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Abstract The fuel consumption associated with some interplanetary transfer trajecto-
ries using chemical propulsion is not affordable. A solar sail is a method of propulsion
that does not consume fuel. Transfer time is one of the most pressing problems of solar
sail transfer trajectory design. This paper investigates the time-optimal interplanetary
transfer trajectories to a circular orbit of given inclination and radius. The optimal
control law is derived from the principle of maximization. An indirect method is used
to solve the optimal control problem by selecting values for the initial adjoint vari-
ables, which are normalized within a unit sphere. The conditions for the existence
of the time-optimal transfer are dependent on the lightness number of the sail and
the inclination and radius of the target orbit. A numerical method is used to obtain
the boundary values for the time-optimal transfer trajectories. For the cases where no
time-optimal transfer trajectories exist, first-order necessary conditions of the optimal
control are proposed to obtain feasible solutions. The results show that the transfer
time decreases as the minimum distance from the Sun decreases during the transfer
duration. For a solar sail with a small lightness number, the transfer time may be
evaluated analytically for a three-phase transfer trajectory. The analytical results are
compared with previous results and the associated numerical results. The transfer time
of the numerical result here is smaller than the transfer time from previous results and
is larger than the analytical result.
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1 INTRODUCTION

In deep space, the force of solar radiation pressure is one of the predominant extra forces exerted
on a solar sail. The solar radiation pressure force can be used for performing orbit maneuvers and
interplanetary transfers without consuming any fuel. Compared with chemical propulsion, solar sails
show great advantages in interplanetary transfer missions. A number of studies of solar sail-based
interplanetary missions were carried out in the late 1970s, with an emphasis on a rendezvous with
Comet Halley in 1986 (Wright & Warmke 1976; Friedman et al. 1978). Sauer (1976, 1977) pre-
sented detailed trajectory designs, based upon generalizations of the variational approach assuming
the orbits of Earth and Mars to be circular and coplanar. Lebedev & Zhukov (1964) first investi-
gated the time-optimal transfer from Earth to Mars using a solar sail. Jayaraman (1980) revisited the
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minimum-time transfers between Earth’s orbit and Mars’s orbit using different characteristic accel-
erations. Jayaraman’s solutions were different from those obtained by Lebedev & Zhukov (1964).
His transfer times were about 10% larger and his sail orientation histories were significantly dif-
ferent. Wood et al. (1982) commented on Jayaraman (1980) and pointed out that the solutions in
(Lebedev & Zhukov 1964) were correct and the transversality condition of variational calculus had
been applied incorrectly in Jayaraman (1980). In fact, when an indirect method is employed in the
optimization process, the long simulation time makes the solution a difficult task, especially because
the boundary values are extremely sensitive to the value of the initial estimate of the adjoint vari-
ables, particularly for a high variation of orbital inclination or small sail characteristic acceleration
(Dachwald & Seboldt 2003). An indirect method including only one phase is almost impossible for
a high inclination mission using a small acceleration sail. In addition, a direct method has other dis-
advantages, since the whole trajectory requires a high number of parameters for the discretization
process. Usually, a high inclination transfer trajectory is obtained by dividing the trajectory into a
certain number of phases and by using, in each phase, a locally optimal control law (Macdonald
et al. 2006). The advantage of such control laws lies in their capability to approximate the optimal
trajectory through simple numerical simulations. However, an approach based on locally optimal
control laws is not well suited for the problem discussed in this paper. One disadvantage is the dif-
ficulty of satisfying the boundary conditions of the final radius and the orbital inclination. These
control laws are particularly useful for planetary escape missions (Macdonald & McInnes 2004;
Mengali & Quarta 2005). Macdonald et al. used the blended locally optimal control laws to optimize
interplanetary transfer trajectories (Macdonald et al. 2007).

