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Abstract The structural properties of asymmetrical nuclear matéetbeen calcu-
lated, employing thedVig potential for different values of proton to neutron ratio.
These calculations have also been made for the case of syitaheuclear matter
with the U V4, AV14 and AVig potentials. In our calculations, we used the lowest or-
der constrained variational method to compute the corogldtinction of the system.
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1 INTRODUCTION

The interpretation of many astrophysical phenomena dep@md profound understanding of differ-
ent areas of physics. Nuclear physics plays an importa@imaletermining the energy and evolution
of stellar matter. Most of the calculations for asymmetriazclear matter have a close relationship
with astrophysics. These studies are also potentiallyuligaf understanding the effective nucleon—
nucleon interactions in dense asymmetrical nuclear matteémportant ingredient in nuclear struc-
ture physics, heavy-ion collision physics, as well as cachptar physics. Nuclear matter is defined
as a hypothetical system of nucleons interacting withowtl@ub forces, with a fixed ratio of pro-
tons and neutrons, and can be supposed as an idealizaticattef inside a large nucleus. The aim
of nuclear matter theory is to match known experimental lputiperties, such as binding energy,
equilibrium density, symmetry energy and incompressipiltarting from fundamental two-body
interactions (Pandharipande & Wiringa 1979).

A good many-body theory for nuclear matter can be usefultiahysng the details of nucleon-
nucleon interactions. The observed phase shifts fromesaait experiments, plus the properties
of the only bound two-nucleon system, the deuteron, are metgh to obtain a unique nucleon—
nucleon potential. Nuclear matter studies can help ustatiderstand exactly how the properties of
the matter are affected by different elements of a poteraiad what sort of features are required to
produce the observed saturation. Nuclear matter studigsisa indicate whether a potential model
for nuclear forces is workable or not (Pandharipande & Vgigii979).

The starting point for a microscopic theory of finite nucteio solve the infinite matter problem.
A solution to the infinite matter problem would also be thetfstep in obtaining the equation of
state for dense matter, which is necessary in the study afarestars. At the end, it is simply a very
interesting many-body problem in its own right. Methodseleped for it should be helpful in other
dense quantum fluids such as liquid helium (Pandharipanderfaiye 1979).
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The starting point for any nuclear matter calculation is a-twady potential that models the
nucleon-nucleon interaction (Pandharipande & WiringaQ)9The first nuclear matter calculations
were done by Euler (1937). Very little was known about therattion of nucleons at that time
(Pandharipande & Wiringa 1979). At the same time the Yukaetantial was formulated as

V=y ; (2)

where~ is a constanty is defined asl\fj = i (cis the speed of light andl/; is the mass of the
meson) and is the relative distance between the two nucleons (Cohef;M@ng 2007). Several
years later, Gammel et al. (1957) introduced a potentidi@form

V= Vc(T) + VT(T)Slg . (2)
In Equation (2) Vo (r) is the central potential/t(r) is the tensor potential and
512 = 3(0’1 . f‘)(Ug 72) — 01 09

is the usual tensor operator. Then the potential was alldavddpend at most linearly on the relative
momentunp, and a spin-orbit term was added to it,

V= Vc(T) + VT(T)Slg + WS(T)L - S, 3)

whereL is the relative angular momentum afds the total spin of the nucleon pair. This was the
form originally proposed by Eisenbud & Wigner (1941).

In 1962 the two most widely used potentials were introduBeth abandoned the Wigner form.
The Hamada & Johnston (1962) model had the form,

V =Ve(r)+ Vao(r)Sia + Vis(r)L - S + Vi(r) L1, (4)

where
Lo = [6LJ + (0'1 . 02)]L2 — (L . 5)2

and the Yale potential was defined as (Lassila et al. 1962),
V =Vo(r) + Vo(r)Sie + Vis(r)L - S + V,(r)(L - S)* + L- S — L% (5)

In 1968 another potential was introduced by Reid (1968)s Tatential has a central term,
Ve (r), for uncoupled states (singlet and triplet with= .J) and for coupled states (triplet with
L = J + 1) has the form of Equation (3). In 1974, Bethe & Johnson (19B4) introduced a
potential that had the general form of the Reid potentiaté BA potential has a very hard core in the
(S,T)=(0,0),(1,1) channels.

