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Abstract The effect of self-gravity on protoplanetary disks is investigated. The mech-
anisms of angular momentum transport and energy dissipation are assumed to be the
viscosity due to turbulence in the accretion disk. The energy equation is considered
in a situation where the released energy by viscosity dissipation is balanced with
cooling processes. The viscosity is obtained by equality ofdissipation and cooling
functions, and is used to derive the angular momentum equation. The cooling rate
of the flow is calculated by a prescription,du/dt = −u/τcool, whereu and τcool

are the internal energy and cooling timescale, respectively. The ratio of local cool-
ing to dynamical timescalesΩτcool is assumed to be a constant and also a function
of the local temperature. The solutions for protoplanetarydisks show that in the case
of Ωτcool = constant, the disk does not exhibit any gravitational instability over
small radii for a typical mass accretion rate,Ṁ = 10−6M⊙ yr−1, but when choos-
ing Ωτcool to be a function of temperature, gravitational instabilitycan occur for this
value of mass accretion rate or even less in small radii. Also, by studying the viscosity
parameterα, we find that the strength of turbulence in the inner part of self-gravitating
protoplanetary disks is very low. These results are qualitatively consistent with direct
numerical simulations of protoplanetary disks. Also, in the case of cooling with tem-
perature dependence, the effect of physical parameters on the structure of the disk
is investigated. These solutions demonstrate that disk thickness and the Toomre pa-
rameter decrease by adding the ratio of disk mass to central object mass. However,
the disk thickness and the Toomre parameter increase by adding mass accretion rate.
Furthermore, for typical input parameters such as mass accretion rate10−6M⊙ yr−1,
the ratio of the specific heatγ = 5/3 and the ratio of disk mass to central object mass
q = 0.1, gravitational instability can occur over the whole radiusof the disk excluding
the region very near the central object.

Key words: accretion, accretion disks — planetary systems: protoplanetary disks —
planetary systems: formation

1 INTRODUCTION

Accretion disks are important for many astrophysical phenomena, including protoplanetary systems,
different types of binary stars, binary X-ray sources, quasars, and Active Galactic Nuclei (AGNs).
Historically, theories of accretion disks have concentrated on the non self-gravitating cases and occa-
sionally the effect of self-gravity had been studied (Paczynski 1978; Kolykhalov & Syunyaev 1979;
Lin & Pringle 1987, 1990). On the other hand, in recent years,the importance of study of disk
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self-gravity has increased, especially in protostellar disks and AGN disks. Evidence confirming the
existence of self-gravitating disks has accumulated, possibly due to an increase of computational
resources in simulation of self-gravitating accretion disks and their observational results, including
cases from AGNs to protostars (Lodato 2007 and references therein). Also, it appears the develop-
ment of gravitational instability is important for cool regions of accreting gas where angular momen-
tum transport by magneto-rotational instability (MRI) becomes weak (Fleming et al. 2000; Masada
& Sano 2008; Faghei 2011) and angular momentum can be transported by gravitational instability.

The structure of self-gravitating disks has been studied both through self-similar solutions as-
suming steady and unsteady states (Mineshige & Umemura 1996, 1997; Tsuribe 1999; Bertin &
Lodato 1999, 2001; Shadmehri & Khajenabi 2006; Abbassi et al. 2006; Shadmehri 2009) and
through direct numerical simulations (Gammie 2001; Rice etal. 2003, 2005, 2010; Rice & Armitage
2009; Cossins et al. 2010; Meru & Bate 2011a).

