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Abstract We constrain the Cardassian expansion models from the latest observa-
tions, including the updated Gamma-ray bursts (GRBs), which are calibrated using a
cosmology independent method from the Union2 compilation of type Ia supernovae
(SNe Ia). By combining the GRB data with the joint observations from the Union2
SNe Ia set, along with the results from the Cosmic Microwave Background radia-
tion observation from the seven-year Wilkinson Microwave Anisotropy Probe and the
baryonic acoustic oscillation observation galaxy sample from the spectroscopic Sloan
Digital Sky Survey Data Release, we find significant constraints on the model pa-
rameters of the original Cardassian model ΩM0 = 0.282+0.015

−0.014, n = 0.03+0.05
−0.05; and

n = −0.16+0.25
−3.26, β = 0.76+0.34

−0.58 of the modified polytropic Cardassian model, which
are consistent with the ΛCDM model in a 1-σ confidence region. From the reconstruc-
tion of the deceleration parameter q(z) in Cardassian models, we obtain the transition
redshift zT = 0.73 ± 0.04 for the original Cardassian model and zT = 0.68 ± 0.04
for the modified polytropic Cardassian model.
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1 INTRODUCTION

Recent years, the cosmological observations from type Ia supernovae (SNe Ia; Riess et al. 1998;
Perlmutter et al. 1999), cosmic microwave background radiation (CMB; Spergel et al. 2003) and
large-scale structures (LSS; Tegmark et al. 2004; Eisenstein et al. 2005) have been used to exten-
sively explore cosmology and support the theory that the present expansion of our universe is accel-
erating. In order to explain the accelerating expansion of the universe, many cosmological models
have been proposed. The first categories were proposed by introducing an energy component called
dark energy with negative pressure in the universe, which dominates the universe to drive the accel-
eration of expansion in recent times. Many candidates for dark energy have been taken into account,
such as the cosmological constant with equation of state w = −1 (Carroll et al. 1992), the scalar field
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models with dynamical equation of state, e.g., quintessence (Ratra & Peebles 1988; Caldwell et al.
1998), phantom (Caldwell 2002), k-essence (Armendariz-Picon et al. 2001), tachyon (Padmanabhan
2002; Sen 2005), quintom (Feng et al. 2005; Guo et al. 2005; Liang et al. 2009), as well as the
Chaplygin gas (Kamenshchik et al. 2001) and the generalized Chaplygin gas model (GCG, Bento
et al. 2002), holographic dark energy (Cohen et al. 1999; Li 2004), the agegraphic dark energy (Cai
2007; Wei & Cai 2008a,b), the Ricci dark energy (Gao et al. 2009) and so on. On the other hand,
many alternative models in which gravity is modified to drive the universe’s acceleration have been
proposed, e.g., the f(R) theory in which the non-linear gravity Lagrangian (L ∼ R+f(R), where R
is the scalar curvature) has been taken into account (Capozziello & Fang 2002), the braneworld mod-
els such as the Dvali-Gabadadze-Porrati (DGP) model which consider that our observable universe
might be a surface or a brane embedded in a higher dimensional bulk spacetime (Dvali et al. 2000),
as well as the Cardassian expansion model in which the Friedmann equation is modified (Freese &
Lewis 2002; Wang et al. 2003).

In 2002, Freese and Lewis (Freese & Lewis 2002) proposed the Cardassian expansion model as
a possible explanation for the acceleration by modifying the Friedmann equation without introducing
dark energy. The modified Friedmann equation for the original Cardassian model is

H2 =
8πG

3
(ρ + Bρn). (1)

The Cardassian term which is proportional to ρn may show that our observable universe is a 3 + 1
dimensional brane embedded in extra dimensions. The first term on the right side of the equation
dominates initially, so the equation becomes the usual Friedmann equation in the early universe.
Then the two terms become equal at redshift z = zcard ∼ O(1) (Freese & Lewis 2002) and there-
after the Cardassian term begins to dominate the universe. Here n is assumed to satisfy n < 2/3 to
give rise to a positive acceleration of the universe. If n = 0, the Cardassian term becomes the cosmo-
logical constant. If B = 0, the equation becomes the usual FRW equation without the cosmological
constant. Furthermore, the modified polytropic Cardassian model can be obtained by introducing an
additional parameter β into the original Cardassian model (Wang et al. 2003). The corresponding
modified Friedmann equation is

