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Abstract The effect of self-gravity on protoplanetary disks is inigeted. The mech-
anisms of angular momentum transport and energy dissipat®assumed to be the
viscosity due to turbulence in the accretion disk. The epexguation is considered
in a situation where the released energy by viscosity disisip is balanced with
cooling processes. The viscosity is obtained by equalitdis$ipation and cooling
functions, and is used to derive the angular momentum emjuafihe cooling rate
of the flow is calculated by a prescriptiothu/dt = —u/Tcool, Whereu and 7ol
are the internal energy and cooling timescale, respegtiVéle ratio of local cool-
ing to dynamical timescaleQr,.; is assumed to be a constant and also a function
of the local temperature. The solutions for protoplanetisis show that in the case
of Q7e001 = constant, the disk does not exhibit any gravitational instabilityeov
small radii for a typical mass accretion rafd, = 10~°M, yr—!, but when choos-
ing Q7.001 to be a function of temperature, gravitational instabitign occur for this
value of mass accretion rate or even less in small radii. Algstudying the viscosity
parametety, we find that the strength of turbulence in the inner part bfgevitating
protoplanetary disks is very low. These results are quaidly consistent with direct
numerical simulations of protoplanetary disks. Also, ia tase of cooling with tem-
perature dependence, the effect of physical parameterseosttucture of the disk
is investigated. These solutions demonstrate that disknleiss and the Toomre pa-
rameter decrease by adding the ratio of disk mass to cerdjattomass. However,
the disk thickness and the Toomre parameter increase bpgdthss accretion rate.
Furthermore, for typical input parameters such as masetaenratel0-5Mg yr—1,
the ratio of the specific hegt= 5/3 and the ratio of disk mass to central object mass
q = 0.1, gravitational instability can occur over the whole radifithe disk excluding
the region very near the central object.

Key words: accretion, accretion disks — planetary systems: protaéay disks —
planetary systems: formation

1 INTRODUCTION

Accretion disks are important for many astrophysical pime@ioa, including protoplanetary systems,
different types of binary stars, binary X-ray sources, augsand Active Galactic Nuclei (AGNSs).
Historically, theories of accretion disks have conceetian the non self-gravitating cases and occa-
sionally the effect of self-gravity had been studied (Pasky1978; Kolykhalov & Syunyaev 1979;
Lin & Pringle 1987, 1990). On the other hand, in recent yetrs,importance of study of disk
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self-gravity has increased, especially in protostellakgliand AGN disks. Evidence confirming the
existence of self-gravitating disks has accumulated,iplysdue to an increase of computational

resources in simulation of self-gravitating accretiorkdiand their observational results, including
cases from AGNs to protostars (Lodato 2007 and refereneesit). Also, it appears the develop-

ment of gravitational instability is important for cool iegs of accreting gas where angular momen-
tum transport by magneto-rotational instability (MRI) betes weak (Fleming et al. 2000; Masada
& Sano 2008; Faghei 2011) and angular momentum can be traadgiy gravitational instability.

The structure of self-gravitating disks has been studigtl bowough self-similar solutions as-
suming steady and unsteady states (Mineshige & Umemura, 1996; Tsuribe 1999; Bertin &
Lodato 1999, 2001; Shadmehri & Khajenabi 2006; Abbassi eR@06; Shadmehri 2009) and
through direct numerical simulations (Gammie 2001; Rica.€2003, 2005, 2010; Rice & Armitage
2009; Cossins et al. 2010; Meru & Bate 2011a).

