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Abstract Fractals are a basic tool for phenomenologically describing natural ob-
jects having a high degree of temporal or spatial variability. From a physical point
of view the fractal properties of natural systems can also be interpreted by using the
standard formalism of thermodynamical fluctuations. We introduce and analyze the
fractal dimension of the Intra-Day-Variability (IDV) light-curves of BL Lac objects,
in the optical, radio and X-ray bands. A general description of the fluctuation spec-
trum of these systems based on general thermodynamical principles is also proposed.
Based on the general fractal properties of a given physical system, we also introduce
the predictability index for the IDV light curves. We have explicitly determined the
fractal dimension for the R-band observations of five blazars, as well as for the ra-
dio band observations of the compact extragalactic radio source J 1128+5925 and of
several X-ray sources. Our results show that the fractal dimension of the optical and
X-ray observations indicates an almost pure “Brownian noise” (random walk) spec-
trum, with a very low predictability index, while in the radio band the predictability
index is much higher. We have also studied the spectral properties of the IDV light
curves and we have shown that their spectral index is very closely correlated with the
corresponding fractal dimension.
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1 INTRODUCTION

Fractals are a basic tool to phenomenologically describe natural objects. According to Mandelbrot
(1983), a fractal is a set whose Hausdorff dimension is not an integer. The fractal dimension is
one possible parameter that characterizes chaotic systems and the analysis of time series is one of
the most common means to find the fractal dimension from observable quantities. Fractals are also
very useful for the analysis of waveforms, a term that describes the shape of a wave, usually drawn
as instantaneous values of a variable quantity versus time. The fractal analysis of waveforms was
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introduced by Katz (1988), who considered the possibility that the complexity of a waveform may
be represented by its fractal dimension. Katz (1988) proposed that the fractal dimension can be
measured empirically by sampling the waveform at N points evenly spaced on the abscissa, which
discretized the waveform into N ′ = N − 1 segments. Then the fractal dimension can be obtained as

DF = log N ′/ [log N ′ + log (d/L)] ,

where d = max [dist(i, j)] is the planar extent of the curve and L =
∑N ′

i=0 dist(i, i+1) is the length
of the curve, where “max” stands for the maximum dist(i, j), the distance between points i and j of
the curve. An alternative and more efficient algorithm for the computation of the fractal dimension
was proposed by Sevcik (1998, 2006), which we will consider in the following.

The fractal analysis has been extensively used in astronomy and astrophysics for the study of
the fractal properties of gamma ray bursts (Shakura et al. 1994), the critical properties of spherically
symmetric accretion in a fractal medium (Roy & Ray 2007), for the analysis of fractal structures in
the photospheric and the coronal magnetic field of the Sun (Ioshpa et al. 2008; Dimitropoulou et al.
2009), as a measure of the scale of homogeneity (Yadav et al. 2010), for the study of the star forming
regions (Sánchez et al. 2010) and for the analysis of the dark matter and gas distributions in the
Mare-Nostrum universe (Gaite 2010). The quasar distribution on the celestial sphere is characterized
by power laws as well with correlation dimension values ranging from 1.49 to 1.58 for different
redshift layers in the same range (Rozgacheva & Agapov 2011a). A fractal cosmological model,
which accounts for the observable fractal properties of the large-scale structure of the Universe, was
discussed in Rozgacheva & Agapov (2011b).

Many classes of Active Galactic Nuclei have variability properties. The time scale of variability
can be classified as yearly, monthly or daily. If the sources vary within one night or day, the time
variation is called “Intra-day Variability,” or simply IDV. There is one main method for confirming
whether or not the object shows IDV in the differential light curve. This is the so-called statistical
method. In this method one checks if the variability amplitude is greater than three times the sigma
value. The best criterium is, however, five times the sigma criterium (Fan 2011). Another method,
based on the so called C-parameter, was introduced by Romero et al. (1999). The criterium for
confirming if the object shows IDV is having the “C” value greater than or equal to 2.576. If this
is the case, the IDV variability is confirmed at the 99% confidence level. Furthermore, the object
is said to be variable if the “C” value is greater than or equal to 2.576 at two different bands. The
IDV can be checked by the formula proposed by Heidt & Wagner (1996). For checking the IDV
for the source in radio band, a statistical parameter called modulation index is used. Usually, for the
IDV light curve of blazars, there is no significant pattern or period. Roland et al. (2009) proposed
that the formation and the rotation of a warp in the inner part of the accretion disk can lead to some
perturbations of the beam that finally produce the observed IDV.