H2 =
8πG

3
(ρβ + Cρnβ)1/β . (2)

When β = 1, the modified polytropic Cardassian model reduces to the original model.
Gamma-ray bursts (GRBs) are likely to occur in the high-redshift range beyond the SNe Ia

redshift limit. Up to now, the farthest GRB detected has been GRB 090423 at z = 8.2 (Tanvir
et al. 2009; Salvaterra et al. 2009). Recently, several empirical GRB luminosity relations have been
proposed as distance indicators (Amati et al. 2002; Norris et al. 2000; Fenimore & Ramirez-Ruiz
2000; Reichart et al. 2001; Schaefer 2003a; Yonetoku et al. 2004; Ghirlanda et al. 2004a; Liang &
Zhang 2005; Firmani et al. 2006b; Yu et al. 2009). Therefore, GRBs could be regarded as the standard
candles that act as a complementary cosmological probe to the universe at high redshift (Schaefer
2003b; Takahashi et al. 2003; Bloom et al. 2003; Dai et al. 2004; Ghirlanda et al. 2004b; Friedman &
Bloom 2005; Firmani et al. 2005, 2006a; Liang & Zhang 2005; Di Girolamo et al. 2005; Bertolami
& Silva 2006; Ghirlanda et al. 2006; Schaefer 2007; Wright 2007; Wang et al. 2007; Amati et al.
2008; Basilakos & Perivolaropoulos 2008; Mosquera Cuesta et al. 2008a,b; Daly et al. 2008; Qi et al.
2008a,b; Vitagliano et al. 2010). Due to the lack of a low-redshift sample, these luminosity relations
have usually been calibrated by assuming a particular cosmological model (e.g., the ΛCDM model
with particular model parameters according to the concordance cosmology). Therefore, most of the
calibrations of GRBs use cosmology-dependent methods which lead to the circularity problem in
cosmological research. Many works have treated the circularity problem with statistical approaches,
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such as simultaneous fitting of the parameters in the calibration curves and the cosmology (Li et al.
2008; Wang 2008; Samushia & Ratra 2010; Xu 2010; Graziani 2011). However, it is noted that an
input cosmological model is still required for simultaneous fitting.

In our previous paper (Liang et al. 2008), we presented a new method to calibrate GRB lumi-
nosity relations in a completely cosmology-independent way. The luminosity distance of GRBs in
the redshift range of SNe Ia can be obtained by interpolating directly from the SNe Ia Hubble dia-
gram and GRB data at high redshift can be obtained by utilizing the calibrated relations (Liang et al.
2008). Similar to the interpolation method, the luminosity distance of GRBs could be obtained by
another mathematical approach, such as empirical formula fitting (Kodama et al. 2008), the non-
parametric reconstruction method (Liang & Zhang 2008), local regression (Cardone et al. 2009) and
cosmographic fitting (Gao et al. 2010; Capozziello & Izzo 2010).

Following the GRB calibration method directly from SNe Ia, the derived cosmology-
independent GRB data at high redshift can be used to constrain cosmological models by using the
standard Hubble diagram method (Liang & Zhang 2008; Capozziello & Izzo 2008; Izzo et al. 2009;
Capozziello & Izzo 2009; Wei & Zhang 2009; Wei 2009; Wang et al. 2009a,b; Qi et al. 2009; Wang
& Liang 2010; Liang et al. 2010; Wei 2010; Freitas et al. 2010; Liang et al. 2011; Liang & Zhu 2011).
Capozziello & Izzo (2008) first used the GRB relations calibrated with the so-called Liang method to
derive the cosmography parameters at high redshift. Liang et al. (2010) combined the GRB data with
the joint data to constrain the cosmological parameters and reconstructed the acceleration history of
the universe.

