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Abstract Obiject correlation and maneuver detection are persistebtgms in space
surveillance and maintenance of a space object catalogni&fgrate these two prob-
lems into one interrelated problem, and consider them $anabusly under a sce-
nario where space objects only perform a single in-trackarimaneuver during the
time intervals between observations. We mathematicatimédate this integrated sce-
nario as a maximum a posteriori (MAP) estimation. In this kyave propose a novel
approach to solve the MAP estimation. More precisely, theesponding posterior
probability of an orbital maneuver and a joint associatieeng can be approximated
by the Joint Probabilistic Data Association (JPDA) aldarit Subsequently, the ma-
neuvering parameters are estimated by optimally solviegctinstrained non-linear
least squares iterative process based on the second-ordepogramming (SOCP)
algorithm. The desired solution is derived according toNteP criterions. The per-
formance and advantages of the proposed approach havehmem sy both theoret-
ical analysis and simulation results. We hope that our wallkstimulate future work
on space surveillance and maintenance of a space objeldgata

Keywords: celestial mechanics — methods: analytical — techniquescetianeous
— surveys

1 INTRODUCTION

Object correlation and maneuver detection are very chgilignand persistent problems for space
surveillance tasks. It is known that there are currentlgast 19 000 trackable objects in Earth orbit
and among them 1300 have the capability of performing misslgjectives and/or orbital mainte-
nance (Holzinger & Scheeres 2010). Moreover, these nunarersxpected to grow significantly
due to increased tracking capabilities and new launchesder to satisfy the requirements of space
situational awareness and collision avoidance, thesdimgbobjects should be under continuous
surveillance, however, maintaining a catalog of theseatbjis a very challenging task. In addition,
the available observations collected by the space suame’ systems are generally discrete in the
spatial-temporal domain. Therefore, the problem of objectelation and maneuver detection dur-
ing the time intervals between these observations becorael more difficult, in contrast with that
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commonly encountered in real-time tracking applicatiguasticularly in regions of space that have
high-densities of spacecraft.

Object correlation and maneuver detection have been walied in the literature. Regarding
object correlation, Tommei et al. (2007) solved the probtEnorbital determination and correla-
tion of space debris by using the admissible regions andalidebris algorithm, which can also be
applied to optical and radar observations. By embeddingtimissible regions into the Delaunay
space, Maruskin et al. (2009) presented a notional algorftir computing an orbital correlation
and determination between two uncorrelated tracks. Famaet al. (2010) described two different
linkage methods, i.e. the virtual debris algorithm and tlepliérian integral method, which aim at
implementation with affordable computational complexiRggarding the problem of maneuver de-
tection, the corresponding methods are the varieties wpect to different modes of orbital maneu-
vering and detection metrics. Storch (2005) estimated thremvering parameters of a collocated
satellite in geosynchronous orbit by using nonlinear Isgstares. In Patera (2008), the energy per
unit mass was computed to detect a space event based ontthigjtexof a moving window curve fit.
Holzinger & Scheeres (2010) presented an object correlatal maneuver detection method using
optimal control performance metrics. Kelecy & Jah (201@ufged on the detection and reconstruc-
tion of single low thrust in-track maneuvers by using theitodietermination strategies based on
the batch least-squares and extended Kalman filter (EKR)ef@#ly speaking, the aforementioned
methods separately handled the problems of object caoelahd maneuvering. Moreover, these
algorithms can neither accurately reconstruct the pammsief orbital maneuvers, nor provide an
estimation of confidence for the correct correlation betwalgjects.

However, in practical applications, object correlatiorn ananeuver detection are interrelated.
Orbital maneuvering is a significant factor leading to unelated tracks. In addition, uncorre-
lated tracks themselves lead to intractability in the d&acand calculation of orbital maneuvers.
Therefore, it is necessary to solve the problem of spacecbbjerelation and orbital maneuvering
simultaneously. In addition, not only the decisions for earer detection and object correlation
are necessary, but also detailed information about evemntswhen and where the orbital maneuver
occurs, whether the reconstructed maneuver event is feasibpplication, and the confidence of
correlation, are all needed in order to arrive at the desicdgtions.