In general the above potentials are limited to a few opesadad do not fit the data for all the
scattering channels very well. In many-body calculatidimeuglei and nuclear matter, it is acceptable
to represent the two nucleon interaction as an operatorfisi§ Pandharipande 1981)

Vij = VP(riy)O%,, (6)
p

whereV?(r;;) are functions of the interparticle distancg, and ij are suitably chosen opera-
tors. The nucleon-nucleo(V) interaction scattering data uniquely show the occurreficerms
belonging to the eight operators (Lagaris & Pandharipa®@d )L

OV~ % =1,0i 05,7 - 75, (00 - 05)(7i - 75), Sij Si (i - 7). (L - 8)ijy (L - 8)ij(ri - 75) ()
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in the V;;. Many nuclear matter calculations have been done Witlpotential models (Lagaris

& Pandharipande 1981). This potential has two different eidOne of them is Reidly
(Pandharipande & Wiringa 1979) and the other is the BUgl(Pandharipande & Wiringa 1979)
model. There is also B model. TheV;-7 s terms are neglected in thg model. The H3s model

is obtained by neglecting the - S and quadratic spin-orbit terms in the Hamada and Johnston po
tential (Pandharipande & Wiringa 1979), while the GT-52@%emtial (Pandharipande & Wiringa
1979) is itself al’z form.

Another NN interaction model isl;5. In this model, in addition to the eight operators of

Equation (7), there are four momentum-dependent terms

0N 072 = 12, L2(0; - 03), L (73 - 73), L(0 - 03) (73 - 75) ©)
The Vi potential, like thels model, has two different forms, which are Rédig; and BJ-11V5
(Lagaris & Pandharipande 1981).

In 1981 a phenomenological two-nucleon interaction paaémias introduced by Lagaris &
Pandharipande (1981). This potential was obtained bydittie nucleon—nucleon phase shifts up to
425 MeV in S, P, D and I’ waves, and the deuteron properties. It has two additionais®ther
than the operators in Egs. (3) and (4) and is calledther Urbana V14 (UV14) potential.

OF= M = (L 8)%, (L - §)2(ri - 7)) )
In theU'V14 model, the two nucleon interaction is written as
Vi= 3 (VEOw) + VP (rig) + V() ) OF (10)
p=1,14

whereV?(r;;) is the well known one-pion-exchange interactidif,(r;;) is an intermediate-range
interaction and’ (r;;) is a purely phenomenological short-range interaction.

There is also another form of tHg, potential which was proposed by Wiringa et al. (1984). It
is called the Argonné&’, (AV14) potential, and it has the general form of &7, potential. The
difference between thé&V;, andU V14 models is in how the functiorig? (r;;), V' (ri;) andV (r4;)
are defined.

Traditionally, NN potentials are formed by fittingp data for thel’ = 0 states and eitheip
or pp data for thel' = 1 states. Unfortunately, potential models which have begdfibnly to the
np data often do not give a good description of fhedata (Stoks & de Swart 1993), even after
applying the essential correlations for the Coulomb irtgoa. By the same token, the potentials fit
to thepp data in thel' = 1 states simply give a mediocre description of thedata. This problem
is largely due to charge-independence breaking in thegirdaraction. In the present work we use
an updated version of the Argonne potential, #iés model (Wiringa et al. 1995), which fits both
thepp andnp data as well as the low-energy. scattering parameters and deuteron properties. This
potential is written in an operator format that depends envéidues ofS, T'andT; of the NN pair.
The AVig potential includes a charge-independent part that has édatigy components (as in the
AVy4 model) and a charge-independent breaking part that has therge-dependent operators and
one charge-asymmetric one. The four additional operatatdireak charge-independence are given
by