Mineshige & Umemura (1996) investigated the role of self-gravity on the classical self-similar
solution of advection dominated accretion flows (ADAF, Narayan & Yi 1994) and found global
one-dimensional solutions influenced by self-gravity bothin the radial and in the perpendicular di-
rections of the disk. They extended the previous steady state solutions to the time-dependent case
while the effect of self-gravity of the disk was taken into account. They used an isothermal equation,
and so their solutions describe viscous accretion disks in the slow accretion limit. Tsuribe (1999)
studied unsteady viscous accretion in self-gravitating disks. Taking into account the growth of the
central point mass, Tsuribe (1999) derived a series of self-similar solutions for rotating isothermal
disks. The solutions showed, as a core mass increases, the rotation law changes from flat rotation to
Keplerian rotation in the inner disk and in addition to the central point mass, the inner disk grows
by mass accumulation due to the differing mass accretion rates in the inner and outer radii. Bertin &
Lodato (1999) considered a class of steady-state self-gravitating accretion disks for which efficient
cooling mechanisms are assumed to operate so that the disk isself-regulated at a condition of the ap-
proximate marginal Jeans stability. They investigated theentire parameter space available for such
self-regulated accretion disks. In another study, Bertin &Lodato (2001) followed the model such
that, when the disk is sufficiently cold, the stirring due to Jeans-related instabilities acts as a source
of effective heating. With the corresponding reformulation of the energy equations, they demon-
strated how self-regulation can be established, so that thestability parameterQ is maintained close
to a threshold value, with a weak dependence on radius. Abbassi et al. (2006) studied the effect of
viscosity on the time evolution of axisymmetric, polytropic self-gravitating disks around a new born
central object. Thus, they ignored the gravitational effect of the central object and only self-gravity
of the disk played an important role. They compared effects of theα-viscosity prescription (Shakura
& Sunyaev 1973) andβ-viscosity prescription (Duschl et al. 2000) on disk structure. They found
that accretion rate onto the central object forβ-disks is more than that forα-disks, at least in the
outer regions whereβ-disks are more efficient. Also, their results showed gravitational instability
can occur everywhere on theβ-disks and thus they suggested thatβ-disks can be a good candidate
for the origin of planetary systems. Shadmehri & Khajenabi (2006) examined steady self-similar
solutions of isothermal self-gravitating disks in the presence of a global magnetic field. Similar to
Abbassi et al. (2006), they neglected the range of values from the mass of the central object to the
disk mass. By studying the Toomre parameter, they showed that the magnetic field can be important
in gravitational stability of the disk.

An accretion disk can become gravitationally unstable if the Toomre parameter becomes smaller
than its critical value,Q < Qcrit (Toomre 1964). For axisymmetric instabilitiesQcrit ∼ 1, while for
non-axisymmetric instabilitiesQcrit values are as high as 1.5–1.7 (Durisen et al. 2007). One possible
outcome is that unstable disks fragment to produce bound objects and this has been suggested as a
possible mechanism for forming giant planets (Boss 1998, 2002). However, recently it has been re-
alized that the above condition is not sufficient to guarantee fragmentation. Gammie (2001) showed
that in addition to the above instability criterion, the disk must cool at a fast enough rate. Let the
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cooling timescaleτcool be defined as the gas internal energy divided by the volumetric cooling rate.
For a power-law equation of state withτcool prescribed to be some value over an annulus of the
disk, the thin shearing box simulations of Gammie (2001) show that fragmentation occurs if and
only if Ωτcool <∼βcrit, whereβcrit ∼ 3 andΩ is the angular velocity of the disk or inverse of the
dynamical timescaleΩ = τ−1

dyn. The critical value ofΩτcool can be somewhat larger than three for
more massive and physically thicker disks (Rice et al. 2003), a larger adiabatic index (Rice et al.
2005), and higher resolution of simulations (Meru & Bate 2011b). Using a smoothed-particle hydro-
dynamics simulation, Cossins et al. (2010) studied the effects of opacity regimes on the stability of
self-gravitating protoplanetary disks fragmenting into bound objects. They showed thatΩτcool has a
strong dependence on the local temperature. Thus, they found that without temperature dependence,
for radii <∼10 AU, a very large accretion rate10−3M⊙ yr−1 is required for fragmentation, but this
is reduced to10−4 with cooling, which is dependent on temperature.