Space objects can maneuver in several modes. According tootiiesponding types of thrust
(Sidi 1997), they can be classified into three models: impelghrust model, infinite thrust model
and low thrust model. According to whether or not the initial final orbits have a common point,
orbital maneuvering can be divided into different casesuiiog orbital change, orbital transfer,
etc. However, each type of maneuver will induce a maneuviecitg vector that consists of the
radial, in-track and cross-track (RIC) components. In otdeonveniently describe the state of an
object’s movement, the observations can be transformeckiritill 6-parameter vector or a partial
parameter vector of orbital elements based on differentesparveillance systems and the formats
of observations. Note also that none of the algorithms caadapted to all possible scenarios and
observations. In this paper, we focus on a well known situa{Sidi 1997; Kelecy & Jah 2010),
where none or only one in-track orbital maneuver occursnduthe time intervals between the
different observations for a single orbital object. Thee®ations are characterized by two groups
of full 6-parameter vectors of orbital elements to illugtrthe uncertainties. In this work, we propose
a novel approach to achieve maneuver detection and objeela&iion, which can also be applied to
other potential scenarios.

This paper is organized as follows. The observations anddehod orbital movement are intro-
duced in Section 2. In Section 3, the posterior probahdliiEorbital maneuver and a joint associ-
ation event of space objects are analyzed based on the Joblistic Data Association (JPDA)
algorithm. To derive the maximum posterior probabilitye trucial step is the accurate reconstruc-
tion of the orbital maneuver time and velocity during thedimtervals between the different obser-
vations. In this work, a novel approach is proposed in Sedtitor the detection and reconstruction
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Fig.1 The space surveillance scenario in the ECI coordinate frame

of the orbital maneuver based on a constrained nonlineat semiares scheme. The performance
of maneuver detection is also theoretically analyzed. 8asethe maximum a posteriori (MAP)
criterion, the desired decision and the corresponding denfie levels for object correlation and
maneuver detection are presented in Section 5. The eff@etss and advantages of the proposed
approach are validated through the simulation results ati@es 4 and 5. Section 6 concludes this
work and addresses some open problems.

2 OBSERVATIONSAND MOVEMENT MODEL OF AN ORBITAL OBJECT

The orbital elements of space objects are important fortifyemg the targets and cataloging orbital
objects when conducting space surveillance. This infoilonas often obtained via observing sev-
eral sections of an arc in the object’s orbit through variobservation devices, e.g. radar, optical
telescope, etc. A diagram showing how the objects beingrebdeare configured is illustrated in
Figure 1.

In this paper, we assume that a full 6-parameter vegtoiran orbital element can be provided
from the observation, which consists of the position veetand the velocity vectoo in the Earth-
centered inertial (ECI) coordinate frame at a certain tikve. detect the maneuvers and finalize
the correlations for the previously uncorrelated tracksveen two arbitrarily observed periods.
Each period may contain many different observation times.denvenience, the observed orbital
elements at different times of a period are propagated tedhee time. The observation time and
the corresponding observations during the pre-periodemeted by, andz ;, respectively. Those
during the post-period are denotedthyandz; ,. Av andt,, are the in-track maneuvering velocity
and maneuvering time of an orbiting object, respectivélyis the geocenter® and P’ are the
positions of the observation station at timiggndt¢,, respectively.

By solving the Kepler problem without considering the pdsation force, we can describe the
orbital movement using an elegant state transition mairec L997)

-l sl ) 8

Inthe ECI coordinate frame,, vo andry, v; are the position vector and velocity vector of the
object in space at timeg andt,, respectivelyI is a unit matrix.f, g, f andg are functions of-q,
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Fig.2 The orbital maneuver process.

vo andt; — tg. The concrete expression can be referred to in Der (199 Tatian (1) describes the
non-maneuvering model of the object in space.