OV~ 171 =Ty (03 05)Tig, iy T (Tai + 725) (11)

where
Tij = 37—21’sz — T Ty

is the tensor operator. In between the operators of Equétiby the first three represent charge-
dependence, while the last one represents charge-asyynmetr
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In this paper, we use the lowest-order constrained vanatii. OCV) method to calculate the
correlation function of the nuclear matter. Primarily, th®@CV technique was used to study the
bulk properties of quantal fluids (Owen et al. 1977; Modag&elsvine 1979a). The method was
later extended to calculate the symmetry coefficient forsdai-empirical mass formula (Howes
et al. 1978a, 1979; Modarres & Irvine 1979a,b), the propsrtif beta-stable matter (Modarres &
Irvine 1979a,b; Howes et al. 1978b), the surface energiegiahtal fluids (Howes et al. 1978b)
and the binding energies of finite nuclei (Bishop et al. 19V8darres 1984). The LOCV method
was further extended for finite temperature calculatiorts\aas very successfully applied to neu-
tron, nuclear and asymmetrical nuclear matter (Modarr€8,19995, 1997) in order to calculate the
different thermodynamic properties of these systems. Rc& OCV calculations have been done
for symmetric nuclear matter with phenomenological twaiaan interaction operators (Bordbar
& Modarres 1997) and asymmetrical nuclear matter withAhés potential (Bordbar & Modarres
1998). The incompressibility of hot asymmetrical nucleatter has also been investigated within
an LOCV approach (Modarres & Bordbar 1998). Very recentiyne nucleonic systems such as
the spin polarized neutron matter (Bordbar & Bigdeli 20Q03gmmetric nuclear matter (Bordbar
& Bigdeli 2007b), asymmetrical nuclear matter (Bordbar &&eli 2008a) and neutron star matter
(Bordbar & Bigdeli 2008a) at zero temperature have beenedugsing the LOCV method with a
realistic strong interaction in the absence of a magnetid. fighe thermodynamic properties of the
spin polarized neutron matter (Bordbar & Bigdeli 2008b)nsyetric nuclear matter (Bigdeli et al.
2009) and asymmetrical nuclear matter (Bigdeli et al. 20E¥E also been studied at finite temper-
ature in the absence of a magnetic field. These calculatiaveslreen extended in the presence of a
magnetic field for the spin polarized neutron matter at zenaperature (Bordbar et al. 2011). The
LOCV method is a fully self-consistent formalism and doeshming any free parameters into the
calculation. It considers the normalization constrairkeep the higher order terms as small as pos-
sible. The functional minimization procedure representg@ormous computational simplification
over unconstrained methods (i.e. to parameterize the-shioge behavior of correlation functions)
that attempt to go beyond the lowest order (Bordbar & Modat@98).

In the present work, we intend to calculate the structuretion of asymmetrical nuclear matter
using the LOCV method, employing thél; 4, AVi4 and AVig potentials. The plan of this article
is as follows. The LOCV method is described in Section 2. 883 is devoted to a summary of
the pair distribution function and the structure functi@ur results and discussion are presented in
Section 4, and finally, the summary and conclusions arespttes in Section 5.

2 LOCV FORMALISM FOR ASYMMETRICAL NUCLEAR MATTER

We consider a trial many-body wave function of the form
U =F, (12)
where® is a slater determinant of the plane wavesdofndependent nucleong; is an A-body
correlation operator which will be replaced by a Jastrowrfor.e.
F=38]] i), (13)
i>j
andS is a symmetrizing operator. The cluster expansion of theggrfenctional is written as
1 (VH|W)
E(f) = =+—~—=+L
1) = 5w
The one-body terni; for asymmetrical nuclear matter that consistggirotons andV neutrons is
3 R2kF p;
5 2m; p

—FEi +Ey+Es+---. (14)

Fi =
i=1,2

(15)
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Labels 1 and 2 are used instead of proton and neutron, resggecindk/ = (3772;)1-)% is the Fermi
momentum of particlé (p = p1 + p2).
The two-body energyes is