It is the purpose of the present paper to analyze the IDV light curves by using their fractal dimen-
sion properties and to try to interpret the actual value of the fractal dimension by using the general
formalism of thermodynamic fluctuations. The actual IDV signal is always fluctuating. Profiles of
IDV signals are also remarkably varied. The possible mechanisms for generating IDV emissions
could also be different. The fractal dimension could provide a hint into the physical processes that
could trigger the IDV processes. In the present paper, we have explicitly determined the fractal di-
mension for the R-band optical emission of five blazars (Gupta et al. 2008) and for the radio band
emission of the compact extragalactic radio source J 1128+5925 (Gabányi et al. 2007). The fractal
dimension allows us to introduce the predictability index, which represents a powerful indicator of
the nature of the IDV signal. The general fractal properties of IDV signals can be interpreted in the
framework of the general theory of thermodynamic fluctuations for self-gravitating systems. The
fractal dimension of the optical observations indicates an almost pure “Brownian noise” (random
walk) spectrum, with a very low predictability index, while in the radio band the predictability index
is much higher. We have also studied the spectral properties of the IDV light curves by using the
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periodogram method and we have shown that their spectral index is very closely correlated with the
corresponding fractal dimension.

The present paper is organized as follows. In Section 2 we consider the theory of the thermo-
dynamic fluctuations of the self-gravitating systems and obtain the general theoretical predictions
for the fractal dimension of the fluctuation spectrum. The methods for the calculation of the fractal
dimension and of the power spectrum are presented in Section 3. The fractal dimensions and the
power spectra of several IDV signals in optical, radio and X-ray bands are obtained in Section 4.
The correlation between the fractal dimension and the spectral index is also discussed in detail. We
discuss and conclude our results in Section 5.

2 FRACTAL PROPERTIES OF FLUCTUATING SELF-GRAVITATING SYSTEMS

In the following we consider a system of self-gravitating particles (an astrophysical accretion disk,
for example), embedded in a heat bath (an external medium) of gravitationally non-interacting par-
ticles. The system interacts with the surrounding bath through a friction force, due to which the
particles in Brownian motion lose energy to the medium and simultaneously gain energy from the
random kicks of the thermal bath, which can be described by a stochastic force (for a description of
the dynamics of the system via a Langevin equation see Leung et al. 2011). As a result of the inter-
action between the system and the heat bath, the thermodynamical quantities of the system fluctuate.
In the following we consider the standard thermodynamic fluctuation formalism (Landau & Lifshitz
1980; Kandrup 1983) as applied to self-gravitating systems and we derive the time dependence of
the fluctuation spectrum.

According to the fundamental principles of statistical mechanics, the probability w for a quantity
to have a value in the interval from r to r+dr is proportional to eΔSt(r), where ΔSt(r) is the change
in the entropy during the fluctuation (Landau & Lifshitz 1980). The entropy change can be written
as ΔSt = −Wmin/T , where Wmin is the minimum work needed to reverse the given change in the
thermodynamic quantities in a small part of the system. Thus w ∝ e−Wmin/T . For Wmin we can
adopt the expression

Wmin = ΔE − TΔS + PΔV + ΔRmin, (1)

where ΔE, ΔS and ΔV are the fluctuations in energy, entropy and volume, respectively, while
ΔRmin is the minimal work necessary for reversible removal of mass ΔM from a distance δr in the
gravitational field of a mass M . Thus we have

w ∝ exp
(
− ΔE − TΔS + PΔV

T
− ΔRmin

T

)
. (2)