Any orbital maneuver is accompanied by a change in the wglotithe satellite, which con-
sumes a certain quantity of fuel. For an orbital maneuvemjmization of fuel consumption is es-
sential because the weight of a payload that can be carri¢tetaesired orbit depends on this
minimization. Therefore, choices in the modes of orbitahmaver are limited. The thrust imposed
on the in-track direction is an efficient maneuvering modeniimizing fuel consumption, which
is commonly applied in the process of various orbital maeesiySidi 1997; Kelecy & Jah 2010).
In addition, because the duration of thrust is almost inata@ous relative to the large gap between
observations, the process of orbital maneuver can equitialbe considered as a single in-track
impulsive thrust.

The process of orbital maneuver can be divided into two steggeillustrated in Figure 2.

In Figure 2,r,, is the position vector at maneuver timg. v, andv’,, are the pre-maneuver
velocity vector and the post-maneuver velocity vector atetit,,, respectively. The orbit ma-
neuvers are along the in-track direction, so we can desive = v, + Av - vy, /v, Where
Um = [[Vwmly, |||, denotes the/s-norm. g, vo andr;, v; are the position vector and veloc-
ity vector of space object at timegg andt,, respectively.f1, g1, f1 and g, are functions ofrg,
vo andt, — to. fa, g2 and fo, go are functions ofr,,, v’,, andt; — t,. Assuming that the
observations have Gaussian white noise with zero meén,Q,) andn(0,Q;) denote the ob-
servation noises at timegg andt;, respectively, wher€), and (@, are the noise covariance. Let

Qo = Q1 = diag [02,02,02,02,02,02] in this paper Thus, the observed orbital elements in the

presence of noise are denoteddy, = [rg,vo] +n(0,Qo) andzy o = [r], vl} +n(0,Q1).
The orbital maneuvering model can be represented by thawfinlg equation:

5] [¢] e

e iiﬂ R O R

-] e

Tm] [f I g I
m Il g1
the corresponding perturbing terms to Equation (2). Howenvben the effect of the perturbation

force is uncorrelated with the orbital maneuvering paramsethe problem can be solved using the

Where[ ] { ] If the orbital perturbation is taken into account, we shicaudid
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same method whether or not it has a perturbation. For coereaj this paper does not consider the
perturbation during the movement of an object in space.

3 PRINCIPLE OF MANEUVER DETECTION AND OBJECT CORRELATION

In Equation (2), the maneuvering time and velocity are umkmavhich makes it possible that one
observed orbit at timé, can create multiple potential orbits at timevia a single in-track maneu-
ver. Therefore, orbital maneuver and object correlatiefeasible between two arbitrarily observed
orbits. To solve the aforementioned problem of object datien and maneuver detection of the
uncorrelated tracks, the multiple hypothesis testing (NHiEthod is a reasonable and well-known
solution (Benoudnine et al. 2012). L&t = {Z,, Z,} denote the observed orbital elements, where
Zy = {Z071, 20,2, 520,k 7ZO,B} and Z1 = {Zl,l, 21,2, s Zla, " ,ZLA} are the ob-
served orbital elements at timgsandt¢,, respectively. To simplify our presentation, we bsenda

to denote the corresponding indexes for the numbers of thereed orbits irZ, andZ;. Similarly,

B andA indicate the maximal ones observed at the different timastioreed above. All the feasible
joint association events are denotedéby- [0;],7 = 1,2,--- ,n, and the corresponding validation
matrix of the joint association eveéy is (Fortmann et al. 1983)

Q0:) = [wip 0)] = = - |, (3)

Waog " Wap
wherewflb (0;) is a binary variablaujlb =1 indicaf[es that the observed orbit , at timet; is corre-
lated with the observed orbit ;, at timet, andw;, = 0 indicates that they are uncorrelatéd= 0

represents a newly observed object (new object and falsm aliee considered as the same event in
this paper). According to the rule for constructing joins@sation events (Fortmann et al. 1983),

