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Abstract Relative dynamics between the chief satellite and the deputy ones in for-
mation flying is crucial to maintaining the formation. A good choice of the forma-
tion usually requires a lower control frequency or less control energy. For formation
flying missions in highly elliptic orbits, the well-known C-W equation is not accu-
rate enough. Instead, Lawden’s equation is often used. First, the solution to Lawden’s
equation with a very simple form is deduced. Then the J2 perturbation is added. It is
found that Lawden’s solution is not necessarily valid when the J2 perturbation is con-
sidered. Completely discarding Lawden’s solution and borrowing the idea of mean
orbit elements, two rules to initialize the formation are proposed. The deviation speed
is greatly reduced. Different from previous studies on the J2 perturbation, except for
the relatively simple expression for the semi-major axis, the tedious formulae of the
long period terms and the short period terms of other orbital elements are not used.
In addition, the deviation speed is further reduced by compensation of the nonlinear
effects. Finally, a loose control strategy of the formation is proposed. To test the ro-
bustness of this strategy, a third body perturbation is added in numerical simulations.

Key words: celestial mechanics

1 INTRODUCTION

Nowadays, formation flying is a technology often used in space missions (Kapila et al. 2000; Scharf
et al. 2003; Alfriend et al. 2010). In these missions, several satellites form a special formation.
Usually one of them, called the chief satellite, is used to fix the formation in space, and other satellites
called deputy ones are around it. The chief satellite can be a real satellite or just an imaginary one.
Formation flying has many advantages such as a longer baseline for observation, as well as improved
coverage for communication and surveillance, although it also suffers from other problems such as
station-keeping of the formation.

The traditional way to treat the relative motions between the chief satellite and the deputy ones
is to use the C-W equation (also known as Hill’s equation) (Clohessy & Wiltshire 1960). The frame
used by this equation is centered at the chief satellite and rotates with it. The x axis points from the
central body to the chief satellite. The z axis is parallel to the chief satellite’s angular momentum.
The y axis forms a right-hand frame with the x and z axes. This frame is usually called the rotating
local vertical/local horizontal (LVLH) frame. The C-W equation assumes a circular orbit for the
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chief satellite. Its solution is simple and can be used to design various formations. However, there
are two disadvantages when using it in practice. First, it is inaccurate for formation flying in highly
elliptic orbits. Second, it neglects various perturbations such as the non-spherical gravitation terms
of the central body (Alfriend et al. 2000). In order to compensate for these two disadvantages, a lot
of work has been done. To list a few, see Melton (2000); Baoyin et al. (2002); Inalhan et al. (2002);
Schaub & Alfriend (1999).

By expanding the true anomaly as a literal series of the mean anomaly, time explicit solutions of
the relative motion can be obtained (Melton 2000; Baoyin et al. 2002). Due to a problem with con-
vergence, these solutions are inconvenient for applying to highly elliptic orbits. In Lawden (1963);
Carter & Humi (1987); Inalhan et al. (2002), this problem was overcome by constructing a closed-
form periodic solution, with the true anomaly f replacing the time (or the mean anomaly) as an
independent variable. The equation describing the small body’s motion in the rotation LVLH frame
in elliptic orbits is often called Lawden’s equation. In this paper, we call the solution to this equation
“Lawden’s solution.” There are various forms of this solution. In this paper, the solution is expressed
in a compact form. It can be directly applied at any point to initialize the flying formation.

However, the formation initialized by Lawden’s solution gradually deviates when the J2 per-
turbation is introduced into the force model. Of course, maneuvers can be used frequently to keep
the formation, but the satellites in this case are forced to move on unnatural trajectories and control
energy will be wasted. To reduce the effects of deviation due to the J2 perturbation, the idea of mean
orbit elements is borrowed (Brouwer 1959). We find that Lawden’s solution is just a special case
(∆a = 0) and does not need to be valid. We completely discard Lawden’s solution and propose two
rules to initialize the formation. The improvement is obvious. For the first rule, we have four degrees
of freedom when choosing initial flying formations. For the second, we have three. Different from
previous works in Schaub & Alfriend (1999), except for the semi-major axis a (whose expression is
simple), the formulae of the terms describing the long period and the short period for other orbital
elements are not used. In addition, the result is further improved by considering nonlinear effects.

