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Abstract We consider spatially homogeneous and anisotropic Bianchitype V space-
time with a bulk viscous fluid source, and time varying gravitational constantG and
cosmological termΛ. The coefficient of bulk viscosityζ is assumed to be a simple
linear function of the Hubble parameterH (i.e. ζ = ζ0 + ζ1H , whereζ0 andζ1 are
constants). The Einstein field equations are solved explicitly by using a law of varia-
tion for the Hubble parameter, which yields a constant valueof the deceleration pa-
rameter. Physical and kinematical parameters of the modelsare discussed. The models
are found to be compatible with the results of astronomical observations.
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1 INTRODUCTION

In Einstein’s theory of gravity, the Newtonian gravitational constantG and the cosmological term
Λ are considered to be fundamental constants. The Newtonian constant of gravitationG plays the
role of a coupling constant between geometry of space and matter in Einstein’s field equations. In
an evolving universe, it is natural to take this constant as afunction of time. Ever since Dirac (1937)
first considered the possibility of a variableG, there have been numerous modifications of general
relativity to allow a variableG (Wesson 1980). Nevertheless, these theories have not gained wide
acceptance. However, recently a modification (Berman 1991;Beesham 1986a; Lau 1985; Abdel-
Rahman 1992) was proposed in Einstein’s field equations thattreatedG andΛ as coupling variables
within the framework of general relativity. Canuto & Narlikar (1980) showed that theG varying
cosmology is consistent with whatever cosmological observations are available. Beesham (1986a);
Levitt (1980); Abdel-Rahman (1990) discussed the possibility of an increasingG.

Cosmological models with a cosmological constant are currently serious candidates for describ-
ing the expansion history of the universe. The huge difference between the small cosmological
constant inferred from observations and vacuum energy density resulting from quantum field the-
ories has long been a difficult and perplexing problem (Weinberg 1989; Sahni & Starobinsky 2000;
Carneiro 2003; Krauss & Turner 1995) for cosmologists and field theory researchers. A wide range
of observations (Perlmutter et al. 1999; Garnavich et al. 1998; Riess et al. 2004; Schmidt et al. 1998)
suggest that the universe possesses a non-zero cosmological constant. At the same time, theories are
increasingly exploring the possibility that this parameter is dynamical, with the effective value in the
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early universe perhaps being quite different from the one wemeasure today. One possible explana-
tion for a smallΛ term is to assume that it is dynamically evolving and is not constant, that is, as
the universe evolves from an earlier hotter and denser epoch, the effective cosmological term also
evolves and decreases to its present value (Özer & Taha 1987; Freese et al. 1987; Frieman et al. 1995;
Coble et al. 1997). Bertolami (1986) obtained the time-dependentG andΛ solutions. Cosmological
models with variableG andΛ terms have been studied by a number of authors for homogeneous
isotropic (Abdel-Rahman 1990; Kalligas et al. 1992; Abdussattar & Vishwakarma 1997; Beesham
1986b; Arbab 1997) and anisotropic (Singh & Beesham 2010; Saha 2006; Bali & Tinker 2009; Singh
et al. 2008; Yadav 2010; Pradhan et al. 2005; Yadav et al. 2012) space-times.

The investigations of relativistic cosmological models usually assume the cosmic fluid to be
a perfect fluid. However, these models do not incorporate dissipative mechanisms responsible for
smoothing out initial anisotropies. It is believed that during neutrino decoupling, the matter behaved
like a viscous fluid (Klimek 1976) in the early stages of evolution. Coley (1990) studied Bianchi
V viscous fluid cosmological models for a barotropic fluid distribution. Misner (1967); Murphy
(1973); Heller & Klimek (1975) studied the role of viscosityin avoiding the initial big bang singu-
larity. Padmanabhan & Chitre (1987) investigated the effect of bulk viscosity on the evolution of the
universe at large. They showed that bulk viscosity leads to inflationary like solutions. Saha (2005)
discussed a Bianchi type I universe with a viscous fluid. Pradhan et al. (2004) scrutinized cosmolog-
ical models with viscous fluid in an LRS Bianchi type V universe with varyingΛ. Bulk viscous cos-
mological models with time-dependentG andΛ terms have been studied by Bali & Tinker (2009);
Arbab (1998); Beesham et al. (2000), where bulk viscosity istaken as a power function of energy
density. Recently Singh & Baghel (2010) examined Bianchi type V cosmological models with bulk
viscosity, where the coefficient of bulk viscosity is assumed to be a power function of energy density
ρ or volume expansionθ.