Mineshige & Umemura (1996) investigated the role of selivifiy on the classical self-similar
solution of advection dominated accretion flows (ADAF, Nana & Yi 1994) and found global
one-dimensional solutions influenced by self-gravity hatthe radial and in the perpendicular di-
rections of the disk. They extended the previous steadg stattions to the time-dependent case
while the effect of self-gravity of the disk was taken inteaant. They used an isothermal equation,
and so their solutions describe viscous accretion diskbarstow accretion limit. Tsuribe (1999)
studied unsteady viscous accretion in self-gravitatirglsli Taking into account the growth of the
central point mass, Tsuribe (1999) derived a series ofsselitar solutions for rotating isothermal
disks. The solutions showed, as a core mass increasestatiemdaw changes from flat rotation to
Keplerian rotation in the inner disk and in addition to thatcal point mass, the inner disk grows
by mass accumulation due to the differing mass accreti@s iatthe inner and outer radii. Bertin &
Lodato (1999) considered a class of steady-state selftgtiang accretion disks for which efficient
cooling mechanisms are assumed to operate so that the dalk-regulated at a condition of the ap-
proximate marginal Jeans stability. They investigatedethiire parameter space available for such
self-regulated accretion disks. In another study, Bertihd&ato (2001) followed the model such
that, when the disk is sufficiently cold, the stirring due ¢éads-related instabilities acts as a source
of effective heating. With the corresponding reformulataf the energy equations, they demon-
strated how self-regulation can be established, so thadtéility paramete€) is maintained close
to a threshold value, with a weak dependence on radius. Abbaal. (2006) studied the effect of
viscosity on the time evolution of axisymmetric, polytrogelf-gravitating disks around a new born
central object. Thus, they ignored the gravitational dftéche central object and only self-gravity
of the disk played an important role. They compared effeftisex-viscosity prescription (Shakura
& Sunyaev 1973) ang-viscosity prescription (Duschl et al. 2000) on disk stunet They found
that accretion rate onto the central object fbdisks is more than that fok-disks, at least in the
outer regions wherg-disks are more efficient. Also, their results showed gadidinal instability
can occur everywhere on thedisks and thus they suggested thatdisks can be a good candidate
for the origin of planetary systems. Shadmehri & Khajen&0i0g) examined steady self-similar
solutions of isothermal self-gravitating disks in the mmese of a global magnetic field. Similar to
Abbassi et al. (2006), they neglected the range of values fhee mass of the central object to the
disk mass. By studying the Toomre parameter, they showe¢dthanagnetic field can be important
in gravitational stability of the disk.

An accretion disk can become gravitationally unstabledgfthbomre parameter becomes smaller
than its critical valueQ) < Q..i; (Toomre 1964). For axisymmetric instabiliti€s,;; ~ 1, while for
non-axisymmetric instabilitie®..,;; values are as high as 1.5-1.7 (Durisen et al. 2007). Onelpp@ssi
outcome is that unstable disks fragment to produce bourettshand this has been suggested as a
possible mechanism for forming giant planets (Boss 199822Mowever, recently it has been re-
alized that the above condition is not sufficient to guarafitagmentation. Gammie (2001) showed
that in addition to the above instability criterion, theldimust cool at a fast enough rate. Let the
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cooling timescale,, be defined as the gas internal energy divided by the volucnainling rate.
For a power-law equation of state with,.; prescribed to be some value over an annulus of the
disk, the thin shearing box simulations of Gammie (2001 wshtiwat fragmentation occurs if and
only if Q7eoo1 < Berit, Whereseiy ~ 3 and€ is the angular velocity of the disk or inverse of the
dynamical timescal€ = 7, 1n The critical value of27.,,1 can be somewhat larger than three for
more massive and physically thicker disks (Rice et al. 20833rger adiabatic index (Rice et al.
2005), and higher resolution of simulations (Meru & Bate P)1 Using a smoothed-particle hydro-
dynamics simulation, Cossins et al. (2010) studied thectffef opacity regimes on the stability of
self-gravitating protoplanetary disks fragmenting intmhd objects. They showed tHat.,; has a
strong dependence on the local temperature. Thus, thed thabwithout temperature dependence,
for radii <10 AU, a very large accretion raté0—2M, yr~! is required for fragmentation, but this
is reduced td 0~* with cooling, which is dependent on temperature.