B A
the validation matrix should satisfy~ w!, = 1,a = 1,2,--- ,A4; > w!, < 1,b=1,2,--- ,B.
b=0 a=1
In the same way, the validation matrix for maneuvering israefias)® under the feasible joint
association ever;. Thus, all the possible maneuvering eventsfe= [M*],i =1,2,--- ,n. The
concrete form of the validation matrix for maneuvering is
mlowio T mlBWZiB
M =[my0)] = 1], (4)
MAoWyo *** MABWYR

wherem,, is also a binary variable withu,;, = 1 indicating that the orbital maneuver occurs when
a space object moves from the observed othj to z; ., andm,, = 0 indicates that there is no
orbital maneuver. Assuming that the orbital maneuver dogésccur for the newly observed object,
the value of elementy, in the matrix}M is zero.m?’, = m,,w’, suggests that the maneuver event
is only detected in the case that the orhisndb are hypothetically correlated.

The essence of maneuver detection and object correlattomégonstruct the orbital maneuver
parameters over the large observation gaps and obtain thie &sfimation of a joint association
event based on two groups of observed orbital elements jprésence of observational uncertainty,
ie.

[6;, ]Wi] = argmax (arg m]\E/}Xp(M’ 0|Z)) . (5)

The posterior probability in Equation (5) can be evaluatsidgithe Bayesian formula

P(Z|Mi7 91‘)P(Mi|9i)p(9i)
»(Z) ’

p(M*,0,|Z) = (6)
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where the posterior probability approximately represémsconfidence of the decision.
We can incorporate two binary indicators given by

B . 1
709 =Y w6 = o ™
b=1

which indicates whether or not the observed odat timet; is correlated with an observed orbit at
timetg.

A
i 1
d (91) = leab(ei) = {0 ) (8)
which indicates whether or not the observed obkdt timet, is correlated with an observed orbit
at timet,. Let ¢(0;) denote the number of newly observed objects in the joint@agon evend;.

Thus, we can obtain(4;) = Zl [1—7,(6:)].

In many radar applications, the JPDA algorithm provideslabte performance about data
association in dense multiple target environments andrig nabust with respect to the real-world
environment (Bar-Shalom et al. 2009). According to the paaisic JPDA algorithm, the evaluation
of posterior probability for a joint event is done as follogBar-Shalom et al. 2009):

p(M', 9'|Z)

B
H {max P(m/;(0:)|z1,a, 20,) H 6b(9 ) (1- Plbj)liab(ei)
b=1

B ) Wi, (6:) 9)
H maxN[zl a,zab|Z0b, ab, M b(e )]P[mzb(&)]} o

B
'H(le’)) Tra-pp)
b=1

where X is the spatial density of the newly observed objeét$, is the detection probability of
the orbitd at timet;, and¢’ andc are the normalization parameters. Assuming the correlatfo
orbit a with orbit b has a Gaussian probability distribution, &t [z1,q; Zas|z0,6, Sab, My, (6;)]
be the conditional probability of the correlation under at@i@ model of maneuvering (i.e.
mt,(0;) = 00or1), 24|20, is orbitb's predicted orbit at time; in the maneuver modeh’, (6;),
and S, is the corresponding covariance of the predicted omi{mgb(ei)} is the prior proba-
bility of the orbital maneuver model. In practical applicat, we can obtain prior knowledge of
P [mi,(0;) =1]/P [m,(6;) = 0] = A from the statistical probability of maneuvering events of
all cataloged space objects for different gaps of the olasiemns. A is a small value in the current
space environment. In addition, based on our experimémsesult is not very sensitive fowhen
its value is smaller than 0.001.

In order to obtain the MAP estimation, there are two main f@ols that need to be solved:
firstly, in the case of a joint eveilt, we must obtain the validation matrix of the maneuvet by
maximizing the posterior probability d?(m’, (6;)|z1.q, z0,»), Which is named maneuver detection;
secondly, calculatg(M?¢, 0;| Z) for all the feasible joint association evefits= [0;],i = 1,2,--- ,n
and select the validation matrix which has the maximum vefyg M*, 6;| Z) as the final estimated
result, which is named the MAP evaluation.
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4 ORBITAL MANEUVER DETECTION