Finally, the formation control problem is considered. There are many papers on this subject.
To list a few, please see Alfriend et al. (2010); Bauer et al. (1997); Folta et al. (1992); Kristiansen
& Nicklasson (2009); Scharf et al. (2004); Schaub et al. (2000); Tillerson & How (2001); Vadali
et al. (2002). In our paper, a loose control strategy is proposed. Numerical simulations with the J2

perturbation are performed to demonstrate this strategy. To test the robustness of the control strategy,
the Moon’s perturbation is also added into the force model.

2 LAWDEN’S EQUATION

Satellites around a spherically symmetric body follow

¨̄R = −GMR̄/R̄3 , (1)

where R̄ is the position vector of the satellite in a sidereal frame centered at the center body. The
transformation R̄ = Cr̄ transfers the vectors in the sidereal frame to the ones in the synodic frame
(the frame rotating with the chief satellite). Denote the orbit elements of the chief satellite as σ =
(a, e, i,Ω, ω, M)T. The transformation matrix is defined as C = Rz(−Ω)Rx(−i)Rz(−u), where
u = ω + f and f is the true anomaly. The units of mass, length and time are defined as

[M ] = M, [L] = a, [T ] =
√

[L]3/G[M ] . (2)

The dynamical equations in the synodic frame follow




¨̄x− 2ḟ ˙̄y − ḟ2x̄− f̈ ȳ = −x̄/r̄3,

¨̄y + 2ḟ ˙̄x− ḟ2ȳ + f̈ x̄ = −ȳ/r̄3,

¨̄z = −z̄/r̄3 .

(3)
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Re-scale the coordinates as (x̄, ȳ, z̄) = r̄(x, y, z) to obtain the scaled synodic frame. The new length
unit r̄ = a(1 − e2)/(1 + e cos f) is the radius of the chief satellite. Taking the true anomaly f as
an independent variable, the equations of motion for the satellites can be simplified as (Szebehely
1967) 




x′′ − 2y′ = − 1
1+e cos f (x

r − x),
y′′ + 2x′ = − 1

1+e cos f (y
r − y),

z′′ + z = − 1
1+e cos f ( z

r − z) ,

(4)

where e is the orbital eccentricity of the chief satellite, and r =
√

x2 + y2 + z2. The derivation of
the above equation can be found in Szebehely (1967). The primes in the equations are defined as
(taking x as an example)

x′ = dx/df, x′′ = d2x/df2 . (5)

Equation (4) can also be deduced from the equation of motion for the elliptic restricted three-
body problem (ERTBP) by directly setting the mass parameter µ = 0 (Szebehely 1967; Hou &
Liu 2011). In the scaled synodic frame, the chief satellite’s orbit is expressed as an equilibrium
point (1, 0, 0, 0, 0, 0)T. We can move the origin from the central body to the chief satellite to ob-
tain the scaled rotating LVLH frame and denote the deputy satellite’s state vector in this frame
as (ξ, η, ζ, ξ′, η′, ζ ′)T. Then we have (x, y, z, x′, y′, z′)T = (ξ, η, ζ, ξ′, η′, ζ ′)T + (1, 0, 0, 0, 0, 0)T.
Expanding Equation (4) around the chief satellite (1, 0, 0, 0, 0, 0)T and retaining only the linear part,
we have 




ξ′′ − 2η′ = 3ξ
1+e cos f ,

η′′ + 2ξ′ = 0,

ζ ′′ + ζ = 0 .