As mentioned, typically semi-analytical studies of seffagtating disks are modeling polytropic
disks (Abbassi et al. 2006), isothermal disks (Mineshige &dunura 1996, 1997; Tsuribe 1999;
Shadmehri & Khajenabi 2006), ADAFs in the extreme limit of realiative cooling (Shadmebhri
2004), and disks without a central object (Mineshige & Umemnli996, 1997; Tsuribe 1999;
Shadmehri & Khajenabi 2006; Abbassi et al. 2006). In thisgpapwill be interesting to understand
under which conditions gravitational instability can ocou accretion disks by a suitable energy
equation and assuming a Newtonian potential of a mass gwntg located at the disk’s center.
Thus, to obtain these conditions, we will use a prescriptarcooling rate that is introduced by
Gammie (2001)du/dt = —u /7001, Whereu and .., are internal energy and cooling timescale,
respectively. The ratio of local cooling to dynamical tir@es)7...) is assumed to be a power-law
function of temperature in adapting the result of Cossire.&2010) Q27c001 = Bo(T/Tp)°, where
Ty, and¢ are free parameters, alg is a free parameter in Gammie (2001). When- 0, Q7co01
reduces to the Gammie (2001) model wh@re,.; is a constant, while non-zerbis qualitatively
consistent with the results of Cossins et al. (2010). We exdimine the effects of theparameter
on gravitational stability of the disk. We will show that theesent model is qualitatively consistent
with direct numerical simulations (Rice & Armitage 2009;$3ms et al. 2010; Rice et al. 2010) and
can provide conditions such that gravitational instapitian occur over the whole radius, excluding
the region very near the central object.

In Section 2, the basic equations of constructing a moded feteady self-gravitating disk will
be defined. In Section 3, we will find asymptotic solutionstfa outer edge of the disk. In Section 4,
by exploiting asymptotic solutions as boundary conditimmsystem equations, we will numerically
investigate the effects of physical parameters on thetstreand stability of the disk. The summary
and discussion of the model will appear in Section 5.

2 BASIC EQUATIONS

We use cylindrical coordinates, ¢, z) centered on the accreting object and make the following
standard assumptions:

(i) The flow is assumed to be steady and axisymmélrie= 9, = 0, so all flow variables are a
function ofr andz;
(i) The gravitational force of the central object on a fluldreent is characterized by the Newtonian
potential of a point massy = —GM../r, with G representing the gravitational constant and
M, standing for the mass of the central star;
(iii) The equations written in cylindrical coordinates @m&egrated in the vertical direction, hence alll
guantities of the flow variables will be expressed in termeydihdrical radiusr;

The governing equations of the self-gravitating accretisk for such assumptions are as follows.
The continuity equation is
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——(r¥v,) =0, Q)

whereuw,. is the radial infall velocity and: is the surface density, which is defined¥as= 2ph, and

p andh are density and the disk half-thickness, respectively.fdiethickness of the disk with the
assumption of hydrostatic equilibrium in the vertical dtien ish = ¢/, wherec, is the sound
speed, which is defined @$ = p/p, p is the gas pressure afidrepresents the angular velocity of
the flow. Equation (1) implies that

M = —27rSu, = constant ,

where)/ is the mass accretion rate and is a constant in the preser niide simulation results of
protoplanetary disks show that the disk reaches a quasihsttate in 20 000 years or less and might
imply that these systems are rarely out of equilibrium. Atb@ simulations show that the mass of
the disk redistributes itself to produce a state in whichaberetion rate)/, is largely independent
of r (Rice & Armitage 2009; Rice et al. 2010). Thus, we can use thssmaccretion as a constant
and it cannot be a limitation for the present model. The mdomarequations are

dv,  1d,, M, + M(r) )
UTE——EJ(ECS)—G[f] +T'Q N (2)
d, .. 1d 5 dQ
B ) =25 [”ET E] : ®)