Equation (2) can be applied to any fluctuation, small or large. However, in the following we only
consider the case of small fluctuations. In this case, we can expand ΔE in a series, obtaining

ΔE =
∂E

∂S
ΔS +

∂E

∂V
ΔV +

1
2

[
∂2E

∂S2
(ΔS)2 + 2

∂2E

∂S∂V
ΔSΔV +

∂2E

∂V 2
(ΔV )2

]
. (3)

By taking into account that ∂E
∂S = T , ∂E

∂V = −P , we obtain

ΔE − TΔS + PΔV =
1
2

[
∂2E

∂S2
(ΔS)2 + 2

∂2E

∂S∂V
ΔSΔV +

∂2E

∂V 2
(ΔV )2

]

=
1
2

(ΔSΔT − ΔPΔV ) , (4)

giving

w ∝ exp
(

ΔSΔT − ΔPΔV

2T
− ΔRmin

T

)
. (5)
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By taking V and T as independent variables, we first obtain

ΔS =
(

∂S

∂T

)
V

ΔT +
(

∂S

∂V

)
T

ΔV =
Cv

T
ΔT +

(
∂P

∂T

)
V

ΔV, (6)

ΔP =
(

∂P

∂T

)
V

ΔT +
(

∂P

∂V

)
T

ΔV, (7)

where Cv is the specific heat at constant volume. Therefore for the fluctuation probability we obtain

w ∝ exp
[
− Cv

2T 2
(ΔT )2 +

1
2T

(
∂P

∂V

)
T

(ΔV )2 − ΔRmin

T

]
. (8)

In order to estimate Rmin we consider that it can be obtained as (Rozgacheva & Agapov 2011b;
Rozgacheva 1984)

ΔRmin ≈ G
MΔM

r2
Δr =

4π

3
GρrΔMΔr, (9)

where M = 4πρr3/3 is the mass at radius r and ΔM = 4πρr2Δr is the mass of a spherical shell
of thickness Δr. Therefore the probability of thermal fluctuations in a self-gravitating system takes
the form (Rozgacheva & Agapov 2011b; Rozgacheva 1984)

w ∝ exp

[
− 1

2δ2
T

(
ΔT

T

)2

− 1
2δ2

r

(
Δr

r

)2
]

, (10)

where δ2
T = C−1

v and

δ2
r =

{
12πρ

kT

[(
∂P

∂V

)
T

r3 +
8πGρ

9
r5

]}−1

, (11)

where k is Boltzman’s constant. The root-sum-square relative density fluctuation (fluctuation spec-
trum) is given by (Rozgacheva & Agapov 2011b)√√√√〈(

Δρ

ρ

)2
〉

= 3

√√√√〈(
Δr

r

)2
〉

= 3
{

12πρ

kT

[(
∂P

∂V

)
T

r3 +
8πGρ

9
r5

]}−1/2

. (12)

The fluctuations of the density are related to the fluctuations of the radial coordinate by

Δρ

ρ
= −3

Δr

r
. (13)

Since our main goal is to study the time variability of some astrophysical phenomena, we have to
convert the radial variability into time variability. There are two possible time-scales for astrophys-
ical phenomena, namely, the oscillation time scale and the free-fall time scale. For a homogeneous
uniform self-gravitating system that behaves as a perfect gas throughout, the pulsation period tp
is tp = 2π/

√
3πGρ, while the free-fall time is tff =

√
4π/3Gρ. In both cases, the time-scale is

proportional to 1/
√

ρ. Therefore, assuming such a general time - density dependence, we obtain

Δt

t
= −1

2
Δρ

ρ
. (14)

With the use of Equation (13) we obtain

2
3

Δt

t
=

Δr

r
, (15)
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giving
r ∝ t2/3. (16)

We can now discuss the limiting cases of the time-spectrum in a self-gravitating system. At spatial
scales when the pressure gradients dominate, we have√√√√〈(