A promising application of solar sails is to achieve heliocentric circular orbits with small radius
and high inclination. One of these missions is represented by the Solar Polar Imager (SPI) mission,
one of several Sun-Earth-related solar sail roadmap missions envisioned by NASA (Burch 1997).
The SPI mission requires the spacecraft to evolve in a heliocentric circular orbit having radius of
0.48AU (astronomical unit) and inclination of 75◦. Spacecraft in this orbit can be used to measure
the solar magnetic field, coronal mass ejections and solar irradiance in the Sun’s polar regions. In
1996, JPL studied a single trajectory phase that had several close approaches to the Sun, which were
constrained at the final orbital distance of 0.48AU. The flight time for the baseline trajectory in
the study was nearly three years for a characteristic sail acceleration of 1mms−2 (Goldstein et al.
1998). In order to find trajectories with shorter flight times, Sauer (1999) discussed a two phase
trajectory scenario that is likely to be very close to optimal, where the initial phase of the trajectory
delivers the spacecraft to a circular orbit at the desired orbital distance and at an inclination of 15◦.
Dachwald et al. (2006) and Mengali & Quarta (2009) divided all transfer trajectories into several
phases. Their obtained results were similar. The radius is reduced during the first phase and the
inclination is increased to an objective value during the second phase and during the last phase the
radius is adjusted to the target value and the orbit is circularized. Dachwald et al. (2006) used the
Evolutionary Neurocontrol optimization method to obtain shorter time results using the temperature
as a constraint, where the “Hot” mission scenario generated a much faster transfer than the “Cold”
scenario. Mengali & Quarta (2009) combined the locally optimal method with the globally optimal
approach to produce an approximate solution in the form of interpolating functions. Each phase is
studied in a globally optimal framework using an indirect approach and the final trajectory is simply
obtained as an orderly sequence of the different phases.

This paper discusses the transfer time from the Earth’s orbit to a circular orbit of given radius and
inclination. The inclination cranking using a solar sail is a typical application of solar sail technology.
The cranking maneuver is onerous in terms of flight time, especially when inclination variations of
some tens of degrees are required. Therefore, it is convenient to perform the cranking maneuver
when the solar distance is as small as possible, in order to maximize the sail thrust that varies as the
inverse square of the solar distance. The cranking efficiency is dependent on the lightness number
of the sail and the distance from the Sun. The inclination change over one loop is proportional to
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the lightness number of the solar sail. The period of a large radius is long and the cranking rate is
small, which means that varying the inclination in an orbit with a small radius can save a great deal
of time. Therefore, one of the efficient methods is to first transfer the spacecraft to a smaller radius
for inclination cranking, then the radius can be increased to the desired value. This strategy can
save time if the extra time required to adjust the radius is shorter than the time saved for inclination
cranking. Without considering the temperature constraint on the sail, does a minimum radius exist
for a minimum transfer time? What are the conditions for this minimum radius? Which parameters
determine this minimum radius? This paper will try to answer these questions. There are cases where
the total transfer time decreases as the minimum radius from the Sun decreases, which means that
the minimum time is obtained when the sail tends to approach the Sun. A zero radius leads to the
singularity of the dynamical equation and is also impossible in engineering practice. Therefore, there
is no minimum time transfer trajectory in this case without any restriction on the radius. In this paper,
we try to figure out the conditions for these cases. If the minimum time transfer trajectory exists,
the dependence of the minimum distance on different parameters is discussed. For some cases, the
minimum distance may be very small, which leads to a high temperature in the sail. In engineering
practice, the extreme temperature of the sail exerts a constraint on the minimum distance and solar
angle. Therefore, the minimum distance from the Sun during the transfer is very important for a
solar sail transfer mission. One reason is that the minimum distance greatly influences the total flight
time. Another reason is that it influences the equilibrium temperature of the sail. Finally, this paper
gives the results of the transfer trajectory with minimum radius constraints. The transfer time of a
three-phase transfer trajectory is evaluated analytically and the results are compared with the results
in literature and numerical results in this paper.

2 MINIMUM TIME TRANSFER TRAJECTORY OF AN IDEAL SOLAR SAIL

Consider the problem of minimum time heliocentric transfer of a solar sail from an initial circular
orbit of radius r0 and inclination i0 to a target circular orbit with radius rf and inclination if . An
ideal plane solar sail is assumed in this paper. The lightness number of the sail is used to describe
the solar radiation pressure force that can be written as

F = β
μ

R2
cos2αn, (1)

where μ is a solar gravitational constant, computed by multiplying the gravitational constant by the
mass of the Sun, R is the distance from the Sun, n is the unit vector along the sail’s normal direction
and α is the angle between the sail normal and the direction of sunlight. Here β is the lightness
number of the sail, which is used to describe the acceleration capability of the sail.