(6)

It is easy to obtain the periodic solution as





ξ = α[cos θ1 + e cos(θ1 − f)/2 + e cos(θ1 + f)/2],

η = α[−2 sin θ1 − e sin(θ1 + f)/2],

ζ = β cos θ2 ,

(7)

where
θ1 = f + θ10, θ2 = f + θ20 . (8)

α and β are constants of integration which can be arbitrarily chosen. They indicate the motion
amplitudes in and out of the ξ− η plane. θ10 and θ20 are initial phase angles which can also be arbi-
trarily chosen. Equation (7) is actually the solution to Lawden’s equation (more accurately speaking,
the conditionally stable solution). Lawden first obtained his equation in the rotating LVLH frame
(ξ̄, η̄, ζ̄, ˙̄ξ, ˙̄η, ˙̄ζ)T (Lawden 1963). Using the true anomaly f as the independent variable, Carter and
Humi (Carter & Humi 1987; Carter 1990) were able to construct the analytic solution of Lawden’s
equation. In this paper, we first transform Lawden’s equation from the rotating LVLH frame to the
scaled rotating LVLH frame (ξ, η, ζ, ξ̄, η̄, ζ̄)T and then obtain Equation (7). Since we deal with the
same equation in different coordinates, Equation (7) should be the same as those in Carter & Humi
(1987); Carter (1990) after being transformed back to the rotating LVLH frame.

From the first two equations of Equation (7), it is easy to obtain




ξ′ = − 3e sin f
(4+e cos f)(1+e cos f)ξ + 2(1+e cos f)

4+e cos f η,

η′ = − (8+6e cos f+e2)
(4+e cos f)(1+e cos f)ξ − 2e sin f)

4+e cos f η .
(9)
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Equation (9) is given in the scaled rotating LVLH frame. Using the following relations
{

ξ̄ = rξ, ˙̄ξ = ṙξ + rξ̇ = ṙξ + rξ′ḟ ,

η̄ = rη, ˙̄η = ṙη + rη̇ = ṙη + rη′ḟ ,
ṙ =

ae(1− e2) sin f

(1 + e cos f)2
ḟ , (10)

it is easy to rewrite Equation (9) in the rotating LVLH frame as




˙̄ξ = [ e sin f
4+e cos f ξ̄ + 2(1+e cos f)

4+e cos f η̄]ḟ ,

˙̄η = −[ (8+6e cos f+e2)
(4+e cos f)(1+e cos f) ξ̄ + e sin f(2−e cos f)

(4+e cos f)(1+e cos f) η̄]ḟ ,
(11)

where
ḟ = df/dt = (1 + e cos f)2/

√
a3(1− e2)3 . (12)

Equation (9) or Equation (11) can be directly used to initialize the formation at any point in the orbit.

3 THE J2 PERTURBATION

The formation initialized by Equation (9) or Equation (11) gradually deviates under the J2 perturba-
tion. In the following, we will find a way to reduce the rate of deviation.

The elliptic orbits are precessing under the J2 perturbation. The oscillating orbit elements can
be separated into three parts (Liu et al. 2006): the mean orbit σ̄, the short period terms σs (the terms
containing M ) and the long period terms σl (the terms containing Ω and ω).

σ = σ̄ + σs + σl . (13)

Usually σs and σl are of the order O(J2). The mean orbit elements (Ω̄, ω̄, M̄) are precessing with
constant rates ( ˙̄Ω, ˙̄ω, ˙̄M). Up to the first order of J2, they have the following forms (Liu et al. 2006)

˙̄Ω = −3
2

J2

ā7/2
(1− ē2)−2 cos ī , (14)

˙̄ω =
3
2

J2

ā7/2
(1− ē2)−2

(
2− 5

2
sin2 ī

)
, (15)