B=g ;<ij|v<1z>|ij - ji) (16)
and 12
V(12) =~ [1(12), [V, F(12)]] + F12)V(12)1(12). (7)

The two-body correlation operatgf12) is defined as follows
3

fg) =" fPi5)0P (ij). (18)
a,p=1
a={J,L,S,T,T,} and the operator®Z (i5) are written as
_ 2 1 1 1
05_173 =1, <§ + 6812) ; <§ — 6812) ) (19)

whereS; is the tensor operator. We chogse- 1 for uncoupled channels and= 2, 3 for coupled
channels. The two-body nucleon-nucleon interactigt2) has the following form

18
V(12) = > VP(r12)0%,, (20)
p=1

where the 18 operators that are defined as before are dengtdtieblabelsc, o, T, 07,1,
tr,ls,lsT,12,120,127,1207,152,1s27,T, 0T, tT and Tz (Wiringa et al. 1984). By using correlation
operators in the form of Equation (18) and the two-nuclecotepiial from Equation (20), we find
the following equation for the two-body energy (Bordbar & dléares 1998)

E, = w%p<%) Z (2J + 1)%[1 - (_1)L+S+T}

JLSTT,

2

1 1 N 2 2 2m

1 1 AR N
<27212TZ2 TTZ> /dr{[(fa )aa (ker) + = ({v 3V,

+(Vy — 3V )(AT — 3) + (Vo — 3Vr) x [T(6T2 — 4)] + 2VTZTZ}Q§3>2(1<;F1~)

X

+[Via = 3Vizo (Vior —314207)(471—3)]c£3>2(kpr))} +3 {( O o
1=2,3
2m

F 2 (Ve 4V (=60 1)V, = (i Vi + Vs + Vi

+(_61 + 14)‘/:‘47' - (2 - 1)W5T](4T - 3) + [VT + VG’T(_Gi + 14)‘/:‘/1“]
X[T(6T2 — 4)] + 2V T ball” (kpr) + [Viz + Vizo + (Vizr + Vizor)
(i)? (1)* (8)*
X (AT = 3)]el" (kirr) + [ Visa + Visar (4T = 3)] a” (k) ) £
2m
+ﬁ{‘/ls + 2%2 - 2%20’ - 3%52 + |:(‘/ls‘r - 2%27’ - 2%207’ - 3%527’)

<(4T = 3)] 2 (ker) SO 1D + 5 (72— f$>)2b§<kw>} } (21)
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where the coefficients such ag) are defined as

aM*(x) = 2217 (),
o (z) = 2?[BI;_11.(2) + 751 7. (2)],
2
af? () = 2?[yIj—1r () + BLis1r (2)),
ba(z) = 2°[Bosly_17.(x) — Poslysr 1. ()],
0&1)2 () = 22 Iy . (z), (22)
D% (z) = @?[nely-1.1. () + valy . (7)),
D (@) = Pl (@) + vl (@),
dP" () = 2?[ealy-11.(x) + Mol rsrr ()],
A" (2) = 2?& 1. (@) + s Ly m ()],
with
B J+1 J _2J(J+1)
Po=1b B=557 YTogr1 PT oy
J2(J+1) J34+2J2+3J 42
= L(L+1 = =
v (L+1),  m=—rr. 2 1 ’
J(J?+2J+1) J(J*+J+2)
e S H e =2 v = 23
712 2J + 1 ) 73 2J ¥ 1 ) ( )
¢ P +2)7 2] 41 g_J(J2+J+4)
5 2J +1 ’ T 2+
\ J(J2+J+1) \ B +2J2 45T +4
2 2J+1 5 27 + 1
and
Lz, (z) = /quTz (9)J5(zq) . (24)
Pr, (q) is written as 17 or 72 = —3 (neutron) andt3 (proton)],
2 3 3 3 2 3 2 2 2
Pr, = 37 {kfm +kig - (kfm kfzz)q - E(kfm kfz2) +q3] ) (25)
for 1|kf —kE | <q< ikl +EE |,
4
PTZ (q) - g?THllIl (k‘erv kTZQ)
forq < 3|kL,, — kfzz‘ and