Among the physical quantities of interest in cosmology, thedeceleration parameterq is currently
a serious candidate to describe the dynamics of the universe. The prediction of standard cosmology,
that the present universe is decelerating, is contradictory to the recent observational evidence of high
redshift type Ia supernovae (Riess et al. 1998; Knop et al. 2003; Tonry et al. 2003). Observations
reveal that instead of slowing down, the expanding universeis speeding up. Models with a constant
deceleration parameter have recently received considerable attention. The law of variation for the
Hubble parameter was initially proposed by Berman (1983) for FRW models that yield a constant
value of the deceleration parameter. Cosmological models with such a law of variation for the Hubble
parameter have been studied by a number of authors (Maharaj &Naidoo 1993; Singh & Kumar
2009; Reddy et al. 2007). Recently Singh & Baghel (2009b,a) proposed a similar law for the Hubble
parameter and generated the solution for Bianchi type V space-time in general relativity. According
to the proposed law, the relation between the Hubble parameter H and average scale factorR is
given by

H = βR−m , (1)

whereβ > 0 andm ≥ 0 are constants. For this variation law the deceleration parameterq comes
out to be constant, i.e.

q = m − 1 . (2)

Form > 1, the model represents a decelerating universe andm < 1 corresponds to the accelerating
phase of the universe. Whenm = 1, we obtainH ∼ 1

t andq = 0. Therefore galaxies move with a
constant speed and the model represents an anisotropic Milne universe (Landsberg & Evans 1977)
for m = 1. Form = 0, we getH = β andq = −1. Thus the observed Hubble parameter is a true
constant equal to its present valueH0 and the model represents an accelerating phase of the universe.

The relevance of the study of Bianchi type V cosmological models has already been discussed
in our earlier papers (Singh & Baghel 2009b,a), where we studied the viscous fluid models in some
detail. As a natural sequel to that study, here we incorporate time varyingG andΛ terms in the bulk
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viscous Bianchi type V models and exactly solve the coupled field equations. In this paper we take
the coefficient of bulk viscosity as a simple linear functionof the Hubble parameterH (Meng et al.
2007).

2 METRIC AND FIELD EQUATIONS

We consider Bianchi type V space-time in an orthogonal form represented by the line-element

ds2 = −dt2 + A2(t)dx2 + e2αx
{

B2(t)dy2 + C2(t)dz2
}

, (3)

whereα is a constant. We assume that the cosmic matter is represented by the energy-momentum
tensor of an imperfect bulk viscous fluid

Tij = (ρ + p̄)vivj + p̄gij , (4)

wherep̄ is the effective pressure given by

p̄ = p − ζvi
;i , (5)

satisfying a linear equation of state
p = ωρ . (6)

Herep is the equilibrium pressure,ρ is the energy density of matter,ζ is the coefficient of bulk
viscosity andvi is the flow vector of the fluid satisfyingviv

i = −1. The semicolon in Equation (5)
stands for covariant differentiation. On thermodynamicalgrounds, bulk viscosity coefficientζ is pos-
itive, assuring that the viscosity pushes the dissipative pressurēp towards negative values. However,
correction to the thermodynamical pressurep due to bulk viscosity pressure is very small. Therefore,
the dynamics of cosmic evolution do not fundamentally change by the inclusion of a viscosity term
in the energy-momentum tensor.