wherev is the kinematic viscosity coefficient, is the adiabatic index, and¥/ (r) is the mass of a
disk within a radiug-. As mentioned in Mineshige & Umemura (1997), we adopt the opote ap-
proximation for the radial gravitational force due to th#é-ggavity of the disk, which considerably
simplifies the calculations and is not expected to introdugesignificant error as long as the sur-
face density profile is steeper thapr (e.g. Li & Shu 1997; Saigo & Hanawa 1998; Tsuribe 1999;
Krasnopolsky & Konigl 2002; Shadmehri 2009). Now, we caifitevr

dM (r)
dr

=27mry. 4)

The energy equation is
Sv, de?2 X2 d
LS4 5 () =T —-A 5
7—1dr+rdr(m) ’ ®)
whereTl is the heating rate of the gas by dissipation processes sutirlaulent viscosity and
represents the energy loss through radiative cooling pesse The forms of the dissipation and
cooling functions can be written as

2

I'=r2%y % , (6)
2

I e ™
7(7 - 1) Tecool

whereT.,o1 iS the cooling timescale. As noted in the introduction, we iaterested in considering
the effect of the cooling function on the structure of setigtating disks. Thus, similar to Rice &
Armitage (2009) we will study the effects of it in the case whthe heating rate in the disk is equal
to the cooling ratel’ = A.

Since fragmentation requires fast cooling, Gammie (200dyssted the cooling timescale can
be parameterized gs= (7.,,1, Wheres is a free parameter. Gammie (2001) showed fragmentation
requirest < Geit, Wheref.iy =~ 3 for the adiabatic index of = 2. Rice et al. (2005) performed
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3D simulations to show the dependenceigf;, on~: for disks withy = 5/3 and7/5, Beie =~ 6 — 7
and~ 12 — 13, respectively. Recently, Cossins et al. (2010) studied a function of temperature.
They showed that has a strong dependence on the local temperature. They floandithout tem-
perature dependence, for ragii 10 AU a very large accretion raté0— M, yr~! is required for
fragmentation, but this is reduced10—* M, yr—! with cooling, which is dependent on tempera-
ture. So, for simplicity in this paper we will use a coolingéscale with a power-law dependence
on temperature for study of Equations (1)—(5)

o ﬁO T 0 o 50 Cs 2 8
Tcool = 0 (TO) - Q (Cso) ’ ( )
whered and 3, are free parameters. If we seléGt as a temperature of the outer part of the disk,
thenc,, will be the sound speed there. From Equation (8) &rd0, we expect tha® 7., becomes
a constant that is the same as that in the Gammie (2001) m8daton-zera is qualitatively
consistent with the Cossins et al. (2010) model. It is imguatrto stress that the above description
for cooling rate does not mean to reproduce any specificregddiv, but is just a convenient way of
exploring the role of the cooling timescale in the outcom#hefgravitational instability.
Here, the kinematic coefficient of viscosity can be obtaibgeéquating the heating and cooling
rates ‘dﬂ )
1 dar Cg
v 7(7 - 1) r2 Tcool ' (9)
Thus, by exploiting Equation (9) we do not need to use visgai@scriptions, such asandg pre-
scriptions that were introduced by Shakura & Sunyaev (18Ad8)Duschl et al. (2000), respectively.
Equation (9) implies that the kinematic coefficient of visity in the present model depends on
physical quantities of the system, especially the coolimgs$cale. The kinematic coefficient of vis-
cosity in thea-prescription isy = acsh, wherex is a free parameter and is less than unity (Shakura
& Sunyaev 1973). By using Equation (9) for theparameter we can write

-2
v 1 das2

‘ dr Cs
p— pu— . 10
@ esh  v(y=1) r2h  Teool (10)

The above equation implies that theparameter is not a constant and varies by position and dirong
depends on the cooling timescale. We will study éhparameter in Section 4 and will show that in
the present model it increases with radius.