A two-body model is used. Perturbation forces are not considered and only the solar gravity
and solar radiation pressure force are exerted on the solar sail. A system of nondimensional units is
introduced for convenience. The distance unit is taken as the distance from the Sun to Earth, while
the time unit is chosen such that the solar gravitational parameter is unitary. With such a choice, the
dynamical equation of motion in the ecliptic’s inertial frame can be given by{

Ṙ = V,

V̇ = − 1
R3 R + β 1

R4 (R · n)2n.
(2)

The sail has to escape Earth before its journey to an interplanetary orbit. Either an impulse
maneuver is used before sail deployment or the solar radiation pressure force is used to escape
Earth. The interplanetary transfer does not include the geocentric orbit and the sail is assumed to
depart from the heliocentric orbit of Earth. The departure position and velocity of the sail are the
same as those of Earth, namely, C∞ = 0. In this case, the departure time greatly influences the
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transfer time for some missions. Therefore, the departure time is free and optimized in order to find
the minimum transfer time. Then, the constraints of the initial time can be described as

Ψ [t0, R(t0), V (t0)] =
[

R(t0) − m(t0)
V (t0) − n(t0)

]
= 0, (3)

where m(t0) and n(t0) are respectively the position and velocity of Earth at the initial time.
The object’s position and velocity are dependent on the mission types. For examples, a flyby

mission requires only the position to be the same as the object planet, but a rendezvous mission
requires both the position and velocity to agree with those of the planet. For the Solar Polar Imager
mission, the objective is to transfer the sail to a circular orbit with fixed radius and inclination. The
final time constraints of all these different missions are written in a general form as

Π [tf , R(tf ), V (tf )] = 0. (4)

The objective function of the minimum time transfer optimization problem is given by

J = −
∫ t

0

κdt, (5)

where κ is a positive weight constant.
The Hamiltonian function of the system is defined as

H = −κ + λR (t) · V + λV (t) ·
[
− μ

R3
R + β

μ

R4
(R · n)2n

]
. (6)

The time derivatives of the adjoint variables, obtained from the Euler-Lagrange equations, are{
λ̇R = −∂H

∂R = μ
R3 λV − 3μ

R5 (R · λV ) R − 2β μ
R4 (R · n) (n · λV )

[
n − 2(R·n)R

R2

]
,

λ̇V = − ∂H
∂V = −λR.

(7)

The optimal values of the control variables are obtained by invoking Pontryagin’s maximum prin-
ciple (Pontryagin et al. 1962), that is, by maximizing H at any time. By imposing the necessary
condition, one has

n (t) = arg maxH (t, n, λ). (8)

In the low-thrust trajectory optimization, λV is called the “Prime Vector.” To maximize the
Hamiltonian function, one has to align the direction of low-thrust along the “Prime Vector.” This
optimal control law is not suitable for solar sails because of two reasons. The first one is that the
solar radiation pressure force cannot always be aligned along the “Prime Vector” because the solar
radiation pressure force cannot continuously be sun-ward. The second reason is that the direction of
the solar radiation pressure force determines its magnitude, which means that aligning the direction
of solar radiation pressure force along the “Prime Vector” does not generate a maximum Hamiltonian
function, even if it is possible for the alignment. Maximizing the Hamiltonian function means ad-
justing the sail attitude to maximize the projection of the solar radiation pressure force along the
“Prime Vector.” In fact, it is a kind of local optimization problem (McInnes 1999), based on which
one knows that the normal vector lies in the plane spanned by the sunlight and the “Prime Vector.”
In the plane, the angle between the sunlight and the sail normal is given by

tan α =
−3 ±

√
9 + 8tan2α̃

4 tan α̃
, (9)

where α̃ is the angle between the “Prime Vector” and the direction of sunlight.
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Fig. 1 Optimal control law description.

As shown in Figure 1, the optimal control law can be written in the vector form as{
n = cosαR

R + sin αe,
λV

λV
= cos �

α R
R + sin �

αe,
(10)

where e is the unit vector perpendicular to the sunlight direction in the plane spanned by sunlight
and the “Prime Vector.”

The boundary conditions are obtained as

λR (t0) = −γ0 · ∂Ψ
∂R (t0)

, (11)

λV (t0) = −γ0 · ∂Ψ
∂V (t0)

, (12)

λR (tf ) = γf · ∂Π
∂R (tf )

, (13)

λV (tf ) = γf · ∂Π
∂V (tf )

, (14)

where γ0 and γf are Lagrange multipliers related to the initial and final time constraints.
Substitution of the expressions of the initial and final time constraints into the equations yields

the results for boundary conditions. The minimum transfer time is obtained by enforcing the transver-
sality condition as

H (t0) = γ0 · ∂Ψ
∂t0

= −
[
γR0 · ∂m(t0)

∂t0
+ γV 0 · ∂n(t0)

∂t0

]
= − [γR0 · V (t0) + γV 0 · a (t0)] = −

[
γR0 · V (t0) − γV 0 · 1

R3(t0)R (t0)
]

= λR (t0) · V (t0) − λV (t0) · 1
R3(t0)

R (t0) ,

(15)

H (tf ) = −γf · ∂Π
∂tf

. (16)

The initial adjoint variables are free, while the transversality condition of the initial time is deter-
mined by the initial adjoint variables. The boundary conditions and transversality condition of the
final time are dependent on the final time constraint.