Δρ

ρ

)2
〉

≈ 3
{

12πρ

kT

[(
∂P

∂V

)
T

r3

]}−1/2

∝ r−3/2 ∝ t−1. (17)

At large scales, when gravitational effects are important, we obtain√√√√〈(
Δρ

ρ

)2
〉

≈ 3
{

12πρ

kT

[
8πGρ

9
r5

]}−1/2

∝ r−5/2 ∝ t−5/3. (18)

However, the above discussion is incomplete in the sense that in a typical fluctuating system we
have two independent modes, one growing and one decaying. A better estimation of the time depen-
dence of the fluctuations can be obtained as follows (Rozgacheva 1988). According to Chebyshev’s
inequality from probability theory, the probability that a density fluctuation Δρ/ρ exceeds δ > 0 is
given by (Feller 1971)

P (|Δρ/ρ| ≥ δ) ≤ C

δ2
, (19)

where C is a constant. Now let us assume that for the independent growing mode we have δ1 ∼ tα,
while the decaying mode behaves as δ2 ∼ t−γ , where α, γ > 0 are constants. Then from
Chebyshev’s inequality we find P1 (|Δρ/ρ| = δ1) ∼ t−2α and P2 (|Δρ/ρ| = δ2) ∼ t2γ . We now
take into account the collective effects and look for the probability of the existence of a growing
density contrast if there are neighboring regions of space in which the density inhomogeneity de-
creases. From a mathematical point of view, we need to find the conditional probability P12, which,
according to the rules of probability theory, is given by P1 = P12P2. Therefore

P (|Δρ/ρ| = δ) = P12 =
P1

P2
∼ t−2α−2γ . (20)

By again using Chebyshev’s inequality we find

Δρ

ρ
∼ tα+γ . (21)

3 FRACTAL DIMENSION AND PREDICTABILITY INDEX

The fractal dimension can be defined by the self-similar power law scaling function (Mandelbrot
1983; Rangarajan & Sant 2004)

y(x) = asx
D, D > 0, (22)

where y(x) denotes the number of self-similar objects in the sphere or circle of radius x; as and
D stand for the scaling factor and for the spatial fractal dimension, respectively. Physical systems
evolve not only in space but also in time. Therefore many time dependent natural processes can be
successfully fitted by the temporal counterpart of the fractal function given by Equation (22),

y(t) = att
Dt , t > 0, (23)

in which y(t) characterizes the time-evolution of the system, Dt is its temporal fractal dimension
and at is a scaling factor.
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In the following, we will obtain an expression for the calculation of the fractal dimension by
starting from the definition of the Haussdorf dimension (Sevcik 1998, 2006). The Haussdorf DH

dimension of a set in a metric space is defined as

DH = − lim
ε→0

ln [N (ε)]
ln ε

, (24)

where N (ε) is the number of open balls of a radius ε needed to cover the entire set. In a metric
space, given any point P , an open ball of center P and radius ε, there is a set of all points x for
which dist (P, x) < ε. A line of length L may be divided into N(ε) = L/ (2ε) segments of length
2ε and may be covered by N open balls of radius ε. Thus, Equation (24) may be rewritten as

DH = lim
ε→0

[− ln(L) + ln (2ε)
ln (ε)

]
= lim

ε→0

[
1 − ln(L) − ln (2)

ln (ε)

]
= lim

ε→0

[
1 − ln(L)

ln (ε)

]
. (25)

Waveforms are planar curves in a space with coordinates which usually have different units.
Since the topology of a metric space does not change under linear transformation, it is convenient to
linearly transform a waveform into another normalized space, where all axes are equal. Sevcik (1998)
proposed to use two linear transformations that map the original waveform into another form, em-
bedded in an equivalent metric space. The first transformation normalizes every point in the abscissa
as x∗

i = xi/xmax, where xi are the original values of the abscissa and xmax is the maximum xi. The
second transformation normalizes the ordinate as y∗

i = (yi − ymax) / (ymax − ymin), where yi are
the original values of the ordinate and ymin and ymax are the minimum and maximum yi, respec-
tively. These two linear transformations map the N points of the waveform into another space that
is a subset of a unit square. This unit square may be visualized as covered by a grid of N × N cells,
with N of them containing one point of the transformed waveform. Calculating L of the transformed
waveform and taking ε = 1/(2 × N ′), where N ′ = N − 1, Equation (25) becomes (Sevcik 1998)

