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Abstract We consider spatially homogeneous and anisotropic BiayplkiV space-
time with a bulk viscous fluid source, and time varying grati@tnal constan€ and
cosmological term\. The coefficient of bulk viscosity is assumed to be a simple
linear function of the Hubble parametér (i.e. { = {y + (1 H, where(, and(; are
constants). The Einstein field equations are solved exXglizy using a law of varia-
tion for the Hubble parameter, which yields a constant valune deceleration pa-
rameter. Physical and kinematical parameters of the madediscussed. The models
are found to be compatible with the results of astronomibakovations.
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1 INTRODUCTION

In Einstein’s theory of gravity, the Newtonian gravitatédrconstantz and the cosmological term
A are considered to be fundamental constants. The Newtonigstant of gravitatiort? plays the
role of a coupling constant between geometry of space anttmatEinstein’s field equations. In
an evolving universe, it is natural to take this constantfasation of time. Ever since Dirac (1937)
first considered the possibility of a varialilg there have been numerous modifications of general
relativity to allow a variables (Wesson 1980). Nevertheless, these theories have notdgaide
acceptance. However, recently a modification (Berman 1B@ésham 1986a; Lau 1985; Abdel-
Rahman 1992) was proposed in Einstein’s field equationgréatied= andA as coupling variables
within the framework of general relativity. Canuto & Naudik (1980) showed that th@ varying
cosmology is consistent with whatever cosmological oleéyus are available. Beesham (1986a);
Levitt (1980); Abdel-Rahman (1990) discussed the possilaf an increasing=.

Cosmological models with a cosmological constant are atigrserious candidates for describ-
ing the expansion history of the universe. The huge diffeeelbetween the small cosmological
constant inferred from observations and vacuum energyitgenesulting from quantum field the-
ories has long been a difficult and perplexing problem (Weigld 989; Sahni & Starobinsky 2000;
Carneiro 2003; Krauss & Turner 1995) for cosmologists arld fleeory researchers. A wide range
of observations (Perlmutter et al. 1999; Garnavich et @8] Riess et al. 2004; Schmidt et al. 1998)
suggest that the universe possesses a non-zero cosmobtmgistant. At the same time, theories are
increasingly exploring the possibility that this paramételynamical, with the effective value in the
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early universe perhaps being quite different from the onengasure today. One possible explana-
tion for a smallA term is to assume that it is dynamically evolving and is natstant, that is, as
the universe evolves from an earlier hotter and denser gploeleffective cosmological term also
evolves and decreases to its present valee( & Taha 1987; Freese et al. 1987; Frieman et al. 1995;
Coble et al. 1997). Bertolami (1986) obtained the time-dejeatG andA solutions. Cosmological
models with variables and A terms have been studied by a number of authors for homogsneou
isotropic (Abdel-Rahman 1990; Kalligas et al. 1992; Abdtiss & Vishwakarma 1997; Beesham
1986b; Arbab 1997) and anisotropic (Singh & Beesham 20116a 8806; Bali & Tinker 2009; Singh
et al. 2008; Yadav 2010; Pradhan et al. 2005; Yadav et al. ) X{jéte-times.

The investigations of relativistic cosmological modelsiaiyy assume the cosmic fluid to be
a perfect fluid. However, these models do not incorporatgifgisive mechanisms responsible for
smoothing out initial anisotropies. It is believed thatidgmeutrino decoupling, the matter behaved
like a viscous fluid (Klimek 1976) in the early stages of ewimin. Coley (1990) studied Bianchi
V viscous fluid cosmological models for a barotropic fluidtdmution. Misner (1967); Murphy
(1973); Heller & Klimek (1975) studied the role of viscosityavoiding the initial big bang singu-
larity. Padmanabhan & Chitre (1987) investigated the ¢fiébulk viscosity on the evolution of the
universe at large. They showed that bulk viscosity leadsflationary like solutions. Saha (2005)
discussed a Bianchi type | universe with a viscous fluid. Raackt al. (2004) scrutinized cosmolog-
ical models with viscous fluid in an LRS Bianchi type V universith varyingA. Bulk viscous cos-
mological models with time-dependeftand A terms have been studied by Bali & Tinker (2009);
Arbab (1998); Beesham et al. (2000), where bulk viscositaken as a power function of energy
density. Recently Singh & Baghel (2010) examined Bianchety cosmological models with bulk
viscosity, where the coefficient of bulk viscosity is assdrtebe a power function of energy density
p or volume expansiof.