As mentioned, typically semi-analytical studies of self-gravitating disks are modeling polytropic
disks (Abbassi et al. 2006), isothermal disks (Mineshige & Umemura 1996, 1997; Tsuribe 1999;
Shadmehri & Khajenabi 2006), ADAFs in the extreme limit of noradiative cooling (Shadmehri
2004), and disks without a central object (Mineshige & Umemura 1996, 1997; Tsuribe 1999;
Shadmehri & Khajenabi 2006; Abbassi et al. 2006). In this paper, it will be interesting to understand
under which conditions gravitational instability can occur in accretion disks by a suitable energy
equation and assuming a Newtonian potential of a mass point that is located at the disk’s center.
Thus, to obtain these conditions, we will use a prescriptionfor cooling rate that is introduced by
Gammie (2001),du/dt = −u/τcool, whereu andτcool are internal energy and cooling timescale,
respectively. The ratio of local cooling to dynamical timescalesΩτcool is assumed to be a power-law
function of temperature in adapting the result of Cossins etal. (2010),Ωτcool = β0(T/T0)

δ, where
T0 andδ are free parameters, andβ0 is a free parameter in Gammie (2001). Whenδ = 0, Ωτcool

reduces to the Gammie (2001) model whereΩτcool is a constant, while non-zeroδ is qualitatively
consistent with the results of Cossins et al. (2010). We willexamine the effects of theδ parameter
on gravitational stability of the disk. We will show that thepresent model is qualitatively consistent
with direct numerical simulations (Rice & Armitage 2009; Cossins et al. 2010; Rice et al. 2010) and
can provide conditions such that gravitational instability can occur over the whole radius, excluding
the region very near the central object.

In Section 2, the basic equations of constructing a model fora steady self-gravitating disk will
be defined. In Section 3, we will find asymptotic solutions forthe outer edge of the disk. In Section 4,
by exploiting asymptotic solutions as boundary conditionsfor system equations, we will numerically
investigate the effects of physical parameters on the structure and stability of the disk. The summary
and discussion of the model will appear in Section 5.

2 BASIC EQUATIONS

We use cylindrical coordinates(r, ϕ, z) centered on the accreting object and make the following
standard assumptions:

(i) The flow is assumed to be steady and axisymmetric∂t = ∂ϕ = 0, so all flow variables are a
function ofr andz;

(ii) The gravitational force of the central object on a fluid element is characterized by the Newtonian
potential of a point mass,Ψ = −GM∗/r, with G representing the gravitational constant and
M∗ standing for the mass of the central star;

(iii) The equations written in cylindrical coordinates areintegrated in the vertical direction, hence all
quantities of the flow variables will be expressed in terms ofcylindrical radiusr;

The governing equations of the self-gravitating accretiondisk for such assumptions are as follows.
The continuity equation is
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r

d

dr
(rΣvr) = 0 , (1)

wherevr is the radial infall velocity andΣ is the surface density, which is defined asΣ = 2ρh, and
ρ andh are density and the disk half-thickness, respectively. Thehalf-thickness of the disk with the
assumption of hydrostatic equilibrium in the vertical direction ish = cs/Ω, wherecs is the sound
speed, which is defined asc2

s = p/ρ, p is the gas pressure andΩ represents the angular velocity of
the flow. Equation (1) implies that

Ṁ = −2πrΣvr = constant ,

whereṀ is the mass accretion rate and is a constant in the present model. The simulation results of
protoplanetary disks show that the disk reaches a quasi-steady state in 20 000 years or less and might
imply that these systems are rarely out of equilibrium. Also, the simulations show that the mass of
the disk redistributes itself to produce a state in which theaccretion rate,Ṁ , is largely independent
of r (Rice & Armitage 2009; Rice et al. 2010). Thus, we can use the mass accretion as a constant
and it cannot be a limitation for the present model. The momentum equations are
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, (3)

whereν is the kinematic viscosity coefficient,γ is the adiabatic index, andM(r) is the mass of a
disk within a radiusr. As mentioned in Mineshige & Umemura (1997), we adopt the monopole ap-
proximation for the radial gravitational force due to the self-gravity of the disk, which considerably
simplifies the calculations and is not expected to introduceany significant error as long as the sur-
face density profile is steeper than1/r (e.g. Li & Shu 1997; Saigo & Hanawa 1998; Tsuribe 1999;
Krasnopolsky & Königl 2002; Shadmehri 2009). Now, we can write

dM(r)

dr
= 2πrΣ . (4)