DH ≈ D = 1 +
ln(L)

ln (2 × N ′)
. (26)

The approximation for the calculation of DH improves as N ′ → ∞.
If the fractal dimension D for the time series is 1.5, there is no correlation between amplitude

changes corresponding to two successive time intervals. Therefore, no trend in amplitude can be dis-
cerned from the time series and hence the process is unpredictable. However, as the fractal dimension
decreases to 1, the process becomes more and more predictable since it exhibits “persistence.” That
is, the future trend is more and more likely to follow an established trend. As the fractal dimension
increases from 1.5 to 2, the process exhibits “anti-persistence.” That is, a decrease in the amplitude
of the process is more likely to lead to an increase in the future. Hence, the predictability again
increases (Rangarajan & Sant 2004).

Based on the fractal dimension, we can introduce the predictability index P of a given physical
system, defined as (Rangarajan & Sant 1997),

PI = 2 |D − 1.5| , (27)

where | | denotes the absolute value of the number D. We use absolute values since predictability
increases in both of the following cases - when the fractal dimension becomes less than 1.5 and when
it becomes greater than 1.5. In the former case, we have correlation (persistence) behavior and in the
latter case, anti-correlation (anti-persistence) behavior. However, in either case, the process becomes
more predictable. Thus, the use of absolute values ensures that a process with D = 1.3 has the same
predictability index as a process with D = 1.7.
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4 FRACTAL DIMENSION, PREDICTABILITY INDEX AND POWER SPECTRUM
INDEX OF IDV LIGHT CURVES

In order to analyze the fractal properties of IDV light curves, we consider a sample of several blazars,
which have been observed in a simultaneous multi-wavelength observing campaign in their outburst
phase by Gupta et al. (2008). Optical photometric monitoring of nine blazars was carried out in 13
observing nights during the observing run of 2006 October 27–2007 March 20, using the 1.02m
optical telescope equipped with a CCD detector and BVRI Johnson broadband filters at Yunnan
Astronomical Observatory,Kunming, China. The R-band observations of five blazars are represented
in Figure 1.

There are many ways to characterize different noise sources. One possibility, which we have also
explored in the present paper, is to consider the spectral density, that is, the mean square fluctuation
at any particular frequency f and its variation with frequency. In many natural processes, the power
spectrum P (f) is proportional to 1/fβ, where the power index β ≥ 0. When β = 0, the noise is
referred to as white noise, when it is 2 it is referred to as a Brownian noise and when it is 1 it is
called 1/f noise (Havlin et al. 1995; Denisov 1998).

In order to obtain the power spectral index β we have used the periodogram method, as de-
veloped in Vaughan (2005, 2010). To fit the data we have used power law fitting for all our bands.
In fact, we can also use other options. However, since the number of available data points in the
optical and radio bands is limited, for the sake of uniqueness we can only use the power law fitting
method. Although the X-ray data can be fitted by different functions, the optical data and the radio
data cannot be fitted by other methods, such as the bending power method. Therefore, we fitted the
data in all bands by using a power law. With the use of the above procedures, we can obtain the
power spectrum, the power spectrum index and all the other useful parameter information, such as
the p-value. The error values after fitting have also been obtained and we present them in Tables 1
and 2 as a percentage error.

The fractal dimensions, the predictability index PIIDV and the power index of the observed
blazar optical time series are presented in Table 1.

Table 1 Fractal dimensions, predictability indices and power indices of a sample of
R-band light curves (Gupta et al. 2008).