˙̄M = n̄ +
3
2

J2

ā7/2
(1− ē2)−3/2

(
1− 3

2
sin2 ī

)
, (16)

where n̄ = ā−3/2 and ā = a − al − as. In Equations (14)–(16) and the following equations, the
central body’s radius is used as the length unit. As a result, the central body’s radius will not appear
in these equations. Up to the first order in J2, al = 0 and

as =
3
2

J2

ā

{2
3

(
1− 3

2
sin2 ī

)[( ā

r̄

)3

− (1− ē2)−3/2
]

+ sin2 ī
( ā

r̄

)3

cos 2(f̄ + ω̄)
}

. (17)

In Equation (17), f̄ is the mean value of f . The quantity r̄ is defined as r̄ = ā(1− ē2)/(1+ ē cos f̄),
different from the definition in Equation (3). The orbit elements (ā, ē, ī) do not precess under the J2

perturbation. In Equation (16), expanding

n̄ = ā−3/2 = (a− as)−3/2 ≈ a−3/2
(
1 +

3
2
as/a

)
,

substituting Equation (17) and adding the result to Equation (15), it is easy to obtain

˙̄M + ˙̄ω = a−3/2 +
3
2

J2

ā7/2

( ā

r̄

)3

(1− 3 sin2 φ̄) +
3
2

J2

ā7/2
(1− ē2)−2

(
2− 5

2
sin2 ī

)
+ O(J2

2 ) , (18)
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where sin φ̄ = sin ī sin ū. If the oscillating orbit elements σ are substituted into Equation (14) and
Equation (18) instead of the mean orbit elements σ̄, the difference is of the order O(J2

2 ) which can
be omitted because perturbations from other non-spherical terms and the third bodies are of this
order.

If the deviation between the chief satellite and the deputy one is required to be as small as
possible, the following two conditions should hold (Schaub & Alfriend 1999)

∆ ˙̄Ω = ˙̄Ωdeputy − ˙̄Ωchief = 0 , (19)

∆( ˙̄M + ˙̄ω) = ( ˙̄M + ˙̄ω)deputy − ( ˙̄M + ˙̄ω)chief = 0 . (20)

To first order, Equation (19) and Equation (20) mean

∆ ˙̄Ω =
˙̄Ω

∂a
∆a +

˙̄Ω
∂e

∆e +
˙̄Ω
∂i

∆i = 0 , (21)

∆( ˙̄M + ˙̄ω) = ( ˙̄M+ ˙̄ω)
∂a ∆a + ( ˙̄M+ ˙̄ω)

∂e ∆e + ( ˙̄M+ ˙̄ω)
∂i ∆i

+ ( ˙̄M+ ˙̄ω)
∂(a/r) ∆a

r + ( ˙̄M+ ˙̄ω)
∂(sin φ)∆(sin φ) = 0 .

(22)

Before proceeding, the state vectors in different frames in this paper should be clarified.
(X̄, Ȳ , Z̄, ˙̄X, ˙̄Y , ˙̄Z)T indicates the state vector in the sidereal frame centered at the central body.
(x̄, ȳ, z̄, ˙̄x, ˙̄y, ˙̄z)T indicates the state vector in the synodic frame centered at the central body.
(x, y, z, x′, y′, z′) indicates the state vector in the scaled synodic frame. (ξ̄, η̄, ζ̄, ˙̄ξ, ˙̄η, ˙̄ζ)T indicates
the state vector in the rotating LVLH frame. (ξ, η, ζ, ξ′, η′, ζ ′)T indicates the state vector in the
scaled rotating LVLH frame. In the following discussions, we mainly use the LVLH frame. We use
(ξ̃, η̃, ζ̃, ξ̃′, η̃′, ζ̃ ′)T to indicate the state vector in the LVLH frame.