In the case of a joint association evépta Bayesian decision is applied to test for a correlation in
the maneuver event for the hypothetical pair of orbigsdb

if maxP(mflb(ﬁi) = 1|zl,a7 zO,b) 2 maxP(mib(Gi) = O|Zl_’a, zO,b)

) 10
decision My (0;) = {(1) ) o

where

max P(m’,(0;)|21,4, 20,p) = maxc’N [zLa; Zab| 20,5 Sab,mzb(ei)} P [mflb(&)]

1

) B ) . 11
= max ¢’ ————exp [(zl,a — zab|z0,b)TSab1 (21,0 — zab|z07b)} P [mab(é’i)] , (11)
/2| S ap|

wherec” is a normalization parameter. Whet,, (6;) = 0, the maximum posterior probability in
the non-maneuvering mode can be calculated directly. Hewewhenm?, (6;) = 1, the unknown
parameters of maneuver time and velocity must first be egttn@dssuming that a single in-track
maneuver velocity\v is applied to the space object at timg (to < t., < t1), a simplified equiva-
lent least squares estimation is used to substitute the Mif&tion problem in Equation (11)

arg min (21,0 — Zablzop) QT (21,0 — ZablZ0,0)
o A | (12)
~ arg max N (21,05 Zab| 20,6, Sab, My (0:)] -

4.1 Method of Parameter Estimation in Orbital Maneuvering

The first equation in the maneuvering model of Equation (2pisreviated as

, T, 1%
[7“1 , v’ } = ®(ro,v0, Av, tm) +1(0,Q1).

Substituting it into the objective function of the least atgs problem in Equation (12), we can
obtain

T
A . r’ _ /[T
(86, f| = arg in ([7)!] = @(ro.vo, Av,tw) @7 ([1!] = @(ro,v0, Av, ). (23)

Equation (13) is a non-linear least squares problem, witknawn parameter vecte§ =

[ro,vo, Av, tm]T. Before the Gauss-Newton iterative algorithm is applied nged to compute the
linearized form of®(r(, vo, Av, t,) at the parameter vectgr(Storch 2005)

(14)

H(ﬁ)—[H(To),H(vo),H(Av),H(tm)]_{3@ o® 0® acp].

arg” dvy’ IAV Dty

The partial derivatives are calculated in Appendix A.

The initial valueg(0) of the parameter vectd} directly affects the convergence of the iterative
algorithm. It is important to choose an appropriate initialue based on the prior information of
the correlated orbits. In this paper, the observed value$,adindv’ at timet, can be taken as the
initial values ofry andwvy. Moreover, let the observed orbiisandb propagate in the time interval
[to, t1]. We calculate the intersection tintg,, when the two orbits show the minimum difference
in the magnitude of their position vectors through crossppgation. Thust',,, is chosen as the
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initial iterative value oft,;,, and the corresponding magnitude valhe' of the two velocity vectors’
difference at the intersection point is chosen as the Iniilue of maneuvering velocithv.

In order to obtain a more sensible and accurate result, theti@nts for the unknown parameter
vectorg should be applied in the iteration process. The constrateeative form used for solving
the non-linear least squares problemis:

et 1) = ang in ([11] - @(6tm) + F160) et — 0+ 1] )

€(n+1) !
Q! (H — @(E(n) + H(E() €)= €(n+ 1>D ’

v’y €
‘ {ro(n—i— 1)} _ {r'o} - [30T13]
vo(n+1) v’y s~ 3owls
0<Av(n+1) < Avpax ’
tog < tm(n—i- 1) <t

(15)

where Av,. 1S the upper bound of the maneuvering velocity. The iteeafivocess is an opti-
mization problem, which can be handled by the SOCP algor{ttobo et al. 1998). Therefore, the
maneuvering timeé,, and the maneuvering velocity? can be estimated by multiple iterations.