Object Date of Observation D PIIDV β Fit Error of β

S2 0109+224 2007–01–11 1.52591 0.051 0.909647 0.1723201
S5 0716+714 2007–01–11 1.44996 0.100 1.41473 0.1404088
S5 0716+714 2007–01–12 1.45699 0.086 1.389167 0.07811043
S5 0716+714 2007–02–23 1.35088 0.298 1.672849 0.2028525
S5 0716+714 2007–03–19 1.57989 0.159 0.2951006 0.1540101
S5 0716+714 2007–03–20 1.44484 0.110 1.21574 0.08695967
PKS 0735+178 2007–01–11 1.56557 0.131 0.6411014 0.1548084
ON 231 2007–01–11 1.45285 0.094 0.7989009 0.1536858
1ES 2344+514 2007–01–12 1.42142 0.157 1.148679 0.2762177

As a second example of the determination of the fractal dimension, we consider the short time-
scale radio variations of the compact extragalactic radio source J 1128+5925 (Gabányi et al. 2007).
The flux density variability of J 1128+5925 was monitored with dense time sampling between 2.7
and 10.45GHz. For our analysis we use the data observed with the 100m Effelsberg radio telescope
of the Max-Planck-Institut fur Radioastronomie at 2.70, 4.85 and 10.45GHz. Ten observing sessions
that lasted several days during the period between 2004–2006 were performed.

Apart from the optical and radio data, we also tried to use short time-scale IDV data from the
XMM database for calculating the fractal dimension. We reduced the data and followed the result
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Fig. 1 R-band variability and power spectrum of the sample of blazars observed in Gupta et al.
(2008).
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Fig. 1 — Continued.
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Fig. 1 — Continued.

Table 2 Fractal dimensions, predictability indices and power spectral indices of the
compact extragalactic radio source J 1128+5925 (Gabányi et al. 2007) and of the X-
ray sources ON 231, 1ES 2344+514 and PKS 2155–304 (Gaur et al. 2010).

Object Date of Observation D PIIDV β Fit Error of β

J 1128+5925 2005–09–16 1.28642 0.42716 2.188192 0.1472077
J 1128+5925 2006–04–28 1.25587 0.48826 2.042647 0.1100852
ON 231 2002–06–26 1.43877 0.122 1.621563 0.06751574
1ES 2344+514 2005–06–19 1.60232 0.204 0.63486 0.06634579
PKS 2155–304 2002–05–24 1.44012 0.11976 1.055890 0.0554563
PKS 2155–304 2002–05–24 1.56946 0.13892 0.6418146 0.06857538
PKS 2155–304 2002–05–24 1.33378 0.33244 1.615948 0.06764645
PKS 2155–304 2000–05–31 1.57255 0.1451 1.023354 0.04338111
PKS 2155–304 2000–11–21 1.51078 0.02156 1.171058 0.04761672

from the published targets as shown in Gaur et al. (2010). From the XMM database we have reduced
seven blazars.

We used the XMM-Newton Science Analysis System (SAS) version 11.0 to reduce the EPIC-
pn data taken from the archive. We followed the same procedure outlined in Gaur et al. (2010) to
extract the lightcurves. In brief, we excluded all the high background due to flaring and restricted all
the events to the 0.3–10keV energy band. We used a 45 arcsec radius as the extraction region for both
the source and the background (from a source-free region). In addition, the background subtracted
light curves were corrected for vignetting, bad pixels, point spread function (PSF) variation, quantum
efficiency and dead time. All the light curves were binned with 100-second timing resolution.

The radio and X-ray data, together with their corresponding power spectra are shown in Figure 2,
while the fractal dimension, predictability indices and the power spectral indices are presented in
Table 2.