Missions such as the Solar Polar Imager require the sail to transfer the payload to a new helio-
centric orbit. Usually, the inclination and radius of the object’s orbit are taken into account. Then,



986 S. P. Gong, Y. F. Gao & J. F. Li

the target orbit is described by the orbit parameters rf , ef , and if . Therefore, the corresponding final
constraints are written as

Π [tf , R(tf ), V (tf )] =

⎡
⎣ r(tf ) − rf

e(tf ) − ef

i(tf ) − if

⎤
⎦ . (17)

In this case, the final position adjoint variables and velocity adjoint variables are constrained. The
final boundary conditions are given by

λR (tf ) =
[

∂r(tf )
∂R(tf )

∂e(tf )
∂R(tf )

∂i(tf )
∂R(tf )

] [
γaf γef γif

]T
, (18)

λV (tf ) =
[

∂r(tf )
∂V (tf )

∂e(tf )
∂V (tf )

∂i(tf )
∂V (tf )

] [
γaf γef γif

]T
. (19)

The final transversality condition is given by

H (tf ) = −γf · ∂Π
∂tf

= 0. (20)

In order to provide frequent polar observations, a circular polar orbit with a 3:1 resonance with
the Earth at a solar distance of 0.48AU is desired. The 0.48AU circular polar orbits were consid-
ered in a previous study from JPL. This paper focuses on transferring the trajectories to a radius
of 0.48AU and a different inclination. The departure time does not influence the optimal transfer
time for this kind of mission since the target orbit has no requirements on the direction of the orbital
plane. Therefore, this paper assumes that the sail departs from Earth at an MJD (Modified Julian
Date) of 5478. Earth is assumed to evolve in a Keplerian orbit and its orbital elements are given in
Table 1.

Table 1 Orbit Elements of Earth

MJD a (AU) e i (◦) Ω (◦) ω (◦) M (◦)

2455 0.9999880495 1.67168116 ×10−2 0.8854353×10−3 175.406477 287.6157755 257.606837

3 THE METHOD OF SOLVING THE OPTIMAL CONTROL PROBLEM

The minimum time required to transfer the sail to a different inclination is obtained using an indirect
method when the optimal solution has been found. The initial values of the adjoint variables are
estimated in order to obtain the optimal control law. One reason that makes selecting the initial
adjoint variables difficult is that the ranges of the adjoint variables cannot be determined. Scaling the
adjoint variables makes the optimization much easier. Since the equations with the adjoint variables
are homogeneous, a solution to the equation multiplied by a factor will also be a solution of the
equation. Therefore, the adjoint variables can be enforced within a unit sphere. The Hamiltonian
function has to be scaled to match the transversality conditions, which can be achieved by adjusting
the constant κ in the Hamiltonian function. After normalization, the adjoint variables and κ can be
transformed into six angle variables.⎧⎪⎪⎨

⎪⎪⎩
λR (t0) = cosα1 cosα2[cosα3 cosα4, cosα3 sin α4, sin α3]

T
,

λV (t0) = cosα1 cosα2[cosα5 cosα6, cosα5 sin α6, sin α5]
T
,

α1,2 ∈ (
0, π

2

)
, α3,5 ∈ (−π

2 , π
2

)
, α4,6 ∈ (0, 2π) ,

κ = sin α1.

(21)
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Now, the optimal control problem is transformed into a problem of solving algebraic equations.
The free parameters include the departure time t0, the arrival time tf , and six angle variables related
to initial adjoint variables. They are collected in a vector as

Y =
[

t0 tf α1 α2 α3 α4 α5 α6.
]T

(22)

The equality constraints include the final state variable constraints, final adjoint variable constraints,
and transversality conditions. The total number of final state variable constraints and final adjoint
variable constraints is six. Therefore, there are eight free parameters for eight constraints. Good ini-
tial values of these free parameters are necessary for the iterative calculation to obtain an accurate
solution. The particle swarm optimization method is used to obtain initial values of the free param-
eters. The optimization results of the particle swarm optimization are taken as an initial estimation
for the local optimization method.