From the geometry of elliptic orbits, it is easy to obtain the following linear relations

∆a =
2a2

r2
ξ̃ +

2
n
√

1− e2
[e sin f

˙̃
ξ + (1 + e cos f) ˙̃η] , (23)

∆e =
cos f + e

r
ξ̃ +

sin f

a
η̃ +

√
1− e2

na

[
sin f

˙̃
ξ +

2 cos f + e + e cos2 f

1 + e cos f
˙̃η
]
, (24)

∆i =
sinu + e sinω

a(1− e2)
ζ̃ +

√
a(1− e2) cos u

(1 + e cos f)
˙̃
ζ , (25)

∆
(a

r

)
=

1
r
∆a− a

r2
ζ̃ , (26)

∆(sin φ) =
sin i cos u

r
η̃ +

cos i

r
ζ̃ . (27)

Substituting Lawden’s solution (more accurately speaking, Lawden’s solution of the ξ and η com-
ponents) into Equation (23), we find ∆a = 0, which is a necessary condition to fulfill the formation
flying in the two-body problem. However, this condition (∆a = 0) is unnecessary when the J2 per-
turbation is considered, because the precession rate of ∆Ω and ∆(M + ω) caused by J2 can be zero
even when ∆a 6= 0. Substituting Equations (23)–(27) into Equation (21) and Equation (22), it is
easy to obtain





∆( ˙̄Ω) = A1ξ̃ + A2η̃ + A3
˙̃
ξ + A4

˙̃η + A5ζ̃ + A6
˙̃
ζ = 0 ,

∆( ˙̄M + ˙̄ω) = B1ξ̃ + B2η̃ + B3
˙̃
ξ + B4

˙̃η + B5ζ̃ + B6
˙̃
ζ = 0 .

(28)
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Fig. 1 In-plane formation and out-of-plane formation with the J2 perturbation for 50 revolutions.
The initial formation is given by Eq. (28).

Fig. 2 The history curves of ∆Ω and ∆(M + ω) of the deputy satellite with respect to the chief
satellite, corresponding to Fig. 1.

The coefficients in Equation (28) can be found in the appendix. This is the first rule to initialize the
formation. There are four degrees of freedom in selecting the initial formation. In this paper, ξ̃, η̃, ζ̃

and ˙̃
ζ can be chosen to have any values and ˙̃

ξ and ˙̃η are then solved from Equation (28).
Figure 1 shows the in-plane formation and the out-of-plane formation using this rule. J2 =

1.0820× 10−3. In the following figures, X , Y and Z denote respective variables in the transformed
frame. The center body is the Earth. The orbit elements for the chief at the formation initialization
point are a = 1.3156 × 107 m, e = 0.5, i = 45◦, Ω = 0◦, ω = 30◦, f = 30◦. ξ̄ = 344.2817 m,
η̄ = 0 m, ζ̄ = 68.8564 m and ˙̄ζ = 0.1070 m s−1. The two speeds ˙̄ξ = 0.9664 m s−1 and ˙̄η =
−0.4864 m s−1 are computed from Equation (28).

Figure 2 shows the corresponding history curves of ∆Ω and ∆(M +ω). Judging from Figure 2,
it seems that the in-plane deviation rate is larger than that of the out-of-plane deviation. This phe-
nomenon is caused by the nonlinear terms omitted in Equations (21), (22) and (23)–(27). Suppose ˙̃

ξ

and ˙̃η are solved from Equation (28) for given ξ̃, η̃, ζ̃ and ˙̃
ζ, then the chief satellite’s oscillating orbital

elements (a, e, i) and the deputy satellite’s oscillating orbital elements (a′, e′, i′) can be rigorously
computed. Substituting them into Equations (14) and (18), we have

{
∆ ˙̄Ωnonlinear = ˙̄Ωdeputy − ˙̄Ωchief ,

∆( ˙̄M + ˙̄ω)nonlinear = ( ˙̄M + ˙̄ω)deputy − ( ˙̄M + ˙̄ω)chief .
(29)
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Fig. 3 In-plane formation and out-of-plane formation with the J2 perturbation for 50 revolutions.
The initial formation is firstly given by Eq. (28) and then refined by Eq. (30).