There is a relation between the fractal dimension D of the Brownian noise and the power index
β, namely (Havlin et al. 1995; Denisov 1998)

D =
5 − β

2
. (28)

If the fractal dimension of the considered IDV sources is around D = 1.5, then the power spectral
index is around β = 2. We have studied the correlation between the fractal dimension D and the
power spectral index of the optical and X-ray IDV sources - we did not include the radio data in our
study, due to their small number. There is a very good correlation between D and β and for these 15
sources the relation between the fractal dimension and the power index can be given as

D = 1.66229− 0.16699× β. (29)
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Fig. 2 Radio-band variability and power spectrum of the compact extragalactic radio source
J 1128+5925 (Gabányi et al. 2007) and X-ray variability and power-spectrum of the sources ON 231
and 1ES 2344+514.
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Table 3 Regression statistics for the correlation between fractal dimen-
sions and power spectral indices of optical and X-ray sources. The cor-
relation coefficient is denoted by C.C.

C.C. C.C.2 Standard Error Total Number of Cases

0.8428 0.7104 0.0469 15

Table 4 ANOVA Table for the correlation coefficient of the fractal di-
mensions and power spectral indices of optical and X-ray sources.

Name d.o.f SS MS F p-value

Regression 1 0.07041 0.07041 31.89023 0.00008
Residual 13 0.0287 0.00221 − −
Total 14 0.09912 − − −

Notes: d.o.f represents the number of degrees of freedom, SS is the sum of squares,
MS is the mean sum of squares value, F represents the value of the F-statistics and
p-value represents the measure of the degree of the insignificance of the regression
model.

Equation (29) can also be written, to a very good approximation, as

D =
10 − β

6
. (30)

The correlation statistics of the D − β correlation is represented in Table 3. For the chosen set
of data the correlation coefficient between these two parameters is 0.8428.

The statistical significance of the correlation coefficient is presented in Table 3 by means of
the ANOVA analysis. In Table 3, C.C. represents the correlation coefficient. It represents the fitting
accuracy. With the C.C. equal to 1 and –1, the scatter diagram can be fitted by one single straight line.
C.C.2 represents the square of C.C. In statistics, the number of degrees of freedom is the number
of values in the final calculation of a statistic that are free to vary. If the F-statistic values computed
in the ANOVA table are less than the F-table statistics, or the p-value is greater than the alpha level
of significance, then there is no reason to reject the null hypothesis that all the means are the same.
For our p-value, we obtained 0.00008 and thus we conclude that the null hypothesis should not be
rejected at the 1% significance level, since the p-value is much less than 0.01.

The relation between the theoretical data fit and the observational data, given by Equation (29), is
presented graphically in Figure 3. The presence of the strong Brownian noise in the IDV spectra also
strongly support the idea that random stochastic processes play a significant role in their formation
and evolution, as suggested in Leung et al. (2011).

5 DISCUSSION AND FINAL REMARKS

Since the determination of the fractal dimension of the time series is relatively simple, it can provide
useful information about the signal fluctuation from variable astrophysical sources. In the present
paper, we have explicitly obtained the fractal dimensions for several IDV emissions in both optical
and radio bands. From the point of view of the fractal analysis, the optical and the radio signals show
some remarkable differences. In the optical and X-ray bands, the fractal dimension of the IDV signals
is very close to the value D = 1.5, indicating an almost perfect “Brownian noise” (random walk, or
Wiener process) fluctuation spectrum (Brownian noise can be generated by integrating white noise)
(Havlin et al. 1995; Denisov 1998). The predictability index of this signal is very low, showing that
the emission in the optical band is dominated by purely stochastic processes. On the other hand, the
radio band emission pattern of the compact extragalactic radio source J 1128+5925 shows a relatively
low fractal dimension on the order of D = 1.25, with a much higher predictability index. This result
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can be interpreted from a physical point of view in the framework of the thermodynamic theory
of fluctuations as follows. Assuming that in both fluctuating phases the self-gravitating fluctuations
have a time dependence given by Equation (16), we have α = γ = 2/3. Then from Equation (21)
it follows that the time dependence of the fluctuation spectrum is on the order of ∼ tα+γ ∼ t4/3 ∼
t1.33, which gives a fractal dimension D = 1.33, very close to the observed values of D = 1.25
and D = 1.28. Therefore, this implies that the dominant time scale in the emission process is on
the order of the gravitational free fall time scale. On the other hand, in order to obtain the fractal
dimension (D = 1.5) in the optical phase of the IDV through the same method, the assumption of a
t±0.75 dependence in the fluctuation spectrum from the fluctuating phases is necessary. This shows
that the characteristic time scale of the density fluctuations cannot be on the same order of magnitude
as the free fall time and other physical processes, like, for example, viscous dissipation, which may
be responsible for the dynamics.