4.2 Detection Performance of Orbital Maneuver

Let x = [r’lT,v’lT,r’OT,v’OT]T be the observations. Using the parameter vedor =

[ro,vo,Av,tm]T, we can calculate the mathematical expectation of the whBens u(¢) =

[rlT,vrf,roT,voT}T = |®&)", T, o T. The observation covariance 3 = diag[Q1, Qo] and
the probability density function of the observations is
1 1 T 1
pla€) = e | 5@ - €)@ - (e)| (16)
Therefore, the element in the Fisher information matrixtfer unknown parameters is
T
1€ = 2 28, ar)

Using Equation (14)9r,/0& anddv,/0€, we can easily obtain the Cramer-Rao lower bound
(CRLB) of the estimated parametets and Av. Here, two common gaps of the observations are
used for analyzing the performance, i.e. one case is thatLihveillance system observes two adja-
cent orbits of an object, whose time interval is about antafpieriod (about two hours for an object
in low Earth orbit); the other case is when an ascending adlcaasescending arc of the same orbit
are observed, whose time interval is about 12 hours. In #pep the parameters for the simulation
are set as follows: the initial orbit elements are semi-majisa = 7000 km, eccentricitye = 0.01,
inclinationi = 70°, longitude of the ascending node= 170°, argument of periapsis = 30°,
mean anomaly/ = 30°; the observation errors asg = 10 m ando, = 0.1 m s~ ! . Subsequently,
we calculate the CRLBs in the simulation. For the non-margnyg object, the CRLB’s square root
of the maneuvering velocity 8.1 m s~*, which is similar to the observation error. For the maneu-
vering objects, the distributions of the CRLBs’ square rofothe estimated maneuvering time and
velocity are shown in Figure 3.

Figure 3 indicates that the precision of estimation fluetsatith respect to the maneuvering
time instead of changing monotonically. With the increalsmaneuvering velocity, the parameters



1410 J. Huang et al.

D o]
o o
®
o

CRLBY2 of EMT(s)
iy
o
CRLB? of EMT(s)
N
o

60

N
N
o

1
Velocity(m s )5 0 Time(h)

10 5
: -1,5 -
Velocity(m ™) 0 Time(h)

(@

CRLB2 of EMV(s)
CRLBY2 of EMV(s)

Velocity(m 5_1)5 0 Time(h)

(b)

Fig. 3 The distribution of the CRLBSs’ square root of the estimatexheuvering time (a)
and velocity (b).

Table 1 Cumulative Probability Distribution of the Estimated Mawer Velocity for the Non-
maneuvering Object

Estimated maneuvering velocityn(s—1) <1073 <1072 <0.1 <0.3 <0.6
Cumulative probability (2 hours) 0.4500 0.4550 0.6500 BM®4 1
Cumulative probability (12 hours) 0.5050 0.5250 0.7000 980 1

will be estimated with a higher precision. In addition, thegsion of estimation for a large gap
t; — to in observations is slightly higher than that for a small one.

Furthermore, Monte Carlo simulations are carried out taréxa and analyze the performance
of maneuver detection and precision of parameter estimatithe proposed algorithm. The result
is compared with the CRLB. The parameters in the simulatrertlze same as the aforementioned
settings.

Firstly, we carry out the maneuver detection for the non-aering object. The cumulative
probability distribution of the estimated maneuveringoedty is shown in Table 1.

Table 1 indicates that almost all the estimated maneuvesiagities are less thadv,,, which
results from observation errors. In other words, there igega small probability that a non-
maneuvering object would be identified as a maneuvering one.

Subsequently, the maneuver detection is carried out fomteeuvering object. In this paper,
when the estimation biases satigfy,,) < 60 s andj(Av) < 0.3 m s~!, we assume that the orbital
maneuver detection is correct. Only the correct maneuvecten is used to evaluate the accuracy
of the parameter estimation. The result is shown in Figure 4.
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Fig.4 The performance of the proposed maneuver detection digaria) Probability of correct
maneuver detection, (b) Root Mean Square Error (RMSE) oésfienated maneuver time, (c) Root
Mean Square Error (RMSE) of the estimated maneuver velocity