Fig. 4 The history curves of ∆Ω and ∆(M + ω) of the deputy satellite with respect to the chief
satellite, corresponding to Fig. 3.

Since Equation (28) is deduced only using linear relations, ∆ ˙̄Ωnonlinear and ∆( ˙̄M + ˙̄ω)nonlinear

usually do not equal zero. Computations show that the nonlinear effect of the in-plane motion is
larger, which leads to different behaviors in the two frames in Figure 2. If we rewrite Equation (28) as

{
A1ξ̃ + A2η̃ + A3

˙̃
ξ + A4

˙̃η + A5ζ̃ + A6
˙̃
ζ + ∆ ˙̄Ωnolinear = 0,

B1ξ̃ + B2η̃ + B3
˙̃
ξ + B4

˙̃η + B5ζ̃ + B6
˙̃
ζ + ∆( ˙̄M + ˙̄ω)nonlinear = 0 ,

(30)

and solve ˙̃
ξ, ˙̃η again for given ξ̃, η̃, ζ̃,

˙̃
ζ, the nonlinear effects can be compensated. For the same

initial conditions in Figure 1, the speeds computed by Equation (30) are ˙̃
ξ = 0.9660 m s−1 and

˙̃η = −0.4864 m s−1.
Figure 3 shows the in-plane formation and the out-of-plane formation. Figure 4 shows the cor-

responding history curves of ∆Ω and ∆(M + ω). Compared with Figure 2, the in-plane deviation is
obviously reduced.

Equation (28) is in fact a way to achieve the so-called J2 invariant orbit (Schaub & Alfriend
1999), but expressed in the LVLH frame. In addition, Equation (30) is improved with the nonlinear
compensation.

The condition ∆( ˙̄M + ˙̄ω) = 0 may cause the case that ∆ ˙̄M and ∆ ˙̄ω do not equal zero but their
values are opposite in sign. In this case, due to the gradual increase of ∆M , the oscillating amplitude
of the formation also gradually increases.
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Fig. 5 The history curves of ∆Ω and ∆(M + ω) of the deputy satellite with respect to the chief
satellite, corresponding to Fig. 4.

Fig. 6 In-plane formation and out-of-plane formation with the J2 perturbation for 50 revolutions.
The initial formation is firstly given by Eq. (31) and then refined by Eq. (32).

Fig. 7 The history curves of ∆Ω, ∆(M + ω) and ∆M of the deputy satellite with respect to the
chief satellite, corresponding to Fig. 6.

Figure 5 shows the history curves of ∆ω and ∆M respectively corresponding to those in
Figure 4, which demonstrates an example of this phenomenon.

To avoid this situation, we can additionally demand ∆ ˙̄M = 0. As a result, Equations (28) and
(30) are improved as





∆( ˙̄Ω) = A1ξ̃ + A2η̃ + A3
˙̃
ξ + A4

˙̃η + A5ζ̃ + A6
˙̃
ζ = 0,

∆( ˙̄M + ˙̄ω) = B1ξ̃ + B2η̃ + B3
˙̃
ξ + B4

˙̃η + B5ζ̃ + B6
˙̃
ζ = 0,

∆ ˙̄M = C1ξ̃ + C2η̃ + C3
˙̃
ξ + C4

˙̃η + C5ζ̃ + C6
˙̃
ζ = 0 ,

(31)
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



A1ξ̃ + A2η̃ + A3
˙̃
ξ + A4

˙̃η + A5ζ̃ + A6
˙̃
ζ + ∆ ˙̄Ωnolinear = 0,

B1ξ̃ + B2η̃ + B3
˙̃
ξ + B4

˙̃η + B5ζ̃ + B6
˙̃
ζ + ∆( ˙̄M + ˙̄ω)nonlinear = 0,

C1ξ̃ + C2η̃ + C3
˙̃
ξ + C4

˙̃η + C5ζ̃ + C6
˙̃
ζ + ∆ ˙̄Mnonlinear = 0 ,

(32)

where the coefficients Ai and Bi are the same as Equation (28). The coefficients Ci can be found in
the appendix.