Here we consider the Cardassian model viewed as purely phenomenological modifications of
the Friedmann equation to drive the universe’s acceleration and focus on the latest cosmological
constraints including GRBs. Until now, the Cardassian model has been constrained from many ob-
servational data, such as the angular size of the compact radio sources (Zhu & Fujimoto 2002), SNe
Ia (Wang et al. 2003; Zhu & Fujimoto 2003; Szydłowski & Czaja 2004; Godłowski et al. 2004; Frith
2004; Bento et al. 2005), the X-ray gas mass fraction of clusters (Zhu & Fujimoto 2004; Zhu et al.
2004; Zhu & Fujimoto 2004; Zhu et al. 2004), CMB (Sen & Sen 2003; Savage et al. 2005), the
large scale structure (Multamäki et al. 2003; Amarzguioui et al. 2005; Fay & Amarzguioui 2006),
the gravitational lensing (Alcaniz et al. 2005), the baryonic acoustic oscillation (BAO) (Wang et al.
2007), the Hubble parameter versus redshift data (Yi & Zhang 2007), as well as the different com-
bined data (Bento et al. 2006; Davis et al. 2007; Wang 2007; Wang & Wu 2009; Feng & Li 2010).
Also, constraints from GRBs with the joint analysis on the Cardassian model can be obtained in
Wang et al. (2007); Mosquera Cuesta et al. (2008a); Wang et al. (2009a); Wang & Liang (2010).
Very recently, the Union2 compilation of the SNe Ia data set, which consists of 557 SNe Ia, has
been released (Amanullah et al. 2010), whereas the seven-year data of the Wilkinson Microwave
Anisotropy Probe (WMAP7) have also been released (Komatsu et al. 2011).

In this paper, with the updated GRB data calibrated directly from the Union2 set, we constrain
the Cardassian model and the modified polytropic Cardassian model from the latest observations
by combining the GRB data with the joint observations from the Union2 set, along with the CMB
observation from the WMAP7 result and the BAO observation from the spectroscopic Sloan Digital
Sky Survey (SDSS) Data Release galaxy sample (Eisenstein et al. 2005). We also reconstruct the de-
celeration parameter q(z) in Cardassian expansion models and obtain the transition redshift zT. We
find that tighter and more stringent constraints can be provided with the combined data by including
GRBs in this work.

This paper is organized as follows. In Section 2, we introduce the analysis for the observa-
tion data. In Section 3, we present constraint results on Cardassian models from the joint observa-
tions including GRBs, as well as SNe Ia, CMB and BAO. Conclusions and discussions are given in
Section 4.
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2 OBSERVATIONAL DATA ANALYSIS

In our previous papers (Liang et al. 2008, 2010), we used the 192 SNe Ia compiled by Davis et al.
(2007) and the 397 SNe Ia set (Hicken et al. 2009) in the interpolation procedure to calibrate GRB
luminosity relations from the 69 GRBs compiled by Schaefer (2007). A larger number of SNe Ia
in the sample could bring a more accurate result using an interpolation procedure. Very recently,
the Union2 compilation (Amanullah et al. 2010) of 557 SNe Ia data set has been released by the
Supernova Cosmology Project Collaboration (SCP). In this paper, we use the Union2 set to calibrate
GRB luminosity relations with the GRB sample at z ≤ 1.4 by using the linear interpolation method
and we update the distance moduli of the GRBs at z > 1.4 obtained by utilizing the new calibrated
relations. For more details on the calculation, see Liang et al. (2008, 2010).

We plot the Hubble diagram of Union2 SNe Ia and the GRBs obtained using the interpolation
methods in Figure 1. The distance moduli of the 27 GRBs at z ≤ 1.4 are obtained by using the linear
interpolation method directly from the Union2 SNe set; the 42 GRB data at z > 1.4 are obtained by
utilizing the five relations calibrated with the sample at z ≤ 1.4.
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Fig. 1 Hubble Diagram of 557 SNe Ia (red dots; color online) and the 69 GRBs (circles) obtained
using the interpolation method. The 27 GRBs at z ≤ 1.4 are obtained by linear interpolation from
SNe Ia data (black circles) and the 42 GRBs at z > 1.4 (blue circles) are obtained with the five
relations calibrated with the sample at z ≤ 1.4. The curve is the theoretical distance modulus in the
concordance model (w = −1, ΩM0 = 0.27) and the vertical dotted line represents z = 1.4.