Figure 4 suggests that the detection performance is closkdied with the real maneuver time
and the maneuver velocity. Comparing the simulation reswith the CRLBs, we can find that it
will acquire a high probability of correct detection whehetCRLBs of the maneuver time and
velocity are low. When the maneuver velocity exceeds !, the probability of correct maneuver
detection probability can be as high as 1. With increasingeuser velocity, the estimated accuracy
of the maneuver time is improved. However, the estimatediracy of the maneuver velocity is
more sensitive to the real maneuver time, which coincidéis thie trend of the CRLB. In addition,
Figure 4 also shows that a larger gap interval of the obsenaleads to a higher estimated accuracy
than a smaller one, but the probability of correct detecisomuch lower. The reasons behind this
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outcome are that it is much more difficult to get an accuratelrvalue for the iteration for the case
of a large gap interval than for a small gap. The larger diffiee between the initial iterative value
and the real value will result in a higher probability of noorvergence as well as a problem with
local convergence. This is the main reason why a larger gapsdrvations makes the detection of
an orbital maneuver more difficult.

5 OBJECT CORRELATION BASED ON THE MAP CRITERION
5.1 Evaluation of the Maximum Posterior Probability

According to the results of the maneuver detection, the mnagrgimet,,, and the maneuver velocity

Av are estimated in the maneuver mode. Substituting the obdenbitb and the maneuver param-
eters into the maneuver model, we can calcufafgzo ;. Assuming that the prediction errors are
independent in all the dimensions, i.e. the covarianceirm&ly, is diagonal, the square roots of the
diagonal elements are

L‘gz] — H(¢) [57{5 SvT §AD 5£mf, (18)

where A% =y/CRLB(A?) and 6t,, =y/CRLB({,,). The correlation probabilityN [z.; 24|25,

Sap,miy(0;) = 1] in the maneuvering mode can be calculated based on EquatignFor the
non-maneuvering modé,; |z, can be obtained from the state transition matrix. The squents of
the diagonal elements in the covariance maffjx are calculated by

=76 Vel 5] "

Therefore, the correlation probabilityV [z1,q; Zas|20,6, Sas, iy, (6;) = 0] for the non-
maneuvering mode can be calculated. Accordingly, the gostprobability p(M?,6;|Z) of the
joint association evert; and the corresponding validation matrix for maneuvefifgcan easily be
obtained. The joint association event and the orbital meereare then estimated and detected based
on the MAP decision.

5.2 Performance Analysis of Object Correlation

In order to validate the effectiveness of the proposed &lyor a simulated scenario is presented
where the incorrect correlations are most likely to takee@la&Consider two coplanar orbits: one
is an orbit through a single in-track maneuver; the other roa-maneuvering orbit. The main
reason for the incorrect correlation is that the observéitoare very close to each other at the
pre-maneuver observation tinig or the post-maneuver observation time These two scenarios
are completely symmetric, so the performances of objecetaiion are the same. In this paper, we
analyze the performance using the scenario that the oltberbés are very close to each other at
the pre-maneuver observation tirge which is illustrated in Figure 5.

When the orbits are coplanar, the difference in orbitaliadi is commonly used to describe the
degree of closeness of the two orbits while the other orbihents keep the same values. In the
presence of observational uncertainty, we adjust theviatef orbital altitude between the two orbits
for analyzing the correlation performance. The orbitahedat and the observation error are the same
as the parameter setting in the simulation of maneuver tieted he orbit maneuver occurs at the
center of the observations’ interval. In the simulatiorg trbital altitude interval increases with a
step of 25 m, and the prior probability of the orbital maneuseset toA = 0.001. The probability
P, of the correct object correlation as well as the correct maeedetection and the mean value of
the corresponding maximum posterior probability are showigure 6.
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Fig.6 Correct correlation probability and the correspondingt@asr probability vs. the orbital
altitude interval. (a) Correct correlation probability. ¥ee orbital altitude interval. (b) The corre-
sponding posterior probability of correct object corrielat

Figure 6 suggests that the ratio of correct object cor@taticreases as the interval of orbits’ al-
titude becomes larger. When the orbital altitude inters#&00 m, the correct correlation probability
approaches 0.95, and the corresponding maximum posteadbapility (confidence value) tends to
1. Furthermore, we can see that it achieves the highestat@aeelation probability and confidence
value for the non-maneuvering object and also a larger maamexglocity can attain higher perfor-
mance and reliability than a smaller one. In addition, tigdagap of the observation will slightly
decrease the performance of the correct object correla@enerally speaking, the performance of
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the proposed algorithm is related to many factors, inclgdire gaps of the observations, the ma-
neuver time, and the maneuver velocity. The success of bbgecelation is largely dependent on
correct maneuver detection.