The Einstein field equations with time-dependent cosmological termΛ and gravitational con-
stantG are

Rij −
1

2
Rk

kgij = −8πG(t)Tij + Λ(t)gij . (7)

For the metric (3) and matter distribution (4) in a comoving system of coordinates (vi = −δ4
i ),

Equation (7) yields

8πGp̄ − Λ =
α2

A2
−

B̈

B
−

C̈

C
−

ḂĊ

BC
, (8)

8πGp̄ − Λ =
α2

A2
−

C̈

C
−

Ä

A
−

ĊȦ

CA
, (9)

8πGp̄ − Λ =
α2

A2
−

Ä

A
−

B̈

B
−

ȦḂ

AB
, (10)

8πGρ + Λ = −
3α2

A2
+

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
, (11)

0 =
2Ȧ

A
−

Ḃ

B
−

Ċ

C
, (12)

where an overhead dot (.) denotes ordinary differentiationwith respect to cosmic timet. Due to the
contracted Bianchi identity, the divergence of Einstein tensorGij = Rij −

1
2Rk

kgij is zero and we
get

8πG

{

ρ̇ + (ρ + p̄)

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)}

+ 8πĠ + Λ̇ = 0 . (13)
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The usual conservation equationT j
i ;j = 0 splits the above equation into

ρ̇ + (ρ + p̄)

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

= 0 (14)

and
8πρĠ + Λ̇ = 0 . (15)

From (15), one concludes that, whenΛ is a constant or zero,G turns out to be a constant for non-zero
energy density.

We define the average scale factorR for Bianchi V space-time asR3 = ABC. From
Equations (8)–(10) and (12), we obtain

Ȧ

A
=

Ṙ

R
, (16)

Ḃ

B
=

Ṙ

R
−

k

R3
, (17)

Ċ

C
=

Ṙ

R
+

k

R3
, (18)

with k being a constant of integration. On integration, Equations(16)–(18) give

A = m1R , (19)

B = m2R exp

(

−k

∫

dt

R3

)

, (20)

C = m3R exp

(

k

∫

dt

R3

)

, (21)

wherem1, m2 andm3 are constants of integration satisfyingm1m2m3 = 1.
In analogy with an FRW universe, we define a generalized Hubble parameterH and generalized

deceleration parameterq as

H =
Ṙ

R
=

1

3
(H1 + H2 + H3) (22)

and

q = −1 −
Ḣ

H2
, (23)

whereH1 = Ȧ
A , H2 = Ḃ

B andH3 = Ċ
C are directional Hubble’s factors alongx, y andz directions

respectively.
We introduce volume expansionθ and shearσ as usual

θ = vi
;i and σ2 =

1

2
σijσ

ij ,

with σij being the shear tensor. For the Bianchi V metric, expressions forθ andσ come out to be

θ =
3Ṙ

R
(24)

and

σ =
k

R3
. (25)
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We can express Equations (8)–(11) and (14) in terms ofR, H , q andσ as

8πGp̄ − Λ = (2q − 1)H2 − σ2 +
α2

R2
, (26)

8πGρ + Λ = 3H2 − σ2 −
3α2

R2
, (27)

ρ̇ + 3(ρ + p̄)H = 0 . (28)

It can be noted that energy density of the universe is a positive quantity. It is believed that at the early
stages of evolution, when the average scale factorR was close to zero, the energy density of the
universe was infinitely large. On the other hand, with expansion of the universe, i.e. with an increase
of R, the energy density decreases and an infinitely largeR corresponds toρ close to zero. In that
case from (27), we obtainρv

ρc

→ 1, whereρv = Λ
8πG andρc = 3H2

8πG . ForΛ ≥ 0, ρ < ρc. Also from

(27), we observe that0 < σ2

θ2 < 1
3 and0 < 8πGρ

θ2 < 1
3 for Λ ≥ 0. Thus a positiveΛ restricts the

upper limit of anisotropy whereas a negativeΛ will increase the anisotropy.
From (26) and (27), we get

dθ

dt
= Λ + 12πGζθ − 4πG(ρ + 3p) − 2σ2 −

θ2

3
, (29)

which is the Raychaudhuri equation for the given distribution. We observe that for negativeΛ and
in the absence of viscosity, the universe will always be in a decelerating phase provided the strong
energy conditions (Hawking & Ellis 1975) hold, whereas in the presence of viscosity, positiveΛ will
slow down the rate of decrease of volume expansion. Also,σ̇ = −σθ implies thatσ decreases in an
evolving universe and for an infinitely large value ofR, σ becomes negligible.