The position of the first acoustic peak in the power spectrum of CMB favors a spatially flat
Universe, therefore we assume a flat universe prior throughout this work. Constraints from SNe
Ia and GRB data can be obtained by fitting the distance moduli μ(z). A distance modulus can be
calculated as

μ = 5 log
dL

Mpc
+ 25 = 5 log10 DL − μ0, (3)

where μ0 = 5 log10 h + 42.38, h = H0/(100 km s−1 Mpc−1) and H0 is the Hubble constant. For
a flat universe, the luminosity distance DL can be calculated by

DL ≡ H0dL = (1 + z)
∫ z

0

dz′

E(z′)
, (4)
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where E(z) = H/H0, which is determined by the choice of the specific cosmological model. The
χ2 values of the observed distance moduli can be calculated by

χ2
μ =

N∑
i=1

[μobs(zi) − μ(zi)]2

σ2
μ,i

, (5)

where μobs(zi) are the observed distance moduli for the SNe Ia and/or GRBs at redshifts zi with
error σμi ; μ(zi) are the theoretical values of distance moduli from cosmological models. Following
an effective approach (Nesseris & Perivolaropoulos 2005), we marginalize the nuisance parameter
μ0 by minimizing

χ̂2
μ = A − B2/C, (6)

where

A =
∑

[μobs(zi) − 5 log10 DL]2/σ2
μi

,

B =
∑

[μobs(zi) − 5 log10 DL]/σ2
μi

,

C =
∑

1/σ2
μi

.

For the CMB observation, the shift parameters R provide an efficient summary of CMB data to
constrain cosmological models. For a flat universe, the shift parameter can be expressed as (Bond
et al. 1997)

R =
√

ΩM0

∫ zrec

0

dz

E(z)
, (7)

where zrec is the redshift of recombination. From the WMAP7 result, the shift parameter is con-
strained to be R = 1.725±0.018 and zrec = 1091.3 (Komatsu et al. 2011). The χ2 value of the shift
parameter can be calculated by

χ2
CMB =

(R − 1.725)2

0.0182
. (8)

For the BAO observation, we use the distance parameter A which, for a flat universe, can be
expressed as (Eisenstein et al. 2005)

A =
√

ΩM0

E(zBAO)1/3

[ 1
zBAO

∫ zBAO

0

dz

E(z)

]2/3

, (9)

where zBAO = 0.35. From the SDSS spectroscopic sample of luminous red galaxies, the distance
parameter is measured to be A = 0.469(ns/0.98)−0.35 ± 0.017 (Eisenstein et al. 2005), with the
scalar spectral index ns = 0.963 from the WMAP7 data (Komatsu et al. 2011). The χ2 value of the
distance parameter can be calculated by

χ2
BAO =

(A − 0.4666)2

0.0172
. (10)

3 CONSTRAINTS FROM COMBINING GRBS, SNE IA, CMB AND BAO

In order to combine GRB data into the joint observational data analysis to constrain cosmological
models, we follow a simple method in order to avoid any correlation between the SNe Ia data and the
GRB data (Liang et al. 2010). The 40 SNe points used in the interpolating procedure are excluded
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from the Union2 SNe Ia sample used to compute the joint constraints. The best fit values for model
parameters can be determined by minimizing

χ2 = χ̂2
μ{517SNe+42GRBs} + χ2

CMB + χ2
BAO . (11)

From the modified Friedmann equation of the original Cardassian model, if only considering
the matter term without considering the radiation for simplification, using ρM = ρM0(1 + z)3 =
ΩM0ρc(1 + z)3 with the present critical density of the universe ρc = 3H2

0/8πG, we obtain

fX(z) ≡ ρX

ρX0
= (1 + z)3n, (12)

where subscript ‘X’ refers to any component providing an additional term in the Friedmann equation.
The corresponding E(z) of the Cardassian model is

E(z) = [ΩM0(1 + z)3 + (1 − ΩM0)(1 + z)3n]1/2. (13)

For the modified polytropic Cardassian model, we obtain

fX(z) =
ΩM0

1 − ΩM0
(1 + z)3

[(
1 +

Ω−β
M0 − 1

(1 + z)3(1−n)β

)1/β

− 1
]
. (14)