We have also obtained the general time dependence of the fluctuation spectrum in a self-
gravitating system, as given by Equations (17) and (18). The density fluctuations can be related
to the luminosity fluctuations of the emitting source. By assuming that the emission of the radiation
is in the form of thermal radiation, from the Stefan-Boltzmann law we find that the luminosity (en-
ergy emitted per second) from a spherical surface with radius R is given by L = 4πR2σT 4

eff , where
σ is Stefan’s constant and Teff is the effective temperature of the emitting surface. With the use of the
hydrostatic equilibrium equation and of the virial theorem one can show that L ∝ ρ1/3 (Choudhuri
2010). With the use of this relation, we immediately obtain ΔL/L ∝ Δρ/ρ. Therefore, with the use
of Equations (17) and (18) the radial distance and time spectrum of the fluctuations of the luminosity
in self-gravitating systems can be written as√√√√〈(

ΔL

L

)2
〉

∝ r−Dr ∝ t−Dt . (31)

The constants Dr and Dt can be interpreted physically as the fractal dimensions, describing the
fractal properties of the thermal radiation emission spectra from fluctuating sources. The comparison
of the fractal dimension of these spectra with the IDV observational data could give a powerful
indication about the nature of the physical processes (thermodynamical or gravitational, random or
deterministic) that play the dominant role in the electromagnetic emission process.

In the present paper, we have also studied the correlation between the fractal dimension and
the power spectral index β. We have found a very good correlation between these two physical
parameters.
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Fractal properties, or self-similarity, can be found in many aspects in nature. Our analysis has
concentrated on the fractal properties of the IDV signal. Due to the limited amount of data used,
our results can be considered only as a first step in the investigation of the fractal properties of the
IDVs. It will be important in the future to investigate more signals at different wavelengths, in order
to obtain a more accurate determination of the fractal dimension and to clarify the relation between
the fractal dimensions of different bands and the spectral power index.

Acknowledgements The work of T. H. was supported by a GRF grant from the Government of the
Hong Kong SAR.

Appendix A:

To obtain the spectral index β and for fitting our data, we used the periodogram method as developed
in Vaughan (2010). The periodogram is used for dealing with the evenly sampled time series xk of
K points at intervals ΔT . The definition of the periodogram is (Vaughan 2005)

I(fj) =
2ΔT

〈x〉2N |Xj |2, (A.1)

where |Xj|2 is the modulus-squared of the discrete Fourier transform.
The unit of the normalization of the periodogram is (rms/mean)2 Hz−1. The initial purpose

of the periodogram was to search for “hidden periodicity” in time series analysis. However, for
a single time series, the periodogram of a noise process shows a great deal of scatter around the
underlying power spectrum. For the case of a given frequency, I (fj) is scattered around the true
power spectrum, P (fj). It also follows a χ2 distribution with two degrees of freedom,

I (fj) = P (fj)χ2
2/2, (A.2)

where χ2
2 is a random variable distributed as χ2 with two degrees of freedom. It is equivalent to an

exponential probability density, with a mean and variance of two and four, respectively,

pχ2(x) = exp (−x/2) /2. (A.3)

For the case of a white noise flat spectrum, the power level is calculated by making use of
Equations (A.2) and (A.3) to obtain the maximum likelihood of a given periodogram. Similarly, for
the more general case of non-white noise, we need to examine the spurious peaks in the periodogram
and regard them as Brownian (red) noise. A simple method to obtain a reasonable estimate of the
power-law spectrum is S(f) = αf−β . α is the so called normalization of the power-law power
spectrum and β is the power spectral index.
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