As mentioned in the introduction, the gravitational stipibf the disk can be investigated by
the Toomre parameter (Toomre 1964). The Toomre parametepfoyclic motion can be written as

cik
TGY’

dlog )
k_Q,/4+2dlogr (12)

is the epicyclic frequency which can be replaced by the aardrdquencys?.

Equations (1)—(5) and (9) provide a set of ordinary diff¢isdrequations that describe physical
properties of the self-gravitating disk. Since these dquatare nonlinear, we will need suitable
boundary conditions to solve them numerically. Thus, inriegt section we will try to obtain an
asymptotic solution in the outer edge of the disk and thendpjoiting this asymptotic solution as
a boundary condition, we can integrate the system of equatiovard from a point very near the
outer edge of the disk.

Q=

(11)

where
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Before covering the next sections and examining the numlesiady of the model, we shall
express all quantities in units with values typical for atpebellar disk. We will choose astronomical
unit (AU) and the Sun’s mas3{) as the units of length and mass, respectively. Thus, the imit

is given by,/AU® /G My, which is equal to a year divided I2yr.

3 OUTER LIMIT

Here, the asymptotic behavior of the system of equationsesgpd as — R is investigated, where
R is the outer radius of the disk. The asymptotic solutiongyaren by

EO S
() ~ i (1—}-(11}—%—1—---) , (13)

M, + Maisk s
vp(r) ~ —Cle (1+a2ﬁ—|—~--) , (14)
M*+Mdisk S
Q(r) ~ o\ —ps (1+03E+"') ) (15)

M. + Mais s
Er) ~ et M (g0 ) (16)
R
M(r) ~ Mdisk—/ 2’ S (") dr’ 17)

wheres = R — r, Mg is the disk mass, and the coefficientsgfa; and>y must be determined.
Using these solutions, from the continuity, momentum, garguomentum, energy and viscosity, by
using Equations (1)—(5) and (9), we can obtain the coeffisiefr; that have the following forms:

M
Cc1 = s (18)
210V My + Maisk
2 azy(y — 1)BoM (a3 — 2)(a1 + as) .
2 QWEO\/]\/I*—I—]\/fdiSk(al +as+ ag — 1) 2
(IQMQ
-1 =0 19
+ 47T223(]\/f* =+ Mdisk) ’ ( )
—2)(y—1)M
o = azvPolas —2)(y — 1) . (20)
21350 (a1 + a3 + ag — 1)/ M, + Mgiex

where
ag=(14+a)(1—7). (21)

The value of mass accretion rate can be determined by oligeratdata of the protoplanetary disks.
Also, Xy can approximately be determined by disk masg;q. ~ 7R2Y. Thus, after determining
the values oty and M from the observations, the value of thecoefficient is only dependent on
the value ofco. On the other hand, the value @f can be obtained by Equation (19). Since we only
have one equation for coefficients @f (Eq. (21)), we will select the below values for them in the
process of numerical integration of the system of equatiodtain physical results

3 3
a1<—2+§7, 3a2:a3:§, ag = (1+az)(l—7). (22)
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Fig.1 Surface density, thickness, temperature and the Toomeasrgder of the disk as a function
of radius, for several values éf The surface density and the temperature are expressed aysh
system, and the thickness and the distance are in AU. The l§ndis represent = 0, the dashed
lines represeni = 0.75 and the dotted lines represent 1.5. The input parameters are set to the
disk massVgis = 0.1 M), the star mass/, = M), the mass accretion rald = 10~ %M, yr 1,

the ratio of the specific heats is set tope- 5/3 and 3, = 2.