The energy equation is
Σvr

γ − 1

dc2
s

dr
+

Σc2
s

r

d

dr
(rvr) = Γ − Λ , (5)

whereΓ is the heating rate of the gas by dissipation processes such as turbulent viscosity andΛ
represents the energy loss through radiative cooling processes. The forms of the dissipation and
cooling functions can be written as

Γ = r2Σν

∣
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∣
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, (6)

Λ =
1

γ(γ − 1)

Σc2
s

τcool
, (7)

whereτcool is the cooling timescale. As noted in the introduction, we are interested in considering
the effect of the cooling function on the structure of self-gravitating disks. Thus, similar to Rice &
Armitage (2009) we will study the effects of it in the case where the heating rate in the disk is equal
to the cooling rate,Γ = Λ.

Since fragmentation requires fast cooling, Gammie (2001) suggested the cooling timescale can
be parameterized asβ = Ωτcool, whereβ is a free parameter. Gammie (2001) showed fragmentation
requiresβ <∼βcrit, whereβcrit ≈ 3 for the adiabatic index ofγ = 2. Rice et al. (2005) performed
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3D simulations to show the dependence ofβcrit onγ: for disks withγ = 5/3 and7/5, βcrit ≈ 6− 7
and≈ 12 − 13, respectively. Recently, Cossins et al. (2010) studiedβ as a function of temperature.
They showed thatβ has a strong dependence on the local temperature. They foundthat without tem-
perature dependence, for radii<∼ 10 AU a very large accretion rate10−3 M⊙ yr−1 is required for
fragmentation, but this is reduced to10−4 M⊙ yr−1 with cooling, which is dependent on tempera-
ture. So, for simplicity in this paper we will use a cooling timescale with a power-law dependence
on temperature for study of Equations (1)–(5)

τcool =
β0

Ω

(

T

T0

)δ

=
β0

Ω

(

cs

cs0

)2δ

, (8)

whereδ andβ0 are free parameters. If we selectT0 as a temperature of the outer part of the disk,
thencs0 will be the sound speed there. From Equation (8) andδ = 0, we expect thatΩτcool becomes
a constant that is the same as that in the Gammie (2001) model.So non-zeroδ is qualitatively
consistent with the Cossins et al. (2010) model. It is important to stress that the above description
for cooling rate does not mean to reproduce any specific cooling law, but is just a convenient way of
exploring the role of the cooling timescale in the outcome ofthe gravitational instability.

Here, the kinematic coefficient of viscosity can be obtainedby equating the heating and cooling
rates

ν =
1

γ(γ − 1)

∣
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dΩ
dr

∣

∣

−2

r2
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s
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Thus, by exploiting Equation (9) we do not need to use viscosity descriptions, such asα andβ pre-
scriptions that were introduced by Shakura & Sunyaev (1973)and Duschl et al. (2000), respectively.
Equation (9) implies that the kinematic coefficient of viscosity in the present model depends on
physical quantities of the system, especially the cooling timescale. The kinematic coefficient of vis-
cosity in theα-prescription isν = αcsh, whereα is a free parameter and is less than unity (Shakura
& Sunyaev 1973). By using Equation (9) for theα parameter we can write

α =
ν

csh
=

1

γ(γ − 1)

∣

∣

dΩ
dr

∣

∣

−2

r2h
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τcool
. (10)

The above equation implies that theα parameter is not a constant and varies by position and strongly
depends on the cooling timescale. We will study theα parameter in Section 4 and will show that in
the present model it increases with radius.

