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Abstract We explore a 5D Brans-Dicke scalar cosmology by conjecturing that the
four-dimensional Hubble parameter varies as H = εφs, ε ∈ R and s is some unknown
power index and that the extra-dimensions compactify as the visible dimensions ex-
pand as b(t) ≈ ax(t), x ∈ R

−. We mainly discuss the case x = −1. For critical values
of ε close to unity, it was observed that the acceleration of the universe occurs at red-
shift close to z = 0.8 which indicates that in our model, accelerated expansion of the
universe began only recently. Several interesting points are revealed and discussed in
some detail.
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1 INTRODUCTION

Recent astronomical observations with great precision and accuracy of the Cosmic Microwave
Background (CMB) Anisotropy from WMAP (Wilkinson Microwave Anisotropy Probe), the Hubble
diagram of type Ia Supernovae (SNe Ia) and the Lyα forest argue that our universe is governed by
a nonzero cosmological constant with ΩΛ ≈ 0.72 and has undergone a phase of accelerated ex-
pansion tending to a flat de-Sitter space-time as predicted by inflation theory with Ωm ≈ 0.28
(Riess et al. 1998; Cunha 2009; Perlmutter et al. 1999; Schmidt et al. 1998; Steinhardt et al. 1999;
Persic et al. 1996; Riess et al. 2004; Alcaniz 2004). These findings are in accordance with results of
BOOMERANG experiments (Ostriker & Steinhardt 1995) and are in agreement with a number of in-
dependent observations, especially concerning the mass of clusters. In other words, up to 70% of the
total density consists of an unknown vacuum energy density or its effective equivalent and weakly
interacting dark matter. The observed ordinary matter is on the order of 1% of the critical value and
thus there exists a great quantity of dark matter (Riess et al. 2004). Dark energy and dark matter are
in reality very troubling problems and one expects to derive new physics for a realistic explanation.
To enlighten the dark energy issue, several phenomenological candidates and cosmological scenar-
ios have been postulated and confronted with observations: the ΛCDM scenario (Peebles & Ratra
2003), K-essence (Armendariz-Picon et al. 2001), viscous fluid (Fabris et al. 2006a,b), Chaplygin gas
(Fabris et al. 2002; Kamenshchik et al. 2001), Generalized Chaplygin gas model which mimics both
dark matter and dark energy (Bilić et al. 2002; Bento et al. 2002), varying neutrino mass (Brookfield
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et al. 2006; Fardon et al. 2004), holographic dark energy (Setare & Saridakis 2008b,a), quintom cos-
mology (Guo et al. 2005; Xia et al. 2005; Sadeghi et al. 2008; Zhao et al. 2007) and so on. Most of
these theories faced many difficulties like the cosmic coincidence problem and the initial singularity
problem. However, regardless of their motivating consequences, the accelerated expansion of the
universe and the nature of dark energy and dark matter cannot be explained by the standard model
of particle physics and classical general relativity, i.e. a modified gravity theory is required.

The Brans-Dicke theory is a generic modification of Einstein’s general relativity theory al-
lowing variable gravity coupling (Brans & Dicke 1961). It is noteworthy that the low energy
limit of the string theory contains the Brans-Dicke theory with a fine tuned deformation parame-
ter ω = −1 (Veneziano 1996). Generalized Brans-Dicke theory with a time-dependent parameter
(sometimes referred to as graviton-dilaton or scalar-tensor theory) appears as well in supergravity
and Kaluza-Klein theories (Nordtvedt 1970; Bergmann 1968; Wagoner 1970; Sahoo & Singh 2002).
Nevertheless, Brans-Dicke cosmological theory with a constant ω is also an attractive theory in its
own right since it also receives strong support from string and Kaluza-Klein theories (Kalyana Rama
& Ghosh 1996; Kalyana Rama 1996). It was recently argued that the Brans-Dicke cosmology with
a standard kinetic term for the scalar field but no mass term has the same radiation dominated solu-
tion as standard Einstein cosmology without a cosmological constant (Arik & Amon Susam 2010).
Also, it was observed that Brans-Dicke can make a correction to the matter density component of
the equation (Barrow 1993; Arik et al. 2008). Besides, the Brans-Dicke theory is successful for solv-
ing many problems in cosmology and all important features of the cosmic evolution of the universe
such as inflation (Mathiazhagan & Johri 1984), early and late time behavior of the universe (La
& Steinhardt 1989), structure formation (Bertolami & Martins 2000) and the coincidence problem
(Banerjee & Pavón 2001; Sen & Seshadri 2003) could be explained successfully in the Brans-Dicke
formalism. Apart from the above, Einstein’s general relativity is recovered when ω → ∞; from
timing experiments using the Viking space probe (Reasenberg et al. 1979), one finds ω > 40000.
This constraint ruled out various cases of extended inflation (Weinberg 1989; La et al. 1989). For a
large value of the ω-parameter, the Brans-Dicke theory gives the right amount of inflation and early
and late time behaviors, whereas small and negative values explain cosmic accelerated expansion,
structure formation and the coincidence problem.