The corresponding E(z) of the modified polytropic Cardassian model is

E(z) =
{
ΩM0(1 + z)3

[
1 +

Ω−β
M0 − 1

(1 + z)3(1−n)β

]1/β}1/2

. (15)

The joint confidence regions in the ΩM0 − n plane with the combined observational data for
the original Cardassian expansion model are shown in Figure 2. With SNe Ia + GRBs + CMB +
BAO, the best-fit values at the 1-σ confidence level are ΩM0 = 0.282+0.015

−0.014, n = 0.03+0.05
−0.05. For

comparison, fitting results from the joint data without GRBs are also given in Figure 2. The best-fit
values with SNe Ia + CMB + BAO are ΩM0 = 0.270+0.014

−0.014, n = 0.00+0.05
−0.05. With GRBs + CMB

+ BAO without SNe Ia, the best-fit values are ΩM0 = 0.290+0.045
−0.046, n = 0.11+0.18

−0.25. We present
the best-fit value of ΩM0, n with 1-σ uncertainties, χ2

min and χ2
min/dof for the original Cardassian

model in Table 1.

Table 1 Best-fit value of parameters ΩM0, n and β for the original Cardassian model and the
modified polytropic Cardassian model with 1σ uncertainties, as well as χ2

min and χ2
min/dof , with

SNe+GRBs+CMB+BAO, SNe+CMB+BAO and GRBs+CMB+BAO.

Original Cardassian Model Modified polytropic Cardassian Model

SN+GRB+CMB+BAO SN+CMB+BAO GRB+CMB+BAO SN+GRB+CMB+BAO SN+CMB+BAO GRB+CMB+BAO

ΩM0 0.282+0.015
−0.014 0.270+0.014

−0.014 0.290+0.045
−0.046 0.285+0.014

−0.015 0.271+0.015
−0.015 0.285+0.045

−0.045

n 0.03+0.05
−0.05 0.00+0.05

−0.05 0.11+0.18
−0.25 −0.16+0.25

−3.26 −0.22+0.34
−3.27 −0.05+0.59

−5.11

β β ≡ 1 β ≡ 1 β ≡ 1 0.76+0.34
−0.58 0.74+1.15

−0.56 0.81+3.80
−0.51

χ2
min 538.10 542.92 34.76 537.46 542.81 34.76

χ2
min/dof 0.96 0.98 0.83 0.96 0.98 0.83

For the modified polytropic Cardassian model, we find that the best-fit values at the 1-σ con-
fidence level with SNe Ia + GRBs + CMB + BAO are ΩM0 = 0.285+0.015

−0.014, n = −0.16+0.25
−3.26 and

β = 0.76+0.36
−0.58.
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Fig. 2 Joint confidence regions in the ΩM0 − n plane for the original Cardassian model in a
flat universe. The contours correspond to 1-σ and 2-σ confidence regions. The black solid lines,
red dashed lines and the blue dash-dotted lines, represent the results of SNe+GRBs+CMB+BAO,
SNe+CMB+BAO and GRBs+CMB+BAO, respectively. The black plus, red point and blue star corre-
spond to the best-fit values of SNe+GRBs+CMB+BAO, SNe+CMB+BAO and GRBs+CMB+BAO,
respectively.
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Fig. 3 Joint confidence regions in the n − β plane for the modified polytropic Cardassian
model in a flat universe. The contours correspond to 1-σ and 2-σ confidence regions. The
black solid lines, red dashed lines and the blue dash-dotted lines (color online) represent the
results of SNe+GRBs+CMB+BAO, SNe+CMB+BAO and GRBs+CMB+BAO, respectively. The
black plus, red point and blue star correspond to the best-fit values of SNe+GRBs+CMB+BAO,
SNe+CMB+BAO and GRBs+CMB+BAO, respectively.
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Figure 3 shows the joint confidence regions with the combined observational data for the mod-
ified polytropic Cardassian model in the n − β plane, while fixing ΩM0 with the best-fit values.
With SNe Ia + CMB + BAO, the best-fit values are ΩM0 = 0.271+0.015

−0.014, n = −0.22+0.34
−3.27 and

β = 0.74+1.15
−0.56, while with GRBs + CMB + BAO, the best-fit values are ΩM0 = 0.285+0.015