3 SOLUTION OF THE FIELD EQUATIONS

Integrating (1), we obtain
R = (mβt + t1)

1
m for m 6= 0 (30)

and
R = exp{β(t − t0)} for m = 0 , (31)

wheret1 andt0 are constants of integration. From (19)–(21) with the use of(30), we obtain

A = m1(mβt + t1)
1
m ,

B = m2(mβt + t1)
1
m exp

{

−k(mβt + t1)
m−3

m

β(m − 3)

}

,

C = m3(mβt + t1)
1
m exp

{

k(mβt + t1)
m−3

m

β(m − 3)

}

.

For this solution, the metric (3) assumes the following formafter a suitable transformation of coor-
dinates

ds2 = −dT 2 + (mβT )
2
m dX2 + (mβT )

2
m exp

{

2αX −
2k(mβT )

m−3
m

β(m − 3)

}

dY 2

+(mβT )
2
m exp

{

2αX +
2k(mβT )

m−3
m

β(m − 3)

}

dZ2 . (32)
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Equations (19)–(21) together with (31) give

A = m1 exp{β(t − t0)} ,

B = m2 exp

{

β(t − t0) +
k

3β
e−3β(t−t0)

}

,

C = m3 exp

{

β(t − t0) −
k

3β
e−3β(t−t0)

}

.

The line-element (3) for this solution can be written as

ds2 = −dT 2 + e2βT dX2 + exp

(

2αX + 2βT +
2k

3β
e−3βT

)

dY 2

+ exp

(

2αX + 2βT −
2k

3β
e−3βT

)

dZ2 . (33)

4 DISCUSSION

To determine the coefficient of bulk viscosity,ζ is assumed to be a simple linear function of the
Hubble parameterH (Meng et al. 2007), i.e.

ζ = ζ0 + ζ1H , (34)

whereζ0 (≥ 0) andζ1 are constants. For this choice, Equation (28) reduces to

ρ̇ + 3(1 + ω)Hρ = 9(ζ0 + ζ1H)H2 . (35)

We discuss the models form 6= 0 andm = 0.

4.1 Cosmology for m 6= 0

For the model (32), the average scale factorR is given by

R = (mβT )
1
m . (36)

Volume expansionθ, the Hubble parameterH and shear scalarσ for this model are

θ = 3H =
3

mT
, (37)

σ = k(mβT )
−3
m . (38)

Using (37) in (34) and (35), we obtain

ζ = ζ0 +
ζ1

mT
, (39)

ρ =
9ζ0

m(3 + 3ω − m)T
+

9ζ1

(3 + 3ω − 2m)m2T 2
+

a

T 3(1+ω)/m
, (40)

wherea is an integration constant. The gravitational constantG and the cosmological termΛ are
obtained as

G =
1

4π





mT 2
{

α2(mβT )
4
m + k2

}

− (mβT )
6
m

(

3mζ0

m−3ω−3

)

T
m+6

m +
(

6ζ1

2m−3ω−3

)

T
6
m − ma(1 + ω)T

2m+3(1−ω)
m



 , (41)
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Λ = 18

{

a

9T
3(1+ω)

m

+
ζ0

(3 + 3ω − m)mT
+

ζ1

(3 + 3ω − 2m)m2T 2

}

·





(mβT )
6
m − mT 2

{

α2(mβT )
4
m + k2

}

(

3mζ0

m−3ω−3

)

T
m+6

m +
(

6ζ1

2m−3ω−3

)

T
6
m − ma(1 + ω)T

2m+3(1−ω)
m





+
3

m2T 2
−

k2

(mβT )
6
m

−
3α2

(mβT )
2
m

. (42)

We observe that the model is not tenable form = 3. The model has a singularity atT = 0. At T = 0,
ρ, Λ, ζ, θ andσ all diverge whereasG becomes a constant providedm > 3. In the limit of large
times,ρ, θ andσ become zero,ζ = ζ0 andG → ∞, Λ →constant form > 3. Also for T → ∞,
σ/θ → 0 whenm < 3. Therefore the model asymptotically approaches isotropy.For large values
of T , the model becomes conformally flat (Singh & Baghel 2009b). Behaviors of the matter energy
densityρ and vacuum energy densityΛ with respect to cosmic timet are plotted in Figures 1 and 2.
The integral

∫ T

T0

dt

R(t)
=

1

β(m − 1)

[

(mβT )
m−1

m

]T

T0

(43)

is finite providedm 6= 1. Therefore, a particle horizon exists in the model. It should be noted that
for m = 1, the model does not have a horizon.