As discussed above, the optimal solution with respect to the transfer missions discussed in this
paper may not exist, which means there are no free parameters that exactly satisfy the constraints.
One way to handle this problem is to enforce either a minimum distance or maximum temperature
constraint for the maximization. The process of enforcing the constraint makes it difficult to obtain
the optimal solution. Instead, the parameter optimization is used to obtain different feasible solutions
by changing the weight coefficient. In this case, the final adjoint variable constraints and transversal-
ity conditions are not enforced. The free parameters are optimized to satisfy the final state variable
constraints and minimize the transfer time. The transfer trajectory problem is transformed into a pa-
rameter optimization problem for computing the feasible trajectories as follows. Find the parameter
vector Y that minimizes the transfer time subject to dynamics Equations (2) and (7) and constraint
Equation (17). The augmented Lagrange method is used to convert the constrained optimization
problem into an unconstrained one. The objective function for the unconstrained optimization prob-
lem can be written as

J = κ (tf − t0) + |Π| . (23)

Without enforcing the first-order necessary conditions, the feasible solution is not unique. The co-
efficient κ is adjusted to obtain different transfer trajectories. A large κ generates a short transfer
time. The optimization process stops when the final constraints are within a specified accuracy. In
this paper, the optimization continues until the final constraint uncertainties are less than 10−5 AU
for radius, 10−5 for eccentricity, and 10−5 radians for inclination.

4 NUMERICAL RESULTS AND DISCUSSION

The maneuverability of the sail increases with the sail’s lightness number. The minimum time for
transfer exists for a large lightness number solar sail. A case is given to illustrate that the minimum
time transfer trajectory exists for a large lightness number solar sail. As shown in Figure 2, the trans-
fer trajectory satisfying the first-order conditions is shown for the case of β = 0.73, rf = 0.48AU
and if = 75◦. The great maneuverability of the sail transports the spacecraft to the target orbit in
less than one loop. The maneuverability of the solar sail increases as the sail approaches the Sun and
decreases as the sail moves away from it. It can be seen from the figure that the sail flies outwards
at the beginning of the transfer duration and the transfer trajectory becomes highly elliptical. This
means that the sail decreases its maneuverability at the beginning in order to obtain the minimum
transfer time. From this example, it can be concluded that minimum transfer trajectories exist for
large lightness number solar sails. As the lightness number decreases, the acceleration ability of the
sail decreases. The sail needs to approach the Sun to increase its maneuverability and to decrease
the transfer time for some small lightness number and high inclination missions. To guarantee the
existence of the optimal solution, a given inclination corresponds to a minimum lightness number
or a given lightness number corresponds to a maximum inclination. For a sail with a given lightness
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Fig. 2 Transfer parameters of an optimal solution for β = 0.73.

number, if the target inclination is above the maximum value, the minimum-time transfer trajectory
satisfying the first-order optimality conditions may not be obtained using the above indirect method.
It cannot be strictly proven that the minimum-time transfer trajectories do not exist. In this paper, a
numerical criterion of judging the non-existence of an optimal solution is defined as follows: firstly,
the optimal solution cannot be obtained using the indirect method; secondly, the transfer time de-
creases with minimum radius rmin from the Sun during the transfer. If the optimal solution of the
control problem cannot be found by the indirect method, the parameter optimization without enforc-
ing the adjoint variable constraints and transversality conditions is used to obtain a feasible solution.
The weight coefficient is varied to obtain different solutions. When the sail approaches the Sun, the
integration becomes very slow and the optimization becomes difficult. In addition, the minimum
admissible radius is typically constrained by structural requirements and, in particular, by the tem-
perature limit of the sail film. The sail film’s equilibrium temperature increases as rmin is reduced
and it may eventually exceed the maximum allowable value of either the payload or the solar sail’s
bearing structure. Therefore, once the maximum admissible temperature is fixed, there exists a max-
imum allowable minimum distance from the Sun. The existence of such an upper value provides
an additional constraint that must be properly taken into account during the performance evaluation
process. Here the temperature constraint is not considered when the relationship between rmin and
the transfer time is discussed. The coefficient κ is increased to decrease the transfer time and min-
imum distance until the minimum distance becomes about 0.1AU. If the time still decreases when
rmin arrives at 0.1AU, it is assumed that no optimal solution exists.

Using the above method to judge the existence of the optimal solution, the boundary conditions
of the optimal solution may be derived in the space of lightness number and target inclination.
The existence of optimal solutions is restricted to the lightness number for large inclinations. For
a given lightness number, the target inclination is increased gradually to find the optimal solution
until the solution does not exist. Then, this inclination is recorded and the parameter optimization
method is used to find feasible transfer trajectories. When the optimal solution cannot be found by an
indirect method, the numerical results show that the transfer time always decreases, as the minimum
distance continually decreases. The boundary inclinations of different lightness numbers for AU
are calculated, as shown in Figure 3. The boundary inclination increases with the lightness number
almost linearly. The parameter space is divided by a boundary line and the optimal solution does not
exist in the region above the line. Furthermore, the optimal solution exists for all inclinations when
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Fig. 4 Optimal reversal transfer trajectory.

the lightness number is above a critical value, including the reversal trajectory, where the inclination
is changed from 0◦ to 180◦. The critical lightness number is determined numerically to be about 0.73.