Among the physical quantities of interest in cosmology dbeeleration parameteis currently
a serious candidate to describe the dynamics of the univEngeprediction of standard cosmology,
that the present universe is decelerating, is contragittahe recent observational evidence of high
redshift type la supernovae (Riess et al. 1998; Knop et &32Tonry et al. 2003). Observations
reveal that instead of slowing down, the expanding univisrspeeding up. Models with a constant
deceleration parameter have recently received consildeattiention. The law of variation for the
Hubble parameter was initially proposed by Berman (198BFRW models that yield a constant
value of the deceleration parameter. Cosmological modétssuch a law of variation for the Hubble
parameter have been studied by a number of authors (Mahakgidoo 1993; Singh & Kumar
2009; Reddy et al. 2007). Recently Singh & Baghel (2009kr@)@sed a similar law for the Hubble
parameter and generated the solution for Bianchi type Vesgiate in general relativity. According
to the proposed law, the relation between the Hubble pasmniktand average scale factdt is
given by

H=p3R™", 1)

wheres > 0 andm > 0 are constants. For this variation law the decelerationrpaterq comes
out to be constant, i.e.
g=m-—1. (2)

Form > 1, the model represents a decelerating universerard 1 corresponds to the accelerating
phase of the universe. Whem = 1, we obtaind ~ % andq = 0. Therefore galaxies move with a
constant speed and the model represents an anisotropie Miliwerse (Landsberg & Evans 1977)
form = 1. Form = 0, we getH =  andg = —1. Thus the observed Hubble parameter is a true
constant equal to its present vallig and the model represents an accelerating phase of the smiver
The relevance of the study of Bianchi type V cosmological eisthas already been discussed
in our earlier papers (Singh & Baghel 2009b,a), where weistlithe viscous fluid models in some
detail. As a natural sequel to that study, here we incorpdiaie varying andA terms in the bulk
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viscous Bianchi type V models and exactly solve the coupkdd #quations. In this paper we take
the coefficient of bulk viscosity as a simple linear functadrihe Hubble parameteil (Meng et al.
2007).

2 METRIC AND FIELD EQUATIONS
We consider Bianchi type V space-time in an orthogonal fazpresented by the line-element
ds* = —dt* + A*(t)dz® + e*** {B*(t)dy” + C*(t)d="} , (3)

whereq is a constant. We assume that the cosmic matter is repredepthe energy-momentum
tensor of an imperfect bulk viscous fluid

Tij = (p + D)vivj + Pgis , (4)
wherep is the effective pressure given by
p:p_cvi;iv (5)
satisfying a linear equation of state
p=wp. (6)
Herep is the equilibrium pressurg is the energy density of mattef,is the coefficient of bulk
viscosity andv’ is the flow vector of the fluid satisfying;v® = —1. The semicolon in Equation (5)

stands for covariant differentiation. On thermodynamggalinds, bulk viscosity coefficieqtis pos-
itive, assuring that the viscosity pushes the dissipatiesgurey towards negative values. However,
correction to the thermodynamical presspidre to bulk viscosity pressure is very small. Therefore,
the dynamics of cosmic evolution do not fundamentally cledmgthe inclusion of a viscosity term
in the energy-momentum tensor.

The Einstein field equations with time-dependent cosmokidgermA and gravitational con-
stantG are

1
Rij — 535391'.7' = —8rG(t)Ti; + A(t)gi; - ()

For the metric (3) and matter distribution (4) in a comoviygtem of coordinatesf = —d%),
Equation (7) yields

@@ B & BCO

STGp-A = - s - S5 (®)
snap-a - 2 -C_ A 04 (9)
snGp-r — A B_AB (10)
87Gp+ A = —%+j—§+§—g+j—g, (11)

where an overhead dot (.) denotes ordinary differentiatiitin respect to cosmic time Due to the
contracted Bianchi identity, the divergence of Einsteimste G;; = R;; — 3 R} g;; is zero and we
get

A B C L
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The usual conservation equatifﬁfl:j = 0 splits the above equation into

A B C
) )| —+=+= | = 14
p+(p+p)<A+B+C> 0 (14)
and o
8mpG +A=0. (15)
From (15), one concludes that, whéris a constant or zerdy turns out to be a constant for non-zero
energy density.
We define the average scale factBrfor Bianchi V space-time af?®* = ABC. From

Equations (8)—(10) and (12), we obtain

A R
- 16
=5 (16)
B R k
B R B (€7)
C R k
c-Rr'm (18)
with & being a constant of integration. On integration, Equat{@63—(18) give
A= mR, (29)
dt
B = mgaRexp <_k/ﬁ> , (20)
dt
C = mgRexp <k/ﬁ) , (21)

wheremy, ms andmg are constants of integration satisfying moms = 1.
In analogy with an FRW universe, we define a generalized Hupdtametef/ and generalized
deceleration parameteras