4.2 Cosmology for m = 0

We now discuss the model (33). Average scale factorR, expansion scalarθ, the Hubble parameter
H , shearσ and deceleration parameterq are given by

R = eβT , (44)

θ = 3H = 3β , (45)

σ = ke−3βT , (46)

q = −1 . (47)

We obtain the bulk viscosity coefficientζ and matter densityρ as

ζ = ζ0 + ζ1β , (48)

ρ = 3β(ζ0 + ζ1β) + be−3β(1+ω)T , (49)

whereb is a constant of integration. Expressions for gravitational constantG and cosmological term
Λ are

G = −
(k2 + α2e4βT )

4πb(1 + ω)e3(1−ω)βT
, (50)

Λ = 3β2 +

(

1 − ω

1 + ω

)

k2

e6βT
−

(

1 + 3ω

1 + ω

)

α2

e2βT
+

6β(ζ0 + ζ1β)(k2 + α2e4βT )

b(1 + ω)2e3(1−ω)βT
. (51)

The model has no initial singularity. The expansion scalarθ is constant throughout the evolution of
the universe and therefore the model represents uniform expansion. Alsoq = −1 shows that the
expansion of the model is accelerating at a constant rate. AtT = 0, R, σ, ζ, ρ, G andΛ all are
constant. The energy density decreases as time increases and becomes constant at late times. AlsoG
andΛ become infinite for very large values ofT whereas they tend to zero forω < − 1

3 at late times.
We observe that the gravitational constantG is positive forb < 0 whereasG is negative forb > 0.
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Fig. 1 Variation of matter energy densityρ with
cosmic timet in case ofm 6= 0 for ω = 0 (solid
line), ω = 1/3 (dotted line) andω = 1 (dashed
line).

Fig. 2 Variation of vacuum energy densityΛ with
cosmic timet in case ofm 6= 0 for ω = 0 (solid
line), ω = 1/3 (dotted line) andω = 1 (dashed
line).

Fig. 3 Variation of matter energy densityρ with cos-
mic timet in case ofm = 0 for ω = 0 (solid line),
ω = 1/3 (dotted line) andω = 1 (dashed line).

Fig. 4 Variation of vacuum energy densityΛ with
cosmic timet in case ofm = 0 for ω = −1/2 (solid
line), ω = 0 (dotted line), ω = 1/3 (short-dashed
line) andω = 1 (long-dashed line).

The possibility of a negative gravitational constantG has been discussed by Starobinskii (1981),
who concluded that the effective gravitational constant may have changed sign in the early universe.
As T → ∞, the ratioσ/θ becomes zero. Therefore the model approaches isotropy for large values
of T . In this case behaviors of the matter energy densityρ and vacuum energy densityΛ with respect
to cosmic timet are plotted in Figures 3 and 4.

5 CONCLUSIONS

In this paper, we have investigated spatially homogeneous and anisotropic Bianchi type V space-
time with bulk viscous matter and a time-dependent gravitational constantG and cosmological term
Λ used in general relativity. The field equations have been solved exactly by using a law of variation
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for the generalized Hubble parameterH . Two universe models have been obtained and the physical
behavior of the models is discussed. The coefficient of bulk viscosityζ is assumed to be a simple
linear function of the Hubble parameterH (i.e. ζ = ζ0 + ζ1H , whereζ0 andζ1 are constants). For
ζ0 = 0 = ζ1, we recover perfect fluid models. In the case of cosmology form 6= 0, the universe
starts from a singular state whereas cosmology form = 0 follows a non-singular start. We observe
that the presence of bulk viscosity increases the value of matter density. For the models obtained,
σ/θ → 0 asT → ∞. Thus the models approach isotropy at late times. From Equation (2), one
concludes that form > 1, the model represents a decelerating universe whereas for0 ≤ m < 1,
it gives rise to an accelerating universe. Whenm = 1, we obtainH = 1

T andq = 0, so that every
galaxy moves with a constant speed.
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