4 NUMERICAL RESULTS

If the value ofR is initialized, the equations describing the Fehlberg-gRKutta fourth-fifth order
method can be integrated inwards from a point very near ther @dge of the disk, using the above
expansions. Examples of such solutions for surface demsitfthickness of the disk, temperature,
the Toomre parameter and the viscosity parameter as a function of radius are presented in
Figures 1-5. The delineated quantity’Bfin Figures 1-4 is the mid-plane temperature which can

then be determined using
HMp \ 2
T=|—|c
( ke )CM

wherey = 2 is the mean molecular weight,, is the proton mass arigs is Boltzmann’s constant.
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Fig.2 Surface density, thickness, temperature and the Toomeasrgder of the disk as a function
of radius, for several values @%. The surface density and the temperature are expresseel agsh
system, and the thickness and the distance are in AU. The lgaéis represen, = 1, the dashed
lines represent, = 5.0 and the dotted lines represeht = 10. The input parameters are set to the

disk massMgis = 0.1 M), the star mass/, = M), the mass accretion rald = 10~ %M, yr 1,

the ratio of the specific heats is set tope- 5/3 andé = 1.0.

4.1 The Influences of Physical Parameters on the Results

The free parameters in the present model are the degreeusrict of temperature on the cooling
timescaley, the mass accretion rat&/, the parametef, and the ratio of disk mass to star mass,
q= Mdisk/M*-

4.1.1 § parameter

The effects of the) parameter on the physical quantities are presented in &iuiThe profiles
of surface density and temperature show that they increaselthngs. However, the increase of
surface density is more than temperature. Thus, the Toomwmameter Q x c/Y o« VT/X)
decreases by adding thg@arameter. The profiles of the Toomre parameter represese fior small
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Fig. 3 Surface density, thickness, temperature and the Toomeeneaer of the disk as a function of
radius, for several values af . The surface density and the temperature are expressesldggisys-
tem, and the thickness and the distance are in AU. The snbd tiepresent/ = 10~ "My yr ', the
dashed lines represehf = 5x 10~ 7 M, yr~* and the dotted lines represent = 10™° M, yr .
The input parameters are set to the disk mass. = 0.1M, the star masd/. = Mg, the ratio
of the specific heats is set to he= 5/3, 5o = 10 andd = 1.0.

0, only the outer part of the disk is gravitationally unstaldad the gravitational instability can
extend to the inner radii by adding thgparameter. Foé..;; ~ 1.5, the Toomre parameter in terms
of radii > 5AU becomes smaller than the critical Toomre parametgr{ ~ 1) and the disk
becomes gravitationally unstable. In other words, the lg®f the Toomre parameter represent
the gravitational instability of the flow, which strongly glends on the cooling timescale, with a
temperature dependence. This result is qualitatively isterg with direct numerical simulations
(e.g. Cossins et al. 2010). The disk thickness increasesldin@thed parameter. It can be due to
the increase of the temperatute ¢, V7).

Equations (8) and (9) imply that

—20
G (C_) . (23)

V(5=0) Cso
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Fig. 4 Surface density, thickness, temperature and the Toomeeneder of the disk as a function of
radius, for several values @f= Ma;sk /M. The surface density and the temperature are expressed
in the cgs system, and the thickness and the distance are.ifii#¢Jsolid lines represegt= 0.05,

the dashed lines represent= 0.1 and the dotted lines represent= 0.15. The input parameters
are set to the star madg,. = 1M, the mass accretion rafd = 107Mg yr—', the ratio of the
specific heats is set to be= 5/3, o = 2 andd = 1.5.

Sincecs > ¢, the right-hand side of the above equation is less than orléguame. On the other
hand, non-zeré constrains the viscosity to lower values for hotter regiohthe disk. The study
of gravitational instability shows that it is enhanced witlwer viscosity (Abbassi et al. 2006;
Shadmehri & Khajenabi 2006; Khajenabi & Shadmehri 2007usThhe gravitational instability
can be enhanced by adding thparameter for hotter regions, but there is a limitation far value
of thed parameter that we discuss in the next section.