R 1
HZEZE(H1+H2+H3) (22)
and )
H
¢=-1-73, (23)

whereH; = %, Hy = g andHs = % are directional Hubble’s factors alongy andz directions
respectively.
We introduce volume expansid@rand sheas as usual
0 = vt

) g
i and o 2501-]-0”,

with o being the shear tensor. For the Bianchi V metric, expresdimr andes come out to be

s

0 (24)

and
o= —. (25)
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We can express Equations (8)—(11) and (14) in termB,adfl, ¢ ando as

2

87GH— A = (2¢ — 1)H2—02+%, (26)
2

87Gp+ A = 3H? — o2 — ‘% , (27)

p+3(p+p)H=0. (28)

It can be noted that energy density of the universe is a peditiantity. It is believed that at the early

stages of evolution, when the average scale faBtovas close to zero, the energy density of the
universe was infinitely large. On the other hand, with exjmanesf the universe, i.e. with an increase

of R, the energy density decreases and an infinitely l&g®rresponds tp close to zero. In that

case from (27), we obtaif — 1, wherep, = A andp, = 3L ForA >0, p < p.. Also from

(27), we observe thdt < ‘;—z < % and0 < 8’;?” < % for A > 0. Thus a positive\ restricts the

upper limit of anisotropy whereas a negativavill increase the anisotropy.
From (26) and (27), we get

2
% = A+ 127GCO — 4G (p + 3p) — 20°% — % , (29)
which is the Raychaudhuri equation for the given distributiWe observe that for negativeand
in the absence of viscosity, the universe will always be ireeeterating phase provided the strong
energy conditions (Hawking & Ellis 1975) hold, whereas ia gresence of viscosity, positivewill
slow down the rate of decrease of volume expansion. Alse,—c6 implies thato decreases in an
evolving universe and for an infinitely large value®f o becomes negligible.

3 SOLUTION OF THE FIELD EQUATIONS

Integrating (1), we obtain
R=(mBt+t))=  form#0 (30)

and
R = exp{f(t —t0)} form =0, (31)

wheret; andt, are constants of integration. From (19)—(21) with the us@0}, we obtain

3=

A = ml(mﬁt—i—tl) ,

B = mz(mﬁt-l—tl)%exp{_k(Tg?ﬂitg; - } ,
C = mg(mpBt+t,)7 exp{%} .

For this solution, the metric (3) assumes the following fa&iter a suitable transformation of coor-
dinates

ds® = —dT? + (mBT)=dX* + (mBT)™ exp {204)( - %} dy?

2 2k (mBT) " )



1462 P. S. Baghel & J. P. Singh

Equations (19)—(21) together with (31) give
A = myexp{B(t—to)},

k
B = mgyexp {ﬂ(t —to) + %635@%)} ’

k
C = maexp {ﬂ(t —tp) — %635@%)} )
The line-element (3) for this solution can be written as

2k
ds® = —dT? +e*’TdX? + exp (2aX + 28T + @e—w) dy?

2%k
+exp (mx + 28T — %e_wT) dz?. (33)

4 DISCUSSION

To determine the coefficient of bulk viscosity,is assumed to be a simple linear function of the
Hubble parametel (Meng et al. 2007), i.e.

(=C+GH, (34)
where(, (> 0) and¢; are constants. For this choice, Equation (28) reduces to
p+3(1+w)Hp=9(( + G H)H?. (35)

We discuss the models fat # 0 andm = 0.

4.1 Cosmology for m # 0

For the model (32), the average scale fadtds given by

R = (mfBT)" . (36)
Volume expansiof, the Hubble parametéd and shear scalar for this model are
0= 3H = > , (37)
mT
o = k(mpBT)7 . (38)
Using (37) in (34) and (35), we obtain
Cm ot L (39)
mT
P B+ 25;0— T B+ 3w ?C;m)mQTQ + T3<1+0-Lw>/m ’ (40)

wherea is an integration constant. The gravitational constarand the cosmological termh are
obtained as

| mT? {a2(mBT)% + k| - (mAT)%
T | B T () 7 s

m—3w—3 2m—3w—3

G (41)
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a S G
A=1
S{QTW * (3 4+ 3w —m)mT + (3+3w—2m)m2T2}
(mBT)% —mT? {a*(mBT)% + K}