Figure 4 gives the parameters of the minimum time transfer trajectory to a reverse circular orbit
using a solar sail of β = 0.75. The transfer trajectory lies in the ecliptic plane and no out-of-
plane component of the solar radiation pressure force is used to change the orbit inclination. The
solar radiation pressure force is used to reverse the angular momentum of the sail. That is why the
inclination changes from 0◦ to 180◦ instantaneously. The reversal trajectory using a solar sail to
move towards outer space has been discussed by Vulpetti (1997), where a constant sail attitude is
used to reverse the angular momentum around the Sun. This kind of trajectory is not discussed here.

The transfer time for the optimal solution in the region below the boundary line is calculated
to investigate the relationship between the transfer time and the target inclination. As shown in
Figure 5, the transfer time and minimum distance during the transfer for different target inclinations
are given for the case of β = 0.058 and rf = 0.48AU. The transfer time increases with target
inclination, which is easy to understand since a larger target inclination requires a longer cranking
time. The transfer time increases with inclination slowly when the inclination is small and the sail
does not need to approach the Sun for small target inclinations. As the inclination increases, the
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increment rate of transfer time also increases, which may be seen from the slope of the dotted line.
Meanwhile, the sail has to approach the Sun to obtain the minimum time transfer trajectory, and the
minimum distance from the Sun decreases as the target inclination increases until the inclination
arrives at the critical value. For the inclination above the critical value, the solution satisfying the
first-order conditions cannot be found by the indirect method and the transfer time will decrease as
the minimum distance from the Sun decreases.

The characteristic acceleration used in previous literatures for the Solar Polar Imager Mission
is 0.35 mms−2, which corresponds to a lightness number of about 0.058. The inclination of the
SPI orbit is from 75◦ to 90◦, which is far above the critical inclination of β = 0.058. Therefore,
a solar sail of β = 0.058 may not generate the minimum time transfer trajectory satisfying the
first-order conditions without any constraint on the minimum distance or temperature. To compare
with the results of Dachwald et al. (2006), a transfer trajectory with similar parameters is used for
simulations.
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Figure 6 gives the transfer time and minimum distance from the Sun generated by a different
weight coefficient. The small minimum distance corresponds to small transfer time. The transfer du-
ration may be from 3.4 yr to about 6 yr when the minimum distance changes from 0.1AU to 0.4AU.
Further decrement will further decrease the transfer time. In the literature, a minimum distance of
0.22AU for the ‘Hot’ mission scenario is used to obtain the transfer trajectory and the transfer time
is about 4.7 yr. The weight coefficient is chosen to make the rmin be 0.22AU. The corresponding
transfer time is about 4.37 yr. The corresponding transfer trajectory is shown in Figure 7 and the
transfer parameters are shown in Figure 8.

This paper adopts an ideal sail model while Dachwald et al. use a non-perfect reflection model,
where a set of optical coefficients are used to parameterize the optical characteristics of the sail film.
This difference in sail models is an important factor that contributes to the difference in transfer
times. The transfer time is shorter when the highest equilibrium temperature of the sail here is higher
because the pitch angle is much smaller when the sail is near the Sun. However, the time duration of
high temperature is much shorter here. For example, the time duration of temperature above 200◦C
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is less than 300 d while the duration in the literature is about 600 d. There are some other differences
between both transfer trajectories. The transfer trajectories in the literature include three phases,
and one orbit element is changed during each phase. The merit is that the computational effort is
less. Different from the three-phase transfer trajectories, the transfer trajectory in this paper includes
only one phase. There is no apparent phase division for the inclination and radius changes. It can
be found from the transfer trajectory that the radius and inclination are changed simultaneously.
The inclination is increased continuously during the entire transfer duration. At the beginning of the
transfer trajectory, most of the solar radiation pressure force is used to reduce the radius and the
increment rate of inclination is very small. When the sail approaches the Sun, the solar radiation
pressure is mainly used to increase the inclination, where the variation of the inclination is very
fast. For the component of solar radiation pressure force changing the radius, there is a critical point
where the distance from the Sun reaches its minimum.