Pr, (Q) =0,

forg > 3 ‘kTZl TZQ‘ TheJ;(x) are the familiar Bessel functions.
Now we can minimize the two-body energy, Equation (21), wihpect to the variations in

the functionsf! but subject to the normalization constraint (Owen et al.7A%odarres & Irvine
1979a,b; Bordbar & Modarres 1998)

50

hy, (12) — f?(12)|i

j>a —0, (26)
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where in the case of asymmetrical nuclear matter the fumétjg (=) is defined as

N[

24 —
hr, (1) = [1 _ g(‘h:;fir)> } T =41, (27)
hTz(T) = 17 Tz:O

In terms of channel correlation functions we can write Eoue{26) as follows

1 1
<§Tz1 57-22 TTZ>

x / S ar {h;z (kpr) — fg'f(r)} ald” (kpr) = 0. (28)
0

2

4 S2g+ 1)% [1 - (_1)L+S+T]

mip

o,

As we will see later, the above constraint introduces a LagganultiplierA through which all of the
correlation functions are coupled. From the minimizatiénhe two-body cluster energy we get a
set of coupled and uncoupled Euler-Lagrange differentjgbéions. The Euler-Lagrange equations
for uncoupled states are

(1)//
QA {aa L m |:‘/c — 3V, + (V> — 3V, ) (4T — 3)

AU
m
+ (Vo= 8Vor)[T(6T2 = 4)] + 2V Te + A| + 23 [ Vio — 3Vizo
A

+ (‘/IQT - 3%207’)(4T - 3):| a(1)2 }g((x) =0, (29)

while the coupled equations are written as
" (Lg?)” m
g&" - { ®) +ﬁ[%+vg+2vt—vzs+(vf+vm+2%f
aq

— Vier)(4T = 8) + (Vi + Vorr + 2V )[T(6T2 = 4)] + 2V, T + A|

+ = (2)°
= + + Ca m
h2 |:‘/l2 Vizo (‘/IQT ‘/120'7-)(4T 3):| W s |:‘/l52 Vios

[e3

4’ b? 1 m
— o o (2) — — —
X (4T 3)} a((lg)z + Tza(()?)z }ga + {T2 2h2 [Ws 2‘/22 2‘/220

— Vg2 + (Vier — 2Vizr — 2Vizgr — 3Visar) (4T — 3)| }
e ®
X Wga =0, (30)

2
aa)
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(3)//

9"~ {a“(—m 2 Vet Vo — 4V = 2Viy o+ (Vs + Vi — 4Vir
Aoy
— 2Vier )T = 3) + (Vi + Vor — 4Vir)[T(6T2 = 4)] + 2V, T + A
m C((lg)z m
+ ﬁ [WQ + ‘/220 + (WQT + WQUT)(4T - 3):| F + ﬁ [WSQ + WSQT

a2 Ve (1 0m
X (4T—3)}F+W}gé)+{r—2— ﬁ[ws—mﬁz—mﬁza

- 3‘/252 + (Ws‘r - 2‘/227' - 2%20’7’ - 3%827’)(4T - 3):| }

ba
x —a_g® _ 0, (31)
ag)a((f)

where

9 (kpr) = £ (r)al) (kpr). (32)
The primes in the above equation mean differentiation vapect ta-. As we pointed out before,
the Lagrange multipliek is associated with the normalization constraint, Eq. (28 constraintis
incorporated by solving the Euler-Lagrange equations ontyo certain distances, until the logarith-
mic derivative of the correlation functions matches thosé g, (r) and then we set the correlation
functions equal tdv, (r) (beyond these state-dependent healing distances) (Bogdbedarres

1998). Finally, by numerically solving the above differi@hequations (Egs. (29), (30) and (31)), we
obtain the correlation functions.

