometrical views of different guide star beams through a layer at 4 km.

4 NUMERICAL ANALYSIS AND RESULTS

In our simulation, 100 groups of phase screens expanded withthe first 36 Zernike polynomials are
simulated for each configuration. For each data group, the variance of wavefront estimation error in
each layer is given by

σ2
i =

∫∫

[ϕ̂i(ρ, θ) − ϕi(ρ, θ)]
2
dρdθ

∫∫

ϕi(ρ, θ)dρdθ
, i = 1, 2, ..., M , (10)

whereϕ is the simulated wavefront and̂ϕ is the estimated wavefront. The tip/tilt terms are removed
from both of them since they are corrected independently by atip/tilt mirror. We can expect that
the criteria1 − 〈σi〉 can reflect the phase estimation accuracy, where〈〉 denotes the operation of
averaging.

4.1 Two Layer Case

Typical results of wavefront estimation with two layers anddifferent numbers of guide stars are
illustrated in Figure 4. The wavefront estimation accuracyis given in Table 1. As shown in Table 1,
at least three guide stars are required for accurate wavefront reconstruction.
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Fig. 4 Wavefront estimation results with two layers and differentnumbers of guide stars. The wave-
front maps are normalized in unit disks with the phase unit inradians.

Table 1 Phase Estimation Accuracy for the Two Layer Case

Guide Star Number Layer 1 Layer 2

2 GS 0.83 0.62
3 GS 1 1
4 GS 1 1

Table 2 Phase Estimation Accuracy for the Three Layer Case

Guide Star Number Layer 1 Layer 2 Layer 3

4 GS 0.97 0.76 0.65
5 GS 0.98 0.85 0.79
6 GS 1 1 1

4.2 Three Layer Case

Typical results of wavefront estimation with three layers and different numbers of guide stars are
illustrated in Figure 5. The phase estimation accuracy for each configuration is given in Table 2. As
shown in Table 2, the estimated wavefront is very similar to the original one at the ground layer
(layer 1). With an increase in the layer’s altitude, the phase estimation accuracy becomes worse. It
is shown that at least six guide stars are required for accurate wavefront reconstruction in all three
layers.
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Fig. 5 Wavefront estimation results with three layers and a different number of guide stars. The
wavefront maps are normalized in unit disks with the phase unit in radians.

4.3 Eigenmode Analysis

As shown in Tables 1 and 2, there is a minimum number of guide stars required for accurate wave-
front reconstruction. This phenomenon can be interpreted by eigenmode analysis of the tomography
process (Louarn & Tallon 2002). Singular value decomposition is applied to the tomography ma-
trix (i.e. matrixA in Eq. (6)) to obtain the singular modes in different system configurations. The
singular modes defined here are some Zernike modes that cannot be accurately retrieved. Since the
tomography matrix A is usually ill-conditioned, some eigenvalues of matrix A will be zero, which
correspond to singular modes of the system. The singular modes for two layers and three layers are
summarized in Table 3 and Table 4 respectively.

Table 3 Singular Modes for Two Layer Tomography

Guide Star Number Singular Zernike Modes

2 GS Z1 - Z21

3 GS Z1(piston),Z2(tip), Z3(tilt)
4 GS Z1(piston),Z2(tip), Z3(tilt)
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Table 4 Singular Modes for Three Layer Tomography

Guide Star Number Singular Zernike Modes

4 GS Z1(piston),Z2(tip), Z3(tilt), Z4(defocus),
Z5(y-astigmatism),Z6(x-astigmatism),Z9(y-trefoil)

5 GS Z1(piston),Z2(tip), Z3(tilt), Z4(defocus),Z6(x-astigmatism)
6 GS Z1(piston),Z2(tip), Z3(tilt)

Tables 3 and 4 illustrate that the first three terms (piston, tip and tilt) are always singular. This
is because the piston and tip/tilt errors at different layers can be compensated for each other so they
cannot be localized to the layer where they are produced. If the number of guide stars is not enough,
the wavefront at a higher altitude is undersampled so more singular modes will appear.

5 CONCLUSIONS

Solar telescopes can benefit from MCAO to obtain a large observing FOV. Modal tomography is an
efficient way to get the phase distribution of the turbulencevolume. A numerical simulation model
was built to investigate the behavior of the modal tomography algorithm with a different number of
guide stars. Simulation results show that at least six guidestars are required for an accurate wavefront
reconstruction in the case of three layers and only three guide stars are needed for the two layer case.
Singular modes in the tomographic process can be obtained bymeans of eigenmode analysis which
interprets the guide star requirement in the tomography algorithm.
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