5 ANALYTICAL RESULTS OF TRANSFER TRAJECTORIES

It is found from the results of the minimum time or near minimum time transfer trajectories that
the solar angle between the sunlight and sail normal stays almost constant during the whole transfer
journey. Usually, a preliminary estimate of these parameters is obtained by dividing the mission into
a certain number of phases and by using a locally optimal control law in each phase. In this section,
the transfer time of this kind of three-phase transfer trajectories is evaluated analytically. The spiral
trajectory of the sail may be described by the logarithmic spiral curve that is written as (McInnes
(1999))

r (θ) = r0eθ tan γ , (24)

where γ is the angle between the solar sail velocity and the transverse direction.
The planar dynamical equation of motion of the sail in polar coordinates can be written as{

d2r
dt2 − r

(
dθ
dt

)2
= −μ

r + β μ
r2 cos3α,

r d2θ
dt2 + 2 dr

dt
dθ
dt = β μ

r2 cos2α sinα.
(25)

Substitution of the logarithmic spiral solution into the dynamical equation yields

r3

(
dθ

dt

)2

= μ
[
1 − βcos2α (cosα − tanγ sin α)

]
cos2γ. (26)

From Equation (26), the radial velocity and transverse velocity of the sail can be obtained as

vθ = rθ̇ =
√

μ

r

[
1 − βcos2α (cosα − tan γ sin α)

]1/2
cos γ. (27)

The implicit relationship between the spiral angle γ, lightness number β and the pitch angle α can
be obtained by combining the dynamical equations and the solar sail velocity components.

sinγ cos γ

2 − sin2γ
=

βcos2α sin α

1 − βcos3α
. (28)

For small spiral angles, it is found that Equation (28) may be approximated to obtain

tan γ =
2βcos2α sinα

1 − βcos3α
. (29)

Integration of the radial component of the sail velocity yields the transfer time between the initial
orbit radius r0 and a final radial distance rf .

Δt =
1
3

∣∣∣r3/2
f − r

3/2
0

∣∣∣ ( 2
βμ sin αcos2α tan γ

)1/2

. (30)
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When the radius is reduced, the pitch angle and spiral angle satisfy sin α < 0, tanγ < 0. The
formula is still valid for the inward spiral trajectory. The analytical solution of the locally optimal
cranking maneuver may be obtained by integration of the variational equation of the inclination.

di

df
= βcos2α sinα cos δ

cos(f + ω)
1 + e cos f

. (31)

For the locally optimal cranking maneuver, the clock angle is always 0◦ or 180◦ to maximize the
component of solar radiation pressure force perpendicular to the orbit plane. Assuming the perigee
of the argument is constant, the change of the inclination over one period is obtained as

Δi = 2βcos2α sin α

[
cosω

e
(π − Eπ/2−ω − E−π/2−ω√

1 − e2
) +

sin ω

e
ln

1 + e sin ω

1 − e sin ω

]
. (32)

If the orbit is circular, the integration can be simplified as

Δi = 2βcos2α sin α

∫ π/2

−π/2
cos f df = 4βcos2α sin α. (33)

For a small lightness number, the eccentricity of the spiral orbit is very small. Equation (33) gives
a good approximation of the inclination variation over one orbit. Now the transfer time of transfer
trajectories including three phases can be evaluated. The first phase is a transfer between an initial
circular orbit of radius r0 to a middle orbit of radius rmin. The second phase is the cranking maneuver
at the radius rmin. The last phase is the transfer from the middle orbit to the target orbit of radius
rf . The time required for each phase may be calculated using Equations (30) and (33). The transfer
time from the initial orbit to the middle orbit is given by

Δt1 =
1
3

∣∣∣r3/2
0 − r3/2

m

∣∣∣ (
2

βμcos2α sin α tan γ

)1/2

. (34)

The time required to change the inclination is obtained by using Equation (33).

Δt2 =
2π (if − i0)

4βcos2α sinα

√
r3
m

μ
. (35)

Transfer time from the middle radius to the target radius is calculated similarly.

Δt3 =
1
3

∣∣∣r3/2
f − r3/2

m

∣∣∣ (
2

βμcos2α sin α tan γ

)1/2

. (36)

Therefore, the total transfer time may be evaluated as

Δt = Δt1 + Δt2 + Δt3

= 1
3

(∣∣∣r3/2
0 − r

3/2
m

∣∣∣ +
∣∣∣r3/2

f − r
3/2
m

∣∣∣) (
2

βμcos2α sin α tan γ

)1/2

+ 2π(if−i0)
4βcos2α sin α

√
r3
m
μ .