3 STRUCTURE FUNCTION

There are two types of structure functions: dynaifii&, w) and staticS(k). They measure the
response of the system to density fluctuations (Feenber@)196
The static structure function of a system consistinglgfarticles is defined as (Feenberg 1969)

Sk)=1+ %/d?’rldgrgeik'”2p1(r1)p1 (r2)[g(r1,r2) — 1], (33)

wherep(r) is the one-particle density angdry,r2) is the pair distribution function. In infinite
systemsp; () is constant£ p) andg is a function of the interparticle distaneg, = |r; — 73|,
therefore Equation (33) takes the following form,

S(k) =1+ p/eik'r“ [g(Tlg) — 1]d37"12 . (34)

For calculating the pair distribution function, we use tbwést order term in the cluster expansion
of g(r12) as follows (Clark 1979),

g(r12) = f2(r12)gr (r12) (35)

where f(r12) is the two-body correlation function ang-(r12) is the two-body radial distribution
function of the noninteracting Fermi-gas,

gr(riz) =1-— 512(]@7”12) . (36)

In the above equatiom, is the degeneracy factor, ahd) = 3z~ 3(sinz — x cos z) is the statistical
correlation function or the Slater factor.
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4 RESULTSAND DISCUSSION
4.1 Correlation Function

In Figure 1, we plotted our results for the correlation fumetof symmetrical nuclear matter
versus internucleon distance;{ = r) employingUVi4, AVi4 and AVig potentials at density
p = 0.16 fm—3. Here the correlation functions are calculated from theaye over all states. We
can see that the correlation function is zero at the intdemuncdistance: < 0.06 fm for the three
potentials. This distance represents the famous hard ddhe mucleon-nucleon potential. When
the internucleon distance increases, the correlationiatseases until it approaches unity, approx-
imately atr > 3.8 fm. This means that at greater than the above value, the nucleons are out of
the range of the nuclear force (correlation length). Theatation value for thed Vs potential has a
maximum greater than unity and then approaches unity. Hexvéyr theU V1, and AV; 4 potentials,
there is no such maximum.

In Figure 2, we plotted the correlation function of asymneetrnuclear matter employing the
AVig potential for different values of proton to neutron ratiogt =0.2, 0.6, 1.0) at different isospin
channels«{n, np, pp). From this figure, it can be seen that for all values of prifet,correlation
functions of thenn andpp channels have maximums greater than unity, whereas afpticbannel
there is no such maximum. This means that apthandnn channels, the nucleon-nucleon potential
is more attractive than at thev channel.

We can see that at then andpp channels, the maximum values of the correlation function
decrease with increasing pnrat. We also found that apprendnp channels, the correlation length
decreases as pnrat increases, while atthehannel, with increasing pnrat, the correlation length
increases. In addition, for each pnrat, the value of theetation length at thep channel is greater
than that of the:p channel, and the correlation length at thechannel has a greater value than the
pp channel. These have been clarified in Table 1, in which theegabf the correlation length for
different values of pnrat at different isospin channelseheen presented.

Table1 Correlation Length of Asymmetrical Nuclear Matter

pnrat Correlation Length{fm)

nn np pp
0.2 2.95 2.09 2.18
0.6 3.36 1.97 2.11
1.0 3.39 1.94 2.06

4.2 Pair Distribution Function

We know that the pair distribution functiop(r), represents the probability of finding two particles
at the relative distance of In Figure 3, we plotted our results for the pair distribatifmnction

of symmetrical nuclear matter versus internucleon digtavith U'Vy 4, AV14 and AVg potentials at
densityp = 0.16 fm 3. Our results are in good agreement with those of other catioms employing
the Reid potential (Modarres 1987).