In this paper, we discuss our model within the structure of a five-dimensional homogeneous
and isotropic space described by the flat metric, with a(t) being the scale factor of the 3-space
and b(t) is the scale factor of the fifth dimension in a simple Brans-Dicke scalar field cosmologi-
cal model. This class of generalized models is appealing for many reasons. It naturally appears in
higher-dimensional theories like supergravity, Kaluza-Klein and in all the recognized effective string
actions (Serna & Alimi 1996; Damour & Nordtvedt 1993; Kalyana Rama & Ghosh 1996; Kalyana
Rama 1996; Nordtvedt 1970). In fact, higher-dimensional theories were reintroduced in physics to
exploit the special properties that supergravity and superstring theories possess for particular values
of spacetime dimensions (Randall & Sundrum 1999; Rubakov 2001; Hewett & Spiropulu 2002). Our
four-dimensional universe is actually described by a general relativistic theory in a spacetime with
one or more extra compactified dimensions. These higher-dimensional theories are now an active
field of research in both general relativity and high energy physics in their attempts to unify gravity
with all forces of nature. However, in the present epoch, these extra-dimensions are not observed pre-
sumably because they shrink in time to a tiny unobservably small length (Bhowmik & Rajput 2003;
Bahrehbakhsh et al. 2010). Throughout this work, we conjecture that the four-dimensional Hubble
parameter H = ȧ/a varies as H = H(φ) = εφs where ε is a positive parameter and s is some
pending power index. This ansatz is in reality motivated from various non-minimal coupling aspects
of chaotic inflationary scenarios (Chen et al. 2008; Wang & Yang 2005). Moreover, we conjecture
that the extra-dimensions compactify as the visible dimensions expand as b(t) ≈ ax(t), x ∈ R

−

(El-Nabulsi 2009a,b).
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2 ACTION OF THE THEORY AND EQUATIONS OF MOTION

The action of the theory is given by (in units � = c = 8πG = 1)

S[gab, φ] =
1
2

∫
d5x

√
−g(5)(φ(5)R − ω

φ
gabφ,aφ,b) +

∫
d5x

√
−g(5)Lmatter , (1)

where Lmatter is the Lagrangian of the ordinary matter, (5)R is the 5D Ricci scalar curvature, g(5)

is the 5D scalar metric and a, b = 0, 1, 2, 3, 4. Varying the action (1) with respect to the metric and
scalar field yields the following equations of motion

Rab − 1
2
gabR − ω

φ2

(
φ,aφ,b − 1

2
gabφ

,cφ,c

)
− 1

φ

(
φ;ab − gab

(5)�φ
)

=
1
φ

(5)Tab, (2)

(5)�φ =
1

4 + 3ω
(5)T, (3)

where (5)� is the five-dimensional d’Alembertian operator, (5)Tab is the 5D energy-momentum
tensor and (5)T = (5)T c

c . The resulting equations of motion for the 5D metric are

(1 + x)H2 + (1 + x)H
φ̇

φ
− ω

6
φ̇2

φ2
=

ρ

3φ
, (4)