−0.014,
n = −0.06+0.59

−5.11 and β = 0.81+3.80
−0.51. We also present the best-fit value of ΩM0, n and β with 1-σ

uncertainties, χ2
min and χ2

min/dof for the modified polytropic Cardassian model in Table 1.
From Figures 2 and 3 and Table 1, we can find that GRBs can also give strong constraints when

combined with CMB and BAO data without SNe Ia. By comparing the joint constraints with GRBs
and without GRBs, we can see that the contribution of GRBs to the joint cosmological constraints is a
slight shift which adds the best-fit value of ΩM0 and significantly narrows the parameters’ confidence
ranges of the modified polytropic Cardassian model. We also find that the ΛCDM model (n ≡ 0, β ≡
1 ) is consistent with all the joint data in the 1-σ confidence region and combining these observational
data can tighten the model parameters significantly compared to results from former works (Wang
2007; Wang & Wu 2009). We also investigate the deceleration parameter for Cardassian expansion
models. The deceleration parameter q(z) can be calculated by

q = −1 + (1 + z)E(z)−1 dE(z)
dz

. (16)

In Figure 4, we show the evolution of q(z) for the original Cardassian expansion model. We
obtain q0 = −0.55 ± 0.054 and the transition redshift is zT = 0.73 ± 0.04 at the 1σ confidence
level, which is more stringent and comparable with the former result (zT = 0.70 ± 0.05) by Wang
(2007), but is slightly later than the former result (zT = 0.55 ± 0.05) by Wang & Wu (2009). We
show the evolution of q(z) for the polytropic Cardassian expansion model in Figure 5 and we find
the transition redshift zT = 0.68 ± 0.04 and q0 = −0.57 ± 0.07.
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Fig. 4 Evolution of the deceleration parameter q(z) from fitting results in the original Cardassian
model. The solid line is drawn by using the best fit parameters. The shaded region shows the 1-σ
uncertainties.
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Fig. 5 Evolution of the deceleration parameter q(z) from fitting results in the polytropic Cardassian
model. The solid line is drawn by using the best fit parameters. The shaded region shows the 1-σ
uncertainties.

4 CONCLUSIONS AND DISCUSSION

In this paper, by using the Union2 set of 557 SNe Ia, we calibrate GRB data in a completely
cosmology-independent way. When combining the GRB data with the Union2 set, we avoid any
correlation between the SNe Ia data and the GRB data (Liang et al. 2010). From the GRB data to
the joint observations with the Union2 set, along with the CMB from WMAP7 and the BAO obser-
vation from the SSDS Data Release galaxy sample, we find significant constraints on model param-
eters of the original Cardassian model ΩM0 = 0.282+0.015

−0.014, n = 0.03+0.05
−0.05; and n = −0.16+0.25

−3.26,
β = 0.76+0.34

−0.58 from the modified polytropic Cardassian model, which are consistent with the ΛCDM
model in the 1-σ confidence region. From the reconstruction of the deceleration parameter q(z) in
Cardassian expansion models, we obtain the transition redshift zT = 0.73 ± 0.04 for the original
Cardassian model and zT = 0.68 ± 0.04 for the modified polytropic Cardassian model, which are
more stringent compared to the former results (Wang 2007; Wang & Wu 2009). It is found that GRBs
can give strong constraints when combined with CMB and BAO data without SNe data and we can
see the contribution of GRBs to the joint cosmological constraints by comparing to the joint con-
straints with GRBs and without GRBs. Hereafter, along with more and more observed data, GRBs
could be used as an optional choice to set tighter constraints on the Cardassian model and even other
cosmological models.

Recently, some works pointed out that there are observational selection biases in the GRB re-
lations (Butler et al. 2007; Shahmoradi & Nemiro 2009) and possible evolution effects in GRB
relations (Li 2007; Tsutsui et al. 2008) However, it is found that there is no sign of evolution with
redshift of the Amati relation and the instrumental selection effects do not dominate for GRB re-
lations (Ghirlanda et al. 2008, 2009). Nevertheless, further examinations of possible evolutionary
effects and selection biases should be required for considering GRBs as standard candles for cosmo-
logical use.
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