4.1.2 [, parameter

The influences of paramet@y are shown in Figure 2. Thus, as we know from simulations of a
self-gravitating disk (Gammie 2001; Rice et al. 2003), #duction of this parameter leads to grav-
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Fig.5 Viscosity parameter ofv as a function of radius (AU). The input parameters are sefteo t
star mass\/. = 1Mo, the mass accretion rafel = 10~°Mg yr~! and the ratio of the specific
heats is set to be = 5/3. Left panel is for several values of Gammie’s paramefgr the solid
line representg), = 1, the dashed line represents = 5, the dotted line represents = 10 and

6 = 1.5. Right panel is for several values of parameter@fthe solid line represents = 0.5, the
dashed line represenis= 1.0, the dotted line represenis= 1.5 andgy, = 1.0.

itational instability and consequently fragmentationtad tlisk. The profiles of surface density show
that it does not change by adding thgparameter and the addition only results in small deviations
over large radii. The disk temperature increases by adtieggt parameter. Therefore, the increase
of this parameter reduces the rate of cooling. For a largeeval 5, (~ 10), the disk is gravitation-
ally stable, but when reducing its valueipthe gravitational instability can occur over large radii,
and for a small value of it{, ~ 1), we can expect gravitational instability over the whole thisk
excluding the region near the star. These results are gtiadity consistent with direct numerical
simulations of a protoplanetary disk (Gammie 2001; Ricd.e2@03; Cossins et al. 2010). Also, the
solutions show that the disk thickness increases by addmg,tparameter.

4.1.3 The mass accretion rate

Rice & Armitage (2009) showed that beyohdU the disk reaches a quasi-steady state(mn00
years and the mass itself is redistributed to produce a statdich the accretion rate is largely
independent of. The mass accretion rate in their simulations finally reddite® — 10~7" M, yr—!
(see fig. 4 in their paper). We will study the behavior of thegent model in Figure 3 for several
values of the mass accretion rat®@{”, 5 x 107 and10~M, yr—1). The solutions imply that the
disk temperature is sensitive to the value of the mass aonnette and increases by adding the mass
accretion rate. However, the surface density is not seagitithe mass accretion rate and only shows
small variations over large radii. Thus, the behavior oftdmaperature only specifies the behavior of
the Toomre paramete€) o v/T/%). The profiles of the Toomre parameter indicate that it iases

by adding the mass accretion rate. Also, the solutions shewdisk thickness increases by adding
mass accretion rate, which is due to the increase of the eiisgérature. The solutions show that for
a low mass accretion rate-(10~7 M, yr—!), but cooling timescale with temperature dependence
(6 ~ 1), the gravitational instability can occur for radi 10 AU.
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4.1.4 Massratio

As noted in the introduction, semi-analytical studies df-geavitating disks are considering disks
without central objects. This simplification is relevantpimtostellar disks at the beginning of the
accretion phase, during which the mass of the central oijesihall and only self-gravity of the
disk plays an important role. Also, this simplification cawrespond to disks at large radii because
the effects of the central mass become unimportant in ther eegions of the disk. Moreover, the
central object is important in the present model and itscedfare not ignored. Thus, the present
model does not have the limitations of previous studies wiismalytical self-gravitating disks and
can be applied for all regions of the disk. Figure 4 presdrg®ffects of the ratio of the disk mass to
the star masg = M../Ma;sx in the present model. The solutions show the surface deinsitgases
and the temperature decreases. Each of the individuaksudfensity increases and the temperature
decreases can reduce the Toomre parameter. Thus, we axgieitte Toomre parameter decreases
by adding the; parameter and the profiles of the Toomre parameter confistb#fiavior. The disk
thickness profiles represent the disk thickness decregsadding the disk mass. This property is
qualitatively consistent with the two-dimensional studyacself-gravitating disk (e.g. Ghanbari &
Abbassi 2004).