(2 + x)(Ḣ + H2) + (x2 + x + 1)H2 +
ω

2
φ̇2

φ2
+ (2 + x)H

φ̇

φ
+

φ̈

φ
= − p

φ
, (5)

φ̈ + (3 + x)Hφ̇ =
ρ − 3p

4 + 3ω
. (6)

In addition, we assume that the stress energy tensor takes the form of a perfect fluid, i.e. Tab =
diag(ρ, p, p, p, p) in an orthonormal frame. Adopting the equation of state p = (γ − 1)ρ, γ is a
constant, and p and ρ are respectively the fluid pressure and density. This satisfies the conservation

equation ρ̇ + (3H + ḃ
/

b)γρ = 0 or ρ̇ + (3 + x)Hγρ = 0. Now we can write the three previous

equations as

(1 + x)H2 + (1 + x)H
φ̇

φ
− ω

6
φ̇2

φ2
=

ρ

3φ
, (7)

(2 + x)(Ḣ + H2) + (x2 + x + 1)H2 +
ω

2
φ̇2

φ2
+ (2 + x)H

φ̇

φ
+

φ̈

φ
= − (γ − 1)ρ

φ
, (8)

φ̈ + (3 + x)Hφ̇ =
(4 − 3γ)ρ
4 + 3ω

. (9)

We will show that one interesting class of solutions is obtained for x = −1.

3 COSMOLOGICAL SOLUTIONS

For this particular value, Equation (7) gives straightforwardly ρ = −ωφ̇2
/

2φ. After substituting

into Equation (8), we find

Ḣ + 2H2 +
2 − γ

2
φ−2φ̇2 + H

φ̇

φ
+

φ̈

φ
= 0. (10)
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To derive the solutions of these differential equations, we assume the time-dependence of the
scalar field is in the form φ = tp where p is a real parameter. For consistency, Equation (10) gives

ps + p − 1 = 2ps + p = p − 2, (11)

and

(2ε − 1)p + 2ε2 +
2 − γ

2
p2 = 0. (12)

Equation (11) gives ps = −1 whereas Equation (9) gives

p =
(1 − 2ε)(4 + 3ω)
4 + 7ω − 3γω

. (13)

The continuity equation gives in this case p = 2 − 3εγ. The Hubble parameter varies as H =
εt−1 and then the scale factor varies as a(t) = tε. Hence, one naturally expects that ε > 0 and
moreover it is required to have ε > 1 in order to have an accelerated expansion. Accordingly, the
energy density varies as ρ = −(ω/2)t−3γε. From Equation (12), we find then

p =
−(2ε − 1) ± √

(2ε − 1)2 − 4(2 − γ)
(2 − γ)

, (14)

and then from p = 2 − 3εγ, we obtain

ε =
−(6γ2 − 9γ + 4) ±

√
36γ3 − 63γ2 + 24γ + 16

3γ(−3γ2 + 6γ − 4)
. (15)

Equation (15) shows that for ε > 1, we need γ > 0. These two conditions fulfill a decaying energy
density with cosmic time. There is an easy way to check whether the positive sign in Equation (15)
will lead to unrealistic values (negative or complex) for the parameter ε when γ < 0. We may address
the following illustrative table.

Table 1 Values of the Parameters for Different Values of γ

γ ε p ω s a(t) ρ(t) H w = γ − 1

1 1.53 –2.59 –0.5 0.38 t1.53 0.25t−4.59 1.53φ0.38 0
4/3 1.36 –3.44 –1.33 0.29 t1.36 0.66t−5.44 1.36φ0.29 1/3
1/2 1.94 –0.91 ≈ −2 1.2 t1.94 1.08t−2.91 1.94φ1.2 –1/2
1/4 3.2 –0.4 –1.45 2.5 t3.2 0.725t−2.4 3.2φ2.5 –3/4