As mentioned in the introduction, the gravitational stability of the disk can be investigated by
the Toomre parameter (Toomre 1964). The Toomre parameter for epicyclic motion can be written as

Q =
csk

πGΣ
, (11)

where

k = Ω

√

4 + 2
d log Ω

d log r
(12)

is the epicyclic frequency which can be replaced by the angular frequency,Ω.
Equations (1)–(5) and (9) provide a set of ordinary differential equations that describe physical

properties of the self-gravitating disk. Since these equations are nonlinear, we will need suitable
boundary conditions to solve them numerically. Thus, in thenext section we will try to obtain an
asymptotic solution in the outer edge of the disk and then by exploiting this asymptotic solution as
a boundary condition, we can integrate the system of equations inward from a point very near the
outer edge of the disk.
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Before covering the next sections and examining the numerical study of the model, we shall
express all quantities in units with values typical for a protostellar disk. We will choose astronomical
unit (AU) and the Sun’s mass (M⊙) as the units of length and mass, respectively. Thus, the time unit

is given by
√

AU3/GM⊙, which is equal to a year divided by2π.

3 OUTER LIMIT

Here, the asymptotic behavior of the system of equations expressed asr → R is investigated, where
R is the outer radius of the disk. The asymptotic solutions aregiven by

Σ(r) ∼
Σ0

R1/2

(

1 + a1
s

R
+ · · ·

)

, (13)

vr(r) ∼ −c1

√
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R

(
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s

R
+ · · ·

)

, (14)

Ω(r) ∼ c2

√
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R3

(

1 + a3
s

R
+ · · ·

)

, (15)

c2
s (r) ∼ c3

M∗ + Mdisk

R

(

1 + a4
s

R
+ · · ·

)

, (16)

M(r) ∼ Mdisk −
∫ R

r

2πr′Σ(r′)dr′ , (17)

wheres = R − r, Mdisk is the disk mass, and the coefficients ofci, ai andΣ0 must be determined.
Using these solutions, from the continuity, momentum, angular momentum, energy and viscosity, by
using Equations (1)–(5) and (9), we can obtain the coefficients of ci that have the following forms:

c1 =
Ṁ

2πΣ0

√
M∗ + Mdisk

, (18)

c2
2 +

[

a3γ(γ − 1)β0Ṁ(a3 − 2)(a1 + a4)

2πΣ0

√
M∗ + Mdisk(a1 + a3 + a4 − 1)

]

c2

+

[

a2Ṁ
2

4π2Σ2
0(M∗ + Mdisk)

− 1

]

= 0 , (19)

c3 =

(

a3γβ0(a3 − 2)(γ − 1)Ṁ

2πΣ0(a1 + a3 + a4 − 1)
√

M∗ + Mdisk

)

c2 , (20)

where
a4 = (1 + a2)(1 − γ) . (21)

The value of mass accretion rate can be determined by observational data of the protoplanetary disks.
Also, Σ0 can approximately be determined by disk mass,Mdisk ∼ πR2Σ. Thus, after determining
the values ofΣ0 andṀ from the observations, the value of thec3 coefficient is only dependent on
the value ofc2. On the other hand, the value ofc2 can be obtained by Equation (19). Since we only
have one equation for coefficients ofai (Eq. (21)), we will select the below values for them in the
process of numerical integration of the system of equationsto obtain physical results

a1 < −2 +
3

2
γ, 3 a2 = a3 =

3

2
, a4 = (1 + a2)(1 − γ) . (22)
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Fig. 1 Surface density, thickness, temperature and the Toomre parameter of the disk as a function
of radius, for several values ofδ. The surface density and the temperature are expressed in the cgs
system, and the thickness and the distance are in AU. The solid lines representδ = 0, the dashed
lines representδ = 0.75 and the dotted lines representδ = 1.5. The input parameters are set to the
disk massMdisk = 0.1M⊙, the star massM∗ = M⊙, the mass accretion ratėM = 10−6M⊙ yr−1,
the ratio of the specific heats is set to beγ = 5/3 andβ0 = 2.