Figure 3 shows that far in the rangel..1 to 3.4 fm, the pair distribution function corresponding
to the AVig potential is greater than those of th8/, and AV}, potentials. This is due to the
behavior of two-body correlation as mentioned in the abaseussions. In the Fermi gas model,
due to the absence of interaction between nucleons, theigaibution function is not zero even in
the small internucleon distances shown in Figure 3. Howenehe real system, in which there is
interaction between nucleons, the valug @f) atr < 0.06 fm is zero for the three potentials. This is
the same as for the case of the correlation function, andltsiance represents the hard core of the
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Fig.1 Correlation function of symmetrical nuclear matter empigyU V14, AV14 and AV;g poten-
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Fig.3 Pair distribution function for symmetrical nuclear matéadculated withUVi4, AV14 and
AVig potentials at density = 0.16 fm 3. The pair distribution function corresponding to the
Fermi gas is also provided for comparison.
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Fig.4 Same as Fig. 2, but for the pair distribution function of asyetrical nuclear matter.
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nuclear potential. From Figure 3, it can be seen that theevaly(r) increases as the internucleon
distance increases and finally approaches unity at appet&lyr > 4 fm.

In Figure 4, we plotted the pair distribution function of eayetrical nuclear matter employing
the AVig potential at different values of proton to neutron ratiorgghfor p = 0.16 fm—3 and
different isospin channels:(, np, pp). We can see that at all channels, by increasing pnrat, the
pair distribution function decreases, corresponding tee@hse in the correlation. Besides, from
Figure 4 it can be seen that for each pnrat, the pair distdbdtinctions of thexn andpp channels
have identical behaviors, while at the channelg(r) behaves differently compared to the other
two channels. These are corresponding to the behavior afottielation function at these channels.

4.3 Structure Function

In Figure 5, we plotted our results for the structure funttd symmetrical nuclear matter versus
relative momentumk() with UV14, AVi4 and AVig potentials at density = 0.16 fm—3. There

is an overall agreement between our results and those ofsothéulated with the Reid potential
(Modarres 1987). From Figure 5, it is seen that the nucleoadleon interaction leads to a reduction
of the structure function of nuclear matter with respecthat tof the non-interacting Fermi gas
system.

In Figure 6, we plotted the structure function of asymmatrituclear matter with thelVig
potential at different isospin channelsr| np, pp) for different values of proton to neutron ratio
(pnrat) andp = 0.16 fm~3. It is seen that, in a similar way to the pair distribution dtion, the
structure function of thexn channel is like that of thep channel, especially at higher values of
k. We found that this similarity becomes clearer as pnratiases. However, there is a substantial
difference between the structure functions ofttpechannel and thgp andnn channels.

Structure Function

3
k (fm™)

Fig.5 Structure function of symmetrical nuclear matter wiffy;14, AV14 and AVig potentials at
densityp = 0.16 fm 3.
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Fig.6 Same as Fig. 2, but for the structure function of asymmétnigelear matter.

5 SUMMARY AND CONCLUSIONS

Using the LOCV method, we computed the correlation fungtpair distribution function and the
structure function of the symmetrical and asymmetricallearcmatter. In order to investigate the
effect of nucleon-nucleon interaction on the propertiesiaflear matter, we also computed the pair
distribution function and structure function of noninteting Fermi gas. Here, we used thHd/;g
potential to represent the nucleon-nucleon interactiorttfe asymmetrical nuclear matter. These
calculations were performed at different isospin chanrelhe case of symmetrical nuclear matter,
the calculations were done witliV;,, AV, and AVyg potentials. There is an overall agreement
between our results and those of others calculated with &#id Rotential. It was seen that the
nucleon—nucleon interaction leads to the reduction of thectre function of nuclear matter with
respect to that of the non-interacting Fermi gas system.oved that at thep andpp channels, the
correlation length decreases as the proton to neutron(atiat) increases, while at the, channel,

by increasing pnrat, the correlation length increases. é¥ew the behavior of the pair distribution
function at thenp channel is considerably different from the other two chdsnkhis is due to the
difference between the behavior of the correlation fumgiof these channels. It was indicated that
for higherk and pnrat, the structure functions of the andpp channels are identical, corresponding
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to the similarity between the pair distribution functiorf¢teese channels. We have also shown that
the structure function at thep channel was different from those of the andpp channels.
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