(37)

If the radius rmin of the middle orbit is chosen to satisfy rf ≤ rm ≤ r0, the total transfer time is
written as

Δt =
1
3

(
r
3/2
f + r

3/2
0

) (
2

βμcos2α sin α tan γ

)1/2

+
2π (if − i0)

4βcos2α sin α

√
r3
m

μ
. (38)
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If the radius of the middle orbit is smaller than the target orbit’s radius, namely, rm ≤ rf , the total
transfer time is given by

Δt =
1
3

(
r
3/2
0 + r

3/2
f − 2r3/2

m

)(
2

βμcos2α sin α tan γ

)1/2

+
2π (if − i0)

4βcos2α sin α

√
r3
m

μ
. (39)

For both cases, the total transfer time increases with the inclination difference between the initial
and target orbit, and decreases with the lightness number. These two conclusions are obvious since
large lightness number means large maneuverability and small inclination variation requires small
transfer time. In the first case, the transfer time increases with radius rm. Therefore, the minimum
transfer time is achieved by taking rm = rf , which means the cranking maneuver is executed in the
orbit with the target radius. For the second case, the relationship between the total transfer time and
the middle orbit radius may be achieved by deriving the total transfer time with respect to the middle
orbit radius.

∂Δt

∂rm
= −

(
2

βμcos2α sinα tanγ

)1/2

r1/2
m +

3π (if − i0)
4βcos2α sin α

√
rm

μ
. (40)

Taking ∂Δt
∂rm

= 0 yields

if − i0 =
4
√

1 − βcos2α
3π

. (41)

Using the assumption that the light number is small, Equation (41) is simplified as if − i0 = 24.3◦.
It means that the total transfer time decreases with the middle orbit radius when the inclination
difference is smaller than 24.3◦, and increases with the middle orbit radius when it is larger than
24.3◦. Whether a smaller radius is required for a cranking maneuver is dependent on the inclination
difference between the initial and target orbits. The minimum transfer time may be obtained by
taking the target orbit as the middle orbit when the inclination difference is smaller than 24.3◦.
A smaller orbit radius than the target orbit radius is required to change the inclination when the
inclination difference is larger than 24.3◦. In addition, the total transfer time decreases as the middle
orbit radius decreases and the transfer time arrives at its minimum when the middle radius tends to
zero. However, this is impossible both numerically and practically. It can be found from Figure 3
that the critical inclination is about 28◦ when the lightness number tends to zero. Therefore, the
analytical results provide a good evaluation for the critical inclination when the lightness number
is small. To compare the analytical results with the numerical results and previous results, similar
parameters are used to obtain the analytical evaluation. Using a solar sail of β = 0.058, the transfer
time evaluation of the mission to a circular orbit of 0.48AU and 75◦ for different middle radius is
shown in Figure 9.

As the middle radius decreases, the time required to adjust the radius increases while the time
for the cranking maneuver decreases. The overall result is that the total transfer time decreases as
the middle radius decreases. Dachwald used the data fitting to obtain an analytical expression for the
transfer duration, which is given by

Δt = 1374 − 1597acr,opt +
75

0.0113a−1.53
cr,opt

, (42)

where acr,opt is the optimal semi-major axis calculated by the constraint temperature, which is taken
as the radius from the Sun in the literature since the eccentricity is very small. The analytical results,
numerical results, and the results of Dachwald are given for comparison, as shown in Figure 10.

The transfer time of the analytical results is shortest and that of Dachwald is longest. One impor-
tant reason for the analytical method generating a smaller transfer time is that the eccentricity of the
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Fig. 10 Comparison of different results.

orbit is not taken as a constraint at the final time. The target orbit is a circular orbit but the final orbit
of the logarithmic spiral transfer is not circular. One reason for the Dalchwald’s method generating
a larger transfer time is that an optical model is used for the sail. Though different methods are used
to calculate the transfer time required, the time differences are within 0.15. Therefore, the analytical
method may be used to evaluate the transfer for the primary design.

6 CONCLUSIONS

The time optimal control law for interplanetary transfer to a circular orbit of a given radius and
inclination is derived for an ideal solar sail. The indirect method is used to obtain the solution of
the optimal control problem. The results show that an optimal solution does not exist for a high
inclination mission when a small lightness number solar sail is used to achieve the transfer. For a
given target radius, the condition for existence of the optimal solution is dependent on the lightness
number and target inclination. The boundary of the existing optimal solution is obtained through
numerical methods. As the target inclination increases, the transfer time of the optimal solution
increases and the minimum distance from the Sun decreases. When the optimal solution does not
exist, the parameter optimization is used to obtain a feasible solution. The results show that the
transfer time decreases as the minimum distance from the Sun decreases. The transfer time obtained
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by parameter optimization is smaller than that of Dachwald but the highest temperature is higher.
Finally, the analytical expression of transfer time is derived for a three-phase transfer trajectory. The
result approximates the numerical result well.
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