4 NUMERICAL RESULTS

If the value ofR is initialized, the equations describing the Fehlberg-Runge-Kutta fourth-fifth order
method can be integrated inwards from a point very near the outer edge of the disk, using the above
expansions. Examples of such solutions for surface density, half-thickness of the disk, temperature,
the Toomre parameter and the viscosity parameter ofα as a function of radius are presented in
Figures 1–5. The delineated quantity ofT in Figures 1–4 is the mid-plane temperature which can
then be determined using

T =

(

µmp

kB

)

c2
s ,

whereµ = 2 is the mean molecular weight,mp is the proton mass andkB is Boltzmann’s constant.
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Fig. 2 Surface density, thickness, temperature and the Toomre parameter of the disk as a function
of radius, for several values ofβ0. The surface density and the temperature are expressed in the cgs
system, and the thickness and the distance are in AU. The solid lines representβ0 = 1, the dashed
lines representβ0 = 5.0 and the dotted lines representβ0 = 10. The input parameters are set to the
disk massMdisk = 0.1M⊙, the star massM∗ = M⊙, the mass accretion ratėM = 10−6M⊙ yr−1,
the ratio of the specific heats is set to beγ = 5/3 andδ = 1.0.

4.1 The Influences of Physical Parameters on the Results

The free parameters in the present model are the degree of influence of temperature on the cooling
timescale,δ, the mass accretion rate,̇M , the parameterβ0 and the ratio of disk mass to star mass,
q = Mdisk/M∗.

4.1.1 δ parameter

The effects of theδ parameter on the physical quantities are presented in Figure 1. The profiles
of surface density and temperature show that they increase by addingδ. However, the increase of
surface density is more than temperature. Thus, the Toomre parameter (Q ∝ cs/Σ ∝

√
T/Σ)

decreases by adding theδ parameter. The profiles of the Toomre parameter represent those for small
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Fig. 3 Surface density, thickness, temperature and the Toomre parameter of the disk as a function of
radius, for several values oḟM . The surface density and the temperature are expressed in the cgs sys-
tem, and the thickness and the distance are in AU. The solid lines represenṫM = 10−7M⊙ yr−1, the
dashed lines represenṫM = 5×10−7M⊙ yr−1 and the dotted lines representṀ = 10−6M⊙ yr−1.
The input parameters are set to the disk massMdisk = 0.1M⊙, the star massM∗ = M⊙, the ratio
of the specific heats is set to beγ = 5/3, β0 = 10 andδ = 1.0.

δ, only the outer part of the disk is gravitationally unstable, and the gravitational instability can
extend to the inner radii by adding theδ parameter. Forδcrit ∼ 1.5, the Toomre parameter in terms
of radii & 5 AU becomes smaller than the critical Toomre parameter (Qcrit ∼ 1) and the disk
becomes gravitationally unstable. In other words, the profiles of the Toomre parameter represent
the gravitational instability of the flow, which strongly depends on the cooling timescale, with a
temperature dependence. This result is qualitatively consistent with direct numerical simulations
(e.g. Cossins et al. 2010). The disk thickness increases by adding theδ parameter. It can be due to
the increase of the temperature (h ∝ cs ∝

√
T ).

Equations (8) and (9) imply that

ν(δ 6=0)

ν(δ=0)
=

(

cs

cs0

)−2δ

. (23)
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Fig. 4 Surface density, thickness, temperature and the Toomre parameter of the disk as a function of
radius, for several values ofq = Mdisk/M∗. The surface density and the temperature are expressed
in the cgs system, and the thickness and the distance are in AU. The solid lines representq = 0.05,
the dashed lines representq = 0.1 and the dotted lines representq = 0.15. The input parameters
are set to the star massM∗ = 1M⊙, the mass accretion ratėM = 10−6M⊙ yr−1, the ratio of the
specific heats is set to beγ = 5/3, β0 = 2 andδ = 1.5.

Sincecs ≥ cs0 the right-hand side of the above equation is less than or equal to one. On the other
hand, non-zeroδ constrains the viscosity to lower values for hotter regionsof the disk. The study
of gravitational instability shows that it is enhanced withlower viscosity (Abbassi et al. 2006;
Shadmehri & Khajenabi 2006; Khajenabi & Shadmehri 2007). Thus, the gravitational instability
can be enhanced by adding theδ parameter for hotter regions, but there is a limitation for the value
of theδ parameter that we discuss in the next section.