4.2 The Viscosity Parameteny

In the present model, the viscosity parametedepends on the physical quantities of the disk
(Equation 10), especially the local cooling rate which dejseon the local temperature. The profiles
of the viscosity parameter show that its increases in radii agree with simulation tssofl Rice
& Armitage (2009) and Rice et al. (2010). As mentioned in thieaduction, the minimum cool-
ing timescale depends on the equation of state (Rice et @8)20ith fragmentation occurring for
Teool < 30271 when the specific heat ratip= 5/3 (Gammie 2001). Rice et al. (2005) showed that
fragmentation occurs far > 0.06 and this boundary is independent of the specific heat safide
left panel of Figure 5 presents the viscosity parametes a function of radius for several values
of the 5y parameter. The solutions show the viscositgtrongly depends on th&, parameter. In
addition, then, parameter decreases by a factofgf The solutions for small values ¢f, show the
viscositya can reach its critical value for fragmentation. The rightgleof Figure 5 represents the
viscosity parameter af as a function of radius for several values of thearameter. The solutions
which present thex parameter but exclude the outer region of the disk strongfyedd on thé
parameter. Fof = 0.5, the value of the viscosity over the entire disk is in the region for fragmen-
tation. However, Rafikov (2005) suggested that it is extigmdificult to see how fragmentation can
occur within10 AU even for relatively massive disks. bh= 1.0 andé = 1.5, the viscosityw in the
inner disk ¢ < 10 and 40 AU, respectively) is well below that required for firagntation.

The requirements for fragmentation ae< 1 anda > 0.06 (Rice et al. 2005, 2010; Rice
& Armitage 2009). In the present model, apparently the iaseeof thej parameter reduces the
possibility of fragmentation (right panel of Fig. 5). On thiner hand, the increase of thparameter
can lead the disk into a situation of gravitational instép{lFig. 1). Thus, by having a suitable value
for the § parameter, the disk can obtain two requirements for fragatem. Figures 1 and 5 imply
that this value for smalb, can be betweef.5 and1.0.

5 SUMMARY AND DISCUSSION

In this paper, we have studied self-gravitating accretiskglin the presence of a Newtonian poten-
tial of a point mass. We have used a prescription for coolirag is introduced by Gammie (2001).

However, due to recent results of Cossins et al. (2010), we assumed that the cooling timescale
in units of the dynamical timescale is a power-law functibteonperature. As a result, the system of
equations is non-linear and there is no self-similar sotutor it. First, we have obtained asymptotic
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solutions for the system of equations and then using themasdary conditions, we integrated the
system of equations numerically.

The solutions showed that the structure of the disk strodglyends on the present cooling
function. Thus, by adding the importance degree of tempegah the cooling timescale, gravita-
tional instability extends from outer to inner radii. Thdwgmns showed that in the case of cooling
with temperature dependence, the disk thickness increldsesever, this change of thickness is im-
portant in the region with a smaller Toomre parameter. Inpitesent model, the effect of physical
parameters is studied, such as mass accretionfaigarameter and the ratio of the disk mass to
central object mass. The results showed the structure afishes sensitive to these parameters. For
example, the disk becomes gravitationally stable in a tanggss accretion rate. The gravitational
instability can occur over a larger disk mass. Also, the tlisgkness increases by adding the mass
accretion rate and decreases by adding the ratio of the disk o the star mass. The study of the
viscosity parameter in the present model shows that it increases with radiuslaadesult is con-
sistent with direct numerical simulations (e.g. Rice & Atagie 2009; Rice et al. 2010). Also, the
solution implies that the viscosity in the outer part of the disk becomes larger than its critiehle
(~ 0.06), which might lead to the condition for fragmentation.

Here, the solutions imply that the disk thickness is versia® to input parameters. Thus, the
present study in a two dimensional approach may be an ititegesibject for future works. Also, it
will be interesting to obtain a suitabdevalue for fragmentation by direct numerical simulations.

Acknowledgements| would like to acknowledge useful discussions with Alirddaesali.
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