( 3mco )T% " ( 6G )T% — ma(l + w)T 5

m—3w—3 2m—3w—3
n 3 k2 302
mAT2 - (mBT)w  (mBT)w

We observe that the model is not tenablerfor= 3. The model has a singularity@t= 0. At 7' = 0,

p A, ¢, 6 ando all diverge wherea&' becomes a constant provided > 3. In the limit of large
times, p, 6 ando become zero; = (, andG — oo, A —constant forn > 3. Also for 7" — oo,
o/ — 0 whenm < 3. Therefore the model asymptotically approaches isotrBpy.large values
of 7', the model becomes conformally flat (Singh & Baghel 2009h&iors of the matter energy
densityp and vacuum energy densitywith respect to cosmic timeare plotted in Figures 1 and 2.
The integral

(42)

T
dt 1
= mpT
, R® = A [T
is finite providedm # 1. Therefore, a particle horizon exists in the model. It sHde noted that
for m = 1, the model does not have a horizon.

m

T } :0 (43)

4.2 Cosmology for m =0

We now discuss the model (33). Average scale faftoexpansion scalat, the Hubble parameter
H, shearr and deceleration parametgare given by

R =T, (44)
6 = 3H =33, (45)
o = ke 3T (46)
q = —1. (47)

We obtain the bulk viscosity coefficiegtand matter density as
¢ =C+aps, (48)
p = 36(Go+ G +be PUTAIT, (49)

whereb is a constant of integration. Expressions for gravitaticoastantz and cosmological term
A are

k2 4 026467

G- - _Witael) (50)
4tb(1 + w)e3(1-w)AT

357 4 1—w) k2 (143w a? . 683(Co + ¢18)(k? + a?e*PT)
1+w) e86T 1+w ) 2T b(1+ w)2e3(1=w)BT -

A

(51)

The model has no initial singularity. The expansion scélsrconstant throughout the evolution of
the universe and therefore the model represents uniforrarsipn. Alsog = —1 shows that the
expansion of the model is accelerating at a constant raté&. At 0, R, o, ¢, p, G and A all are
constant. The energy density decreases as time increabbs@mes constant at late times. Also
andA become infinite for very large values @fwhereas they tend to zero for< —% at late times.
We observe that the gravitational constéhis positive forb < 0 whereags is negative fo > 0.
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Fig.1 Variation of matter energy densigy with
cosmic timet in case ofm # 0 for w = 0 (solid

line), w = 1/3 (dotted line) andw = 1 (dashed
line).

Fig.2 Variation of vacuum energy densitywith
cosmic timet in case ofm # 0 for w = 0 (solid
line), w = 1/3 (dotted line) andw = 1 (dashed

ling).
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Fig. 3 Variation of matter energy densippwith cos-
mic timet in case ofm = 0 for w = 0 (solid line),
w = 1/3 (dotted line) andw = 1 (dashed line).

Fig.4 Variation of vacuum energy density with
cosmic timet in case ofn = 0 forw = —1/2 (solid

line), w = 0 (dotted line), w = 1/3 (short-dashed
line) andw = 1 (long-dashed line).

The possibility of a negative gravitational constéhihas been discussed by Starobinskii (1981),
who concluded that the effective gravitational constany treve changed sign in the early universe.
As T — oo, the ratioo /6 becomes zero. Therefore the model approaches isotropgrige lalues

of T'. In this case behaviors of the matter energy densitygd vacuum energy densitywith respect
to cosmic timet are plotted in Figures 3 and 4.

5 CONCLUSIONS

In this paper, we have investigated spatially homogenendsaaisotropic Bianchi type V space-
time with bulk viscous matter and a time-dependent grawital constan& and cosmological term
A used in general relativity. The field equations have beeresatxactly by using a law of variation
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for the generalized Hubble parametér Two universe models have been obtained and the physical
behavior of the models is discussed. The coefficient of bidkosity ¢ is assumed to be a simple
linear function of the Hubble paramet#r (i.e. ¢ = (o + (1 H, where(, and(; are constants). For

(o = 0 = (1, we recover perfect fluid models. In the case of cosmology:fo# 0, the universe
starts from a singular state whereas cosmologyrfot 0 follows a non-singular start. We observe
that the presence of bulk viscosity increases the value ¢temdensity. For the models obtained,
o/0 — 0asT — oo. Thus the models approach isotropy at late times. From Eué2), one
concludes that forn > 1, the model represents a decelerating universe where@s<{om < 1,

it gives rise to an accelerating universe. When= 1, we obtainH = % andq = 0, so that every
galaxy moves with a constant speed.
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