Figure 6 shows the in and out-of-plane formations initialized by Equations (31) and (32). The
initial coordinates are the same as in Figures 1 and 3.

Figure 7 shows the history curves of ∆ω and ∆M . Obviously, the deviation speed is greatly
reduced by the choice ∆ ˙̄M = 0. The in-plane formation is also improved by this choice.

4 A LOOSE CONTROL STRATEGY

About the formation control problem, a lot of work has been done. In this paper, however, we propose
a loose control strategy which only controls the deputy around the chief, but with no requirements
on the exact formation. Due to the nonlinear terms, the deviation between the chief and the deputy
still exists, where even the nonlinear effects are partially compensated by Equations (30) and (32).
We denote the long term rate of deviation between the chief and the deputy of Ω, ω + M and M at
the control point as ∆1, ∆2 and ∆3 respectively. We can also control the speed to compensate ∆1,
∆2 and ∆3. The maneuvers are then solved from





A3∆
˙̃
ξ + A4∆˙̃η + A6∆

˙̃
ζ + ∆1 = 0,

B3∆
˙̃
ξ + B4∆˙̃η + B6∆

˙̃
ζ + ∆2 = 0,

C3∆
˙̃
ξ + C4∆˙̃η + C6∆

˙̃
ζ + ∆3 = 0 ,

(33)

where ∆1, ∆2 and ∆3 can be approximately computed as follows (using ∆1 as an example). We
take

1
T

∫ T

0

∆Ω · dt (34)

in one revolution as the approximate value of ∆Ω̄, where T is the period of one revolution. We
denote the value of ∆Ω̄ in the first revolution and the last revolution before maneuvering respectively
as ∆Ω̄s and ∆Ω̄t, then

∆1 =
∆Ω̄t −∆Ω̄s

NT
, (35)

where N is the number of revolutions between the first revolution and the last revolution before
maneuvering. Of course, these formulae are just approximate, because we ignore the long period
terms which may act as long terms in short times. However, our numerical simulations show that
this strategy does work.

Figure 8 shows the formation by this loose control strategy. Figure 9 shows the time history of
∆Ω, ∆(ω + M) and ∆M .

Figures 10 and 11 show the results corresponding to no orbit control. The initial conditions
are ξ̄ = 6378.1363 m, η̄ = 6378.1363 m and ζ̄ = 6378.1363 m. The speeds ˙̄ξ = 6.1608 m s−1,
˙̄η = −6.9738 m s−1 and ˙̄ζ = −13.1340 m s−1 are computed from Equation (31) along with
Equation (32). The orbit elements for the chief at the initialization point of the formation are a =
1.3156 × 107 m, e = 0.5, i = 88◦, Ω = 0◦, ω = 30◦ and f = 30◦. Every 1000 revolutions (about
173.2184 days), one orbit control is done. An 869.0935 day (5000 revolution) mission requires
energy of only 0.0944 m s−1. In order to test the robustness of the control strategy, the Moon’s
perturbation is added into the force model. We assume the Moon is in the equatorial plane of the
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Fig. 8 In-plane formation and out-of-plane formation with the J2 perturbation for 5000 revolutions
with orbit control.

Fig. 9 The history curves of ∆Ω, ∆(M + ω) and ∆M of the deputy satellite with respect to the
chief satellite, corresponding to Fig. 8.

Fig. 10 In-plane formation and out-of-plane formation with the J2 perturbation for 5000 revolutions
without orbit control.
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Fig. 11 The history curves of ∆Ω, ∆(M + ω) and ∆M of the deputy satellite with respect to the
chief satellite, corresponding to Fig. 10.