4.1.2 β0 parameter

The influences of parameterβ0 are shown in Figure 2. Thus, as we know from simulations of a
self-gravitating disk (Gammie 2001; Rice et al. 2003), the reduction of this parameter leads to grav-
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Fig. 5 Viscosity parameter ofα as a function of radius (AU). The input parameters are set to the
star massM∗ = 1M⊙, the mass accretion ratėM = 10−6M⊙ yr−1 and the ratio of the specific
heats is set to beγ = 5/3. Left panel is for several values of Gammie’s parameterβ0, the solid
line representsβ0 = 1, the dashed line representsβ0 = 5, the dotted line representsβ0 = 10 and
δ = 1.5. Right panel is for several values of parameter ofδ, the solid line representsδ = 0.5, the
dashed line representsδ = 1.0, the dotted line representsδ = 1.5 andβ0 = 1.0.

itational instability and consequently fragmentation of the disk. The profiles of surface density show
that it does not change by adding theβ0 parameter and the addition only results in small deviations
over large radii. The disk temperature increases by adding theβ0 parameter. Therefore, the increase
of this parameter reduces the rate of cooling. For a large value ofβ0 (∼ 10), the disk is gravitation-
ally stable, but when reducing its value to5, the gravitational instability can occur over large radii,
and for a small value of it (β0 ∼ 1), we can expect gravitational instability over the whole the disk
excluding the region near the star. These results are qualitatively consistent with direct numerical
simulations of a protoplanetary disk (Gammie 2001; Rice et al. 2003; Cossins et al. 2010). Also, the
solutions show that the disk thickness increases by adding theβ0 parameter.

4.1.3 The mass accretion rate

Rice & Armitage (2009) showed that beyond1 AU the disk reaches a quasi-steady state in20 000
years and the mass itself is redistributed to produce a statein which the accretion rate is largely
independent ofr. The mass accretion rate in their simulations finally reached 10−6− 10−7M⊙ yr−1

(see fig. 4 in their paper). We will study the behavior of the present model in Figure 3 for several
values of the mass accretion rate (10−7, 5 × 10−7 and10−6M⊙ yr−1). The solutions imply that the
disk temperature is sensitive to the value of the mass accretion rate and increases by adding the mass
accretion rate. However, the surface density is not sensitive to the mass accretion rate and only shows
small variations over large radii. Thus, the behavior of thetemperature only specifies the behavior of
the Toomre parameter (Q ∝

√
T/Σ). The profiles of the Toomre parameter indicate that it increases

by adding the mass accretion rate. Also, the solutions show the disk thickness increases by adding
mass accretion rate, which is due to the increase of the disk temperature. The solutions show that for
a low mass accretion rate (∼ 10−7M⊙ yr−1), but cooling timescale with temperature dependence
(δ ∼ 1), the gravitational instability can occur for radii>∼10 AU.
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4.1.4 Mass ratio

As noted in the introduction, semi-analytical studies of self-gravitating disks are considering disks
without central objects. This simplification is relevant toprotostellar disks at the beginning of the
accretion phase, during which the mass of the central objectis small and only self-gravity of the
disk plays an important role. Also, this simplification can correspond to disks at large radii because
the effects of the central mass become unimportant in the outer regions of the disk. Moreover, the
central object is important in the present model and its effects are not ignored. Thus, the present
model does not have the limitations of previous studies of semi-analytical self-gravitating disks and
can be applied for all regions of the disk. Figure 4 presents the effects of the ratio of the disk mass to
the star massq = M∗/Mdisk in the present model. The solutions show the surface densityincreases
and the temperature decreases. Each of the individual surface density increases and the temperature
decreases can reduce the Toomre parameter. Thus, we expect that the Toomre parameter decreases
by adding theq parameter and the profiles of the Toomre parameter confirm this behavior. The disk
thickness profiles represent the disk thickness decreases by adding the disk mass. This property is
qualitatively consistent with the two-dimensional study of a self-gravitating disk (e.g. Ghanbari &
Abbassi 2004).