6 CONCLUSIONSAND FUTURE WORK

Maneuver detection and object correlation for uncorrelatacks play an important role in space
surveillance. This paper presents a novel method to adthesgroblem of object correlation of
uncorrelated tracks with a single in-track orbital maneuwée accurately estimate the maneuvering
time and velocity by solving a constrained non-linear lsastares iterative problem using the SOCP
algorithm. Subsequently, according to the JPDA algorittia,posterior probability of the feasible
joint association event and validation matrix for the mamgware evaluated. Finally, the MAP de-
cision is used to optimally find object correlation and mamguletection. The performance of the
proposed method is also analyzed in detail, and extensivelafions are carried out to validate the
effectiveness of the algorithm.

This paper mainly focuses on the problem of object cormhedind maneuver detection in a spe-
cial situation, where we only consider a single in-trackitatbmaneuver during observation gaps,
and the perturbation is not taken into account. Howevepthposed algorithm is a general method-
ology, which can be adapted to many different situations.gkercomplex situation will be handled
in future work. The following typical cases are given as egas.

Case 1: consider the perturbation. Generally speaking, the valtitiee partial derivative of the
perturbation force at the maneuver time and velocity arevaot large. Therefore, by implement-
ing the numerical integration of the perturbation forceitite iterative process of the maneuver
detection, the algorithm can be applied to solve the probliima perturbation.

Case 2: non-in-track maneuver. If the object maneuvers not onlh@in-track direction, much
more prior information about the orbital maneuver, suclhasiinimum energy principle (Holzinger
& Scheeres 2010) and Q-law (Petropoulos 2005), should blemdto constrain the maneuvering
model for estimating the optimum maneuver parameters.dBas¢he estimated maneuver parame-
ters, we can evaluate the maximum posterior probabilitybpéat correlation and maneuver detec-
tion using the JPDA.

Case 3: multiple orbital maneuvers. When orbital maneuvering Sraee known, the single ma-
neuver model can be extended to a more definitive model d@&sgrmaneuvering times, and the
proposed method can be applied to multiple orbital maneuwvethe same way. However, in the
case of unknown times of orbital maneuver, the maneuvestimest first be estimated. The orbital
maneuvering times during the gap of the observations arallyssparse, so we can reconstruct the
maneuver times based on some efficient algorithms such esesmaconstruction (Figueiredo et al.
2007) or a global searching algorithm. Then the final reszdts be obtained using the aforemen-
tioned method.

Appendix A: CALCULATION OF THE LINEARIZED FORM OF THE TRANSITION
MATRIX IN THE MANEUVER MODE

The following parameters can be derived from the definitiari3er (1997): during the period from
time to to the maneuver time,,, parameterd®, (t), Ri(t), V1(t), V1(t), f1, 91, /1 and g, are
known and defined; during the period from the maneuver timeo the maneuver timg, parame-
tersa, fa, g2, f2, g2, A1, B1, Ao, Ba, As, Bs, A1, As, As, B1, By and B; are already known and
definedu = 3.98600436 x 10'* m? s~2 is the Earth’s gravitational constant.
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Let Av,,, = Av.v,, /vy , then we can obtain that
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Other partial derivatives are calculated as follows:
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In the same way, we can obtain th.g% — F\ (B, B), 2?9; _ ot Fy(BL. B, By)
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gt—gjl =—g2+ F2 (Bl,Bz,Bg), g—fz = I3 (31,32,33), g—iz =Fy (31,32,33).
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