Earth and moves with a circular orbit. The semi-major axis of the Moon’s orbit is 3.8400× 105 km.
The initial position of the Moon is on the x axis. This simulation is performed to test the robustness of
the control algorithm under perturbations, but does not intend to simulate the real situations in which
other perturbations besides that of the Moon exist. So the Moon is simply placed in the equatorial
plane. If the Moon is placed in a different plane or at a different initial position, different results will
be expected.

5 CONCLUSIONS

This paper studied the relative dynamics of formation flying. First, a compact form to Lawden’s so-
lution was obtained. However, this solution gradually deviates under the J2 perturbation. Borrowing
the idea of mean orbit elements, two rules of formation initialization were proposed to reduce the
rate of deviation. A loose control strategy was also proposed. Numerical simulations were done to
demonstrate and test the robustness of this strategy.
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(Grant Nos. 10903002, 11078001, 11033099 and 11003009).

Appendix A:

A1 =
J2 cos i

a9/2(1− e2)4

(
15
2

+ 15e cos f +
9
2
e2 cos2 f − 6e2 − 6e3 cos f

)
, (A.1)
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A2 = − 6J2e cos i

a9/2(1− e2)3
sin f, A3 = − 9J2e cos i

2a3(1− e2)5/2
sin f, (A.2)

A4 =
J2 cos i

2a3(1− e2)5/2

21 + 18e cos f − 12e2 + 9e2 cos2 f

(1 + e cos f)
, (A.3)

A5 = − 3J2e sin i

2a9/2(1− e2)3
(sinu + e sinω), A6 =

3J2 sin i

2a3(1− e2)3/2

cos u

(1 + e cos f)
, (A.4)

B1 = − 3(e cos f)2

a5/2(1− e2)2
− 3J2

2a9/2

(a

r

)4

(1− 3 sin2 φ)
(a

r
+ 3

)

− J2

a9/2(1− e2)3

(
21
2

+
9
2
e cos f − 6e2

)(
2− 5

2
sin2 i

) (a

r

)
, (A.5)

B2 = − 9J2

2a9/2

(a

r

)4

sin2 φ +
6J2

a9/2(1− e2)3

(
2− 5

2
sin f

)
, (A.6)

B3 = − 3e sin f

a
√

1− e2
− 3J2

2a3(1− e2)3/2

(a

r

)2

(1− 3 sin2 φ)e sin f(1 + e cos f)

− 9J2e

2a3(1− e2)5/2

(
2− 5

2
sin2 i

)
sin f , (A.7)

B4 = −3(1 + e cos f)
a
√

1− e2
− 3J2

2a3(1− e2)3/2

(a

r

)2

(1− 3 sin2 φ)(1 + e cos f)2

− J2(2− 5/2 sin2 i)
2a3(1− e2)5/2(1 + e cos f)

21 + 18e cos f − 12e2 + 9e2 cos2 f

1 + e cos f
, (A.8)

B5 = − 9J2

a9/2

(a

r

)4

cos i sinφ− 15J2 sin i cos i

2a9/2(1− e2)3
(sinu + e sinω) , (A.9)

B6 = − 15J2 sin i cos i

2a3(1− e2)3/2(1 + e cos f)
cos u , (A.10)

C1 = − 3
a5/2

(a

r

)2

− 3J2

2a9/2

(a

r

)5

(1− 3 sin2 φ)− 9J2

2a9/2

(a

r

)4

(1− 3 sin2 φ) , (A.11)

C2 = − 9J2

a9/2

(a

r

)4

sinφ sin i cos u , (A.12)

C3 = −
[

3
a5/2

+
3J2

2a9/2

(a

r

)3

(1− 3 sin2 φ)
]

e sin f√
a3(1− e2)

, (A.13)

C4 = −
[

3
a5/2

+
3J2

2a9/2

(a

r

)3

(1− 3 sin2 φ)
]

1 + e cos f√
a3(1− e2)

, (A.14)

C5 = − 9J2

a9/2

(a

r

)4

sinφ cos i , (A.15)

C6 = 0 . (A.16)
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