It is notable from Table 1 that we have transitions from inflation to deceleration to accelerated
epochs. However, the BD parameter is different from the one obtained in the low-energy limit of the
bosonic string theory which is ω = −1 (Callan et al. 1985). In our framework, ω < 0 turns out to be
negative and this result properly agrees with the conclusions of some recent works that the Brans-
Dicke parameter needs to be negative for a successful explanation of the accelerated expansion of the
universe (Bertolami & Martins 2000; Banerjee & Pavón 2001; Sen & Seshadri 2003). Though the
universe in our framework is described by five-dimensional spacetime, the fifth dimension decays
as b(t) ≈ a−1(t) and hence at the end of time, 5D → 4D. Although the gravitational coupling
constant is almost constant in four-dimensions or varies slowly (Turyshev et al. 2004), G(5) ∝ φ−1

is not a constant since it evolves with time. We find that the model is in best agreement with the
supernovae data when the 5-dimensional Brans-Dicke coupling constant −2 < ω < −1.45 which
also happens to be the value required to satisfy the solar system experiments such as the baryon
acoustic oscillation and is in agreement with recent studies (El-Nabulsi 2007, 2010). It is notable
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that in the standard framework, the BD coupling parameter range −2 � ω � −1.5 violates the
energy condition in the scalar field.

Another interesting parameter to discuss concerns the deceleration parameter q̄(t) ≡ −äa
/
ȧ2

which is directly related to the Hubble parameter by the relation q̄ ≡ −ä/Hȧ = −(q − 1)/q. The
phenomenological two-parameter linear expansion q̄(z) = q̄0 + q̄1z is useful; q̄0 and q̄1 are arbitrary
constants to be compared with the values constrained by the Union supernovae dataset. However,
recent astronomical observations (Riess et al. 1998; Cunha 2009; Perlmutter et al. 1999; Schmidt
et al. 1998; Steinhardt et al. 1999; Persic et al. 1996; Riess et al. 2004; Alcaniz 2004) favor q̄0 < 0
for the late-time dynamics and q̄1 > 0 for the early-time dynamics or high energy limit with a high
confidence level. In our approach, we have q̄0 = −0.68 for γ = 1/4 in accordance with the more
recent results obtained by the Union SNe compilation as well as the recently extended dataset of
distant supernovae observed with the Hubble Space Telescope, q̄0 � −0.52 with 68% confidence
level. In our model and in particular for γ = 1/4, we find q̄0 = −0.68 which is very close to the
value given by Wang et al. (2010) and Gong & Duan (2004). In terms of the redshift defined by
z = −1 + a0/a, the deceleration parameter q̄ is determined easily from the evolution of the scale
factor H(t) = εtps. One easily obtains ln(1+z) = ε

∫
tpsdt = ε ln t for ps = −1 and hence 1+z =

tε = εεH−ε. Accordingly, the redshift is a function of the value of ε and this must be constrained
carefully by observations making use of advanced computational techniques. However, we believe
that for some special values of ε, e.g. ε = 1.2, we obtain z ≈ 0.8 for H0 = 73.4+2.8

−3.8 km s−1 Mpc−1

(h = 0.7) (Spergel et al. 2007) which indicates that the accelerated expansion is a very recent
phenomenon.

4 CONCLUSIONS AND PERSPECTIVES

In summary, in this work we have developed a procedure in which we regard our spacetime as a
hypersurface embedded in a five-dimensional space, which is a solution of the Brans-Dicke field
equations. We have conjectured that the Hubble parameter varies as H = H(φ) = εφs where ε is
a positive parameter and s is some pending power index, and we explored the case where the extra-
dimensions compactify as the visible dimensions expand as b(t) ≈ a−1(t). These ansatzes lead
to cosmological acceleration. We have found that the model exhibits a transition from decelerated
power-law expansion and then enters a phase of power-law inflation in the radiation and pressure-
less epochs and finally undergoes a phase of accelerated expansion in the dark energy epoch with
equation of state parameter −1 < w = γ − 1 < 0. For a very large time, the extra-dimensional scale
factor decays in time and then we are left with an accelerated universe described by a 4D Friedman-
Robertson-Walker spacetime. Further details and astrophysical implications are in progress.
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