4.2 The Viscosity Parameterα

In the present model, the viscosity parameterα depends on the physical quantities of the disk
(Equation 10), especially the local cooling rate which depends on the local temperature. The profiles
of the viscosity parameterα show that its increases in radii agree with simulation results of Rice
& Armitage (2009) and Rice et al. (2010). As mentioned in the introduction, the minimum cool-
ing timescale depends on the equation of state (Rice et al. 2005) with fragmentation occurring for
τcool ≤ 3Ω−1 when the specific heat ratioγ = 5/3 (Gammie 2001). Rice et al. (2005) showed that
fragmentation occurs forα > 0.06 and this boundary is independent of the specific heat ratioγ. The
left panel of Figure 5 presents the viscosity parameterα as a function of radius for several values
of theβ0 parameter. The solutions show the viscosityα strongly depends on theβ0 parameter. In
addition, theα parameter decreases by a factor ofβ0. The solutions for small values ofβ0 show the
viscosityα can reach its critical value for fragmentation. The right panel of Figure 5 represents the
viscosity parameter ofα as a function of radius for several values of theδ parameter. The solutions
which present theα parameter but exclude the outer region of the disk strongly depend on theδ
parameter. Forδ = 0.5, the value of the viscosityα over the entire disk is in the region for fragmen-
tation. However, Rafikov (2005) suggested that it is extremely difficult to see how fragmentation can
occur within10 AU even for relatively massive disks. Inδ = 1.0 andδ = 1.5, the viscosityα in the
inner disk (r <∼10 and 40 AU, respectively) is well below that required for fragmentation.

The requirements for fragmentation areQ <∼1 and α > 0.06 (Rice et al. 2005, 2010; Rice
& Armitage 2009). In the present model, apparently the increase of theδ parameter reduces the
possibility of fragmentation (right panel of Fig. 5). On theother hand, the increase of theδ parameter
can lead the disk into a situation of gravitational instability (Fig. 1). Thus, by having a suitable value
for theδ parameter, the disk can obtain two requirements for fragmentation. Figures 1 and 5 imply
that this value for smallβ0 can be between0.5 and1.0.

5 SUMMARY AND DISCUSSION

In this paper, we have studied self-gravitating accretion disks in the presence of a Newtonian poten-
tial of a point mass. We have used a prescription for cooling that is introduced by Gammie (2001).
However, due to recent results of Cossins et al. (2010), we have assumed that the cooling timescale
in units of the dynamical timescale is a power-law function of temperature. As a result, the system of
equations is non-linear and there is no self-similar solution for it. First, we have obtained asymptotic
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solutions for the system of equations and then using them as boundary conditions, we integrated the
system of equations numerically.

The solutions showed that the structure of the disk stronglydepends on the present cooling
function. Thus, by adding the importance degree of temperature in the cooling timescale, gravita-
tional instability extends from outer to inner radii. The solutions showed that in the case of cooling
with temperature dependence, the disk thickness increases. However, this change of thickness is im-
portant in the region with a smaller Toomre parameter. In thepresent model, the effect of physical
parameters is studied, such as mass accretion rate,β0 parameter and the ratio of the disk mass to
central object mass. The results showed the structure of thedisk is sensitive to these parameters. For
example, the disk becomes gravitationally stable in a larger mass accretion rate. The gravitational
instability can occur over a larger disk mass. Also, the diskthickness increases by adding the mass
accretion rate and decreases by adding the ratio of the disk mass to the star mass. The study of the
viscosity parameterα in the present model shows that it increases with radius and this result is con-
sistent with direct numerical simulations (e.g. Rice & Armitage 2009; Rice et al. 2010). Also, the
solution implies that the viscosityα in the outer part of the disk becomes larger than its criticalvalue
(∼ 0.06), which might lead to the condition for fragmentation.

Here, the solutions imply that the disk thickness is very sensitive to input parameters. Thus, the
present study in a two dimensional approach may be an interesting subject for future works. Also, it
will be interesting to obtain a suitableδ value for fragmentation by